
Generally useful information.

• The notation z = <x,y> denotes the pairing function with inverses x = <z>1 and y = <z>2.

• The minimization notation µ y [P(…,y)] means the least y (starting at 0) such that P(…,y) is
true. The bounded minimization (acceptable in primitive recursive functions) notation
µ y (u£y£v) [P(…,y)] means the least y (starting at u and ending at v) such that P(…,y) is true.
Unlike the text, I find it convenient to define µ y (u£y£v) [P(…,y)] to be v+1, when no y
satisfies this bounded minimization.

• The tilde symbol, ~, means the complement. Thus, set ~S is the set complement of set S, and
predicate ~P(x) is the logical complement of predicate P(x).

• A function P is a predicate if it is a logical function that returns either 1 (true) or 0 (false). Thus,
P(x) means P evaluates to true on x, but we can also take advantage of the fact that true is 1 and
false is 0 in formulas like y ´ P(x), which would evaluate to either y (if P(x)) or 0 (if ~P(x)).

• A set S is recursive if S has a total recursive characteristic function cS, such that x Î S Û cS(x).
Note cS is a predicate. Thus, it evaluates to 0 (false), if x Ï S.

• When I say a set S is re, unless I explicitly say otherwise, you may assume any of the following
equivalent characterizations:
1. S is either empty or the range of a total recursive function fS.
2. S is the domain of a partial recursive function gS.

• If I say a function g is partially computable, then there is an index g (I know that’s overloading,
but that’s okay as long as we understand each other), such that Fg(x) = F(x, g) = g(x). Here F is
a universal partially recursive function.
Moreover, there is a primitive recursive function STP, such that
STP(g, x, t) is 1 (true), just in case g, started on x, halts in t or fewer steps.
STP(g, x, t) is 0 (false), otherwise.
Finally, there is another primitive recursive function VALUE, such that
VALUE(g, x, t) is g(x), whenever STP(g, x, t).
VALUE(g, x, t) is defined but meaningless if ~STP(g, x, t).

• The notation f(x)¯ means that f converges when computing with input x, but we don’t care about
the value produced. In effect, this just means that x is in the domain of f.

• The notation f(x) means f diverges when computing with input x. In effect, this just means that
x is not in the domain of f.

• The Halting Problem for any effective computational system is the problem to determine of an
arbitrary effective procedure f and input x, whether or not f(x)¯. The set of all such pairs, K0, is a
classic re non-recursive one.

• The Uniform Halting Problem is the problem to determine of an arbitrary effective procedure f,
whether or not f is an algorithm (halts on all input). The set of all such function indices
(TOTAL) is a classic non re one.

• A £m B (A many-one reduces to B) means that there exists a total recursive function f such that
x Î A Û f(x) Î B. If A £m B and B £m A then we say that A ºm B (A is many-one equivalent to
B). If the reducing function is 1-1, then we say A £1 B (A one-one reduces to B) and A º1 B (A
is one-one equivalent to B).

COT 6410 Spring 2015 Midterm#1 Name:

12 1. Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re non-recursive,
(NRNC) non-re/non-co-re, categorize each of the sets in a) through d). Justify your answer by
showing some minimal quantification of some known recursive predicate.
a.) { f | f is a Fibonacci function, i.e. f(0)=f(1)=1 and f(x+2)=f(x)+f(x+1) }
 Justification:

b.) { f | if f(x) converges, it does so in more than (2x) units of time }

Justification:

c.) { <f,x> | if f(x) converges, it does so in more than (2x) units of time }
 Justification:

d.) { f | f(x) = f(x+1) for at least one value of x }
 Justification:

2 2. Looking back at Question 1, which of these are candidates for using Rice’s Theorem to show their

unsolvability? Check all for which Rice Theorem might apply.

 a) b) c) d)

6 3. Let set A be recursive, B be re non-recursive and C be non-re. Choosing from among (REC)

recursive, (RE) re non-recursive, (NR) non-re, categorize the set D in each of a) through d) by
listing all possible categories. No justification is required.

a.) D = C - A (set difference)

b.) A Í D (set containment)

c.) D = A ´ B (cross product)

d.) D = A - B (set difference)

COT 6410 EXAM#1 – 3 – Spring 2015 – Hughes

 4. Define NON_TRIVIAL_RANGE = (f | |range(f)| > 1 }.
2 a.) Show some minimal quantification of some known recursive predicate that provides an upper bound

for the complexity of this set. (Hint: Look at c.) and d.) to get a clue as to what this must be.)

5 b.) Use Rice’s Theorem to prove that NON_TRIVIAL_RANGE is undecidable.

4 c.) Show that K0 ≤m NON_TRIVIAL_RANGE, where K0= { <x,y> | jx(y)¯ }.

4 d.) Show that NON_TRIVIAL_RANGE ≤m K0.

2 e.) From a.) through d.) what can you conclude about the complexity of NON_TRIVIAL_RANGE

(Recursive, RE, RE-COMPLETE, CO-RE, CO-RE-COMPLETE, NON-RE/NON-CO-RE)?

COT 6410 EXAM#1 – 4 – Spring 2015 – Hughes

 5. Rice’s Theorem deals with properties P of partial recursive functions and their corresponding sets of

indices SP. The following image describing a function fx,y,r that is central to understanding Rice’s
Theorem.

Given the hypotheses P is non-trivial and is an I/O behavior and that we assume, without loss of
generality that all functions with empty domains/ranges do not have property P, explain the meaning
of this diagram by doing the following:

2 a.) Indicate what r is, how it is chosen and how we can guarantee its existence.

2 b.) Using recursive function notations, write down precisely what fx,y,r computes for the Strong Form of
Rice’s Theorem.

5 c.) Specify how the function fx,y,r behaves with respect to x,y and r, and how this relates to the original
problem, P, and set, SP.

x
y

j
x
(y)

j
r
(z) z

f
x,y,r

(z)

COT 6410 EXAM#1 – 5 – Spring 2015 – Hughes

6 6. Let S be an arbitrary semi-decidable set. This means that S is the domain of some partial recursive

function fs, whose domain is infinite. Using fS, show that S has an infinite recursive subset, call it R.
To be complete you will need to create a characteristic function for R, cR, and argue that the set R
you defined is infinite. Hint: Inductively define a monotonically increasing algorithm that
enumerates R. I’ll even do this part for you.

fR(0) = < µ<x,t> [STP(fS, x, t)] >1 // Extract first component of <x, t>
fR(y+1) = // You fill this part in
You now need to argue that fR is total and monotonically increasing. From that you must argue that
the set R enumerated by fR is an infinite subset of S and then you must define the characteristic
function cR for R. I started the hardest part.

3 7. We proved that TOTAL = { f | "x jf(x)¯ } is not recursively enumerable. The proof is
straightforward in that we assume the property to be so and that implies there is an algorithm A that
enumerates the indices of all algorithms. Using the universal machine, j, where j(f,x) = jf(x), we
have that j(A(f),x) = jAf(x), that is, the value of the f-th algorithm at the input x. We then can define
a new algorithm D(x) = j(A(x),x) + 1. Now you must finish the arguments that show that D
contradicts its own existence and hence of the existence of the enumerating algorithm A.

