Generally useful information.

- The notation $\mathbf{z}=\langle\mathbf{x}, \mathbf{y}\rangle$ denotes the pairing function with inverses $\mathbf{x}=\langle\mathbf{z}\rangle_{1}$ and $\mathbf{y}=\langle\mathbf{z}\rangle_{\mathbf{2}}$.
- The minimization notation $\mu \mathbf{y}[\mathbf{P}(\ldots, \mathbf{y})]$ means the least \mathbf{y} (starting at $\mathbf{0}$) such that $\mathbf{P}(\ldots, \mathbf{y})$ is true. The bounded minimization (acceptable in primitive recursive functions) notation $\mu \mathbf{y}(\mathbf{u} \leq \mathbf{y} \leq \mathbf{v})[\mathbf{P}(\ldots, \mathbf{y})]$ means the least \mathbf{y} (starting at \mathbf{u} and ending at $\mathbf{v})$ such that $\mathbf{P}(\ldots, \mathbf{y})$ is true. Unlike the text, I find it convenient to define $\boldsymbol{\mu} \mathbf{y}(\mathbf{u} \leq \mathbf{y} \leq \mathbf{v})[\mathbf{P}(\ldots, \mathbf{y})]$ to be $\mathbf{v}+\mathbf{1}$, when no \mathbf{y} satisfies this bounded minimization.
- The tilde symbol, \sim, means the complement. Thus, set $\sim \mathbf{S}$ is the set complement of set \mathbf{S}, and predicate $\sim \mathbf{P}(\mathbf{x})$ is the logical complement of predicate $\mathbf{P}(\mathbf{x})$.
- A function \mathbf{P} is a predicate if it is a logical function that returns either $\mathbf{1}$ (true) or $\mathbf{0}$ (false). Thus, $\mathbf{P}(\mathbf{x})$ means \mathbf{P} evaluates to true on \mathbf{x}, but we can also take advantage of the fact that true is $\mathbf{1}$ and false is $\mathbf{0}$ in formulas like $\mathbf{y} \times \mathbf{P}(\mathbf{x})$, which would evaluate to either \mathbf{y} (if $\mathbf{P}(\mathbf{x})$) or $\mathbf{0}$ (if $\sim \mathbf{P}(\mathbf{x})$).
- A set \mathbf{S} is recursive if \mathbf{S} has a total recursive characteristic function χ_{S}, such that $\mathbf{x} \in \mathbf{S} \Leftrightarrow \chi_{S}(\mathbf{x})$. Note $\boldsymbol{\chi}_{\mathbf{s}}$ is a predicate. Thus, it evaluates to $\mathbf{0}$ (false), if $\mathbf{x} \notin \mathbf{S}$.
- When I say a set \mathbf{S} is re, unless I explicitly say otherwise, you may assume any of the following equivalent characterizations:

1. \mathbf{S} is either empty or the range of a total recursive function $\mathbf{f}_{\mathbf{S}}$.
2. \mathbf{S} is the domain of a partial recursive function $\mathbf{g}_{\mathbf{s}}$.

- If I say a function \mathbf{g} is partially computable, then there is an index \mathbf{g} (I know that's overloading, but that's okay as long as we understand each other), such that $\boldsymbol{\Phi} \mathbf{g}(\mathbf{x})=\boldsymbol{\Phi}(\mathbf{x}, \mathbf{g})=\mathbf{g}(\mathbf{x})$. Here $\boldsymbol{\Phi}$ is a universal partially recursive function.
Moreover, there is a primitive recursive function STP, such that
$\operatorname{STP}(\mathbf{g}, \mathbf{x}, \mathbf{t})$ is $\mathbf{1}$ (true), just in case \mathbf{g}, started on \mathbf{x}, halts in \mathbf{t} or fewer steps.
$\operatorname{STP}(\mathbf{g}, \mathbf{x}, \mathbf{t})$ is $\mathbf{0}$ (false), otherwise.
Finally, there is another primitive recursive function VALUE, such that
$\operatorname{VALUE}(\mathbf{g}, \mathbf{x}, \mathbf{t})$ is $\mathbf{g}(\mathbf{x})$, whenever $\operatorname{STP}(\mathbf{g}, \mathbf{x}, \mathbf{t})$.
VALUE ($\mathbf{g}, \mathbf{x}, \mathbf{t}$) is defined but meaningless if $\sim \operatorname{STP}(\mathbf{g}, \mathbf{x}, \mathbf{t})$.
- The notation $\mathbf{f}(\mathbf{x}) \downarrow$ means that \mathbf{f} converges when computing with input \mathbf{x}, but we don't care about the value produced. In effect, this just means that \mathbf{x} is in the domain of \mathbf{f}.
- The notation $\mathbf{f}(\mathbf{x}) \uparrow$ means \mathbf{f} diverges when computing with input \mathbf{x}. In effect, this just means that \mathbf{x} is not in the domain of \mathbf{f}.
- The Halting Problem for any effective computational system is the problem to determine of an arbitrary effective procedure \mathbf{f} and input \mathbf{x}, whether or not $\mathbf{f}(\mathbf{x}) \downarrow$. The set of all such pairs, $\mathbf{K}_{\mathbf{0}}$, is a classic re non-recursive one.
- The Uniform Halting Problem is the problem to determine of an arbitrary effective procedure \mathbf{f}, whether or not \mathbf{f} is an algorithm (halts on all input). The set of all such function indices (TOTAL) is a classic non re one.
- $\mathbf{A} \leq_{\mathrm{m}} \mathbf{B}(\mathbf{A}$ many-one reduces to $\mathbf{B})$ means that there exists a total recursive function \mathbf{f} such that $\mathbf{x} \in \mathbf{A} \Leftrightarrow \mathbf{f}(\mathbf{x}) \in \mathbf{B}$. If $\mathbf{A} \leq_{\mathrm{m}} \mathbf{B}$ and $\mathbf{B} \leq_{\mathrm{m}} \mathbf{A}$ then we say that $\mathbf{A} \equiv_{\mathrm{m}} \mathbf{B}$ (A is many-one equivalent to $\mathbf{B})$. If the reducing function is $1-1$, then we say $\mathbf{A} \leq_{1} \mathbf{B}(\mathbf{A}$ one-one reduces to $\mathbf{B})$ and $\mathbf{A} \equiv_{\mathbf{1}} \mathbf{B}(\mathbf{A}$ is one-one equivalent to \mathbf{B}).
\qquad
12 1. Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re non-recursive, (NRNC) non-re/non-co-re, categorize each of the sets in a) through d). Justify your answer by showing some minimal quantification of some known recursive predicate.
a.) $\{f \mid f$ is a Fibonacci function, i.e. $f(0)=f(1)=1$ and $f(x+2)=f(x)+f(x+1)\}$ \qquad
Justification:
b.) $\left\{f \mid\right.$ if $f(x)$ converges, it does so in more than $\left(2^{x}\right)$ units of time \} \qquad Justification:
c.) $\left\{\langle\mathbf{f}, \mathbf{x}\rangle \mid\right.$ if $f(x)$ converges, it does so in more than ($\left.\mathbf{2}^{\mathbf{x}}\right)$ units of time $\}$ \qquad Justification:
d.) $\{f \mid f(x)=f(x+1)$ for at least one value of $x\}$

Justification:

2 2. Looking back at Question 1, which of these are candidates for using Rice's Theorem to show their unsolvability? Check all for which Rice Theorem might apply.
a) \qquad b) \qquad c) \qquad
d) \qquad

6 3. Let set \mathbf{A} be recursive, \mathbf{B} be re non-recursive and \mathbf{C} be non-re. Choosing from among (REC) recursive, (RE) re non-recursive, (NR) non-re, categorize the set \mathbf{D} in each of a) through d) by listing all possible categories. No justification is required.
a.) $\mathbf{D}=\mathbf{C}-\mathbf{A}$ (set difference) \qquad
b.) $\mathbf{A} \subseteq \mathbf{D}$ (set containment)
c.) $\mathbf{D}=\mathbf{A} \times \mathbf{B}($ cross product) \square
d.) $\mathbf{D}=\mathbf{A}-\mathbf{B}$ (set difference)
4. Define NON_TRIVIAL_RANGE $=(\mathbf{f}| | \operatorname{range}(\mathbf{f}) \mid>\mathbf{1}\}$.

2 a.) Show some minimal quantification of some known recursive predicate that provides an upper bound for the complexity of this set. (Hint: Look at c.) and d.) to get a clue as to what this must be.)

5 b.) Use Rice's Theorem to prove that NON_TRIVIAL_RANGE is undecidable.

4 c.) Show that $\mathbf{K}_{\mathbf{0}} \leq_{\mathrm{m}}$ NON_TRIVIAL_RANGE, where $\mathbf{K}_{\mathbf{0}}=\left\{\langle\mathbf{x}, \mathbf{y}\rangle \mid \varphi_{\mathbf{x}}(\mathbf{y}) \downarrow\right\}$.

4 d.) Show that NON_TRIVIAL_RANGE $\leq_{m} K_{0}$.

2 e.) From a.) through d.) what can you conclude about the complexity of NON_TRIVIAL_RANGE (Recursive, RE, RE-COMPLETE, CO-RE, CO-RE-COMPLETE, NON-RE/NON-CO-RE)?
5. Rice's Theorem deals with properties \mathbf{P} of partial recursive functions and their corresponding sets of indices $\mathbf{S}_{\mathbf{P}}$. The following image describing a function $\mathbf{f}_{\mathbf{x}, \mathbf{y}, \mathbf{r}}$ that is central to understanding Rice's Theorem.

Given the hypotheses \mathbf{P} is non-trivial and is an I/O behavior and that we assume, without loss of generality that all functions with empty domains/ranges do not have property \mathbf{P}, explain the meaning of this diagram by doing the following:
2 a.) Indicate what \mathbf{r} is, how it is chosen and how we can guarantee its existence.

2 b.) Using recursive function notations, write down precisely what $\mathbf{f}_{\mathbf{x}, \mathbf{y}, \mathbf{r}}$ computes for the Strong Form of Rice's Theorem.

5 c.) Specify how the function $\mathbf{f}_{\mathbf{x}, \mathbf{y}, \mathbf{r}}$ behaves with respect to \mathbf{x}, \mathbf{y} and \mathbf{r}, and how this relates to the original problem, \mathbf{P}, and set, $\mathbf{S}_{\mathbf{P}}$.

6 6. Let \mathbf{S} be an arbitrary semi-decidable set. This means that \mathbf{S} is the domain of some partial recursive function $\mathbf{f}_{\mathbf{s}}$, whose domain is infinite. Using $\mathbf{f}_{\mathbf{S}}$, show that \mathbf{S} has an infinite recursive subset, call it \mathbf{R}. To be complete you will need to create a characteristic function for $\mathbf{R}, \chi_{\mathbf{R}}$, and argue that the set \mathbf{R} you defined is infinite. Hint: Inductively define a monotonically increasing algorithm that enumerates R. I'll even do this part for you.

$\mathbf{f}_{\mathrm{R}}(\mathbf{0})=<\mu<\mathbf{x}, \mathbf{t}>\left[\operatorname{STP}\left(\mathbf{f}_{\mathrm{S}}, \mathbf{x}, \mathrm{t}\right)\right]>_{1}$	$/ /$ Extract first component of $<\mathbf{x}, \mathrm{t}>$
$\mathbf{f}_{\mathrm{R}}(\mathbf{y}+\mathbf{1})=$	$/ /$ You fill this part in

You now need to argue that $\mathbf{f}_{\mathbf{R}}$ is total and monotonically increasing. From that you must argue that the set \mathbf{R} enumerated by $\mathbf{f}_{\mathbf{R}}$ is an infinite subset of \mathbf{S} and then you must define the characteristic function $\chi_{\mathbf{R}}$ for \mathbf{R}. I started the hardest part.

3 7. We proved that TOTAL $=\left\{\mathbf{f} \mid \forall \mathbf{x} \varphi_{f}(\mathbf{x}) \downarrow\right\}$ is not recursively enumerable. The proof is straightforward in that we assume the property to be so and that implies there is an algorithm \mathbf{A} that enumerates the indices of all algorithms. Using the universal machine, φ, where $\varphi(\mathbf{f}, \mathbf{x})=\varphi_{\mathrm{f}}(\mathbf{x})$, we have that $\varphi(\mathbf{A}(\mathbf{f}), \mathbf{x})=\varphi_{\operatorname{Af}}(\mathbf{x})$, that is, the value of the \mathbf{f}-th algorithm at the input \mathbf{x}. We then can define a new algorithm $\mathbf{D}(\mathbf{x})=\varphi(\mathbf{A}(\mathbf{x}), \mathbf{x})+\mathbf{1}$. Now you must finish the arguments that show that \mathbf{D} contradicts its own existence and hence of the existence of the enumerating algorithm \mathbf{A}.

