
Generally useful information. 

• The notation z = <x,y> denotes the pairing function with inverses x = <z>1 and y = <z>2.  

• The minimization notation µ y [P(…,y)] means the least y (starting at 0) such that P(…,y) is 
true. The bounded minimization (acceptable in primitive recursive functions) notation  
µ y (u£y£v) [P(…,y)] means the least y (starting at u and ending at v) such that P(…,y) is true. 
Unlike the text, I find it convenient to define µ y (u£y£v) [P(…,y)] to be v+1, when no y 
satisfies this bounded minimization.  

• The tilde symbol, ~, means the complement. Thus, set ~S is the set complement of set S, and 
predicate ~P(x) is the logical complement of predicate P(x). 

• A function P is a predicate if it is a logical function that returns either 1 (true) or 0 (false). Thus, 
P(x) means P evaluates to true on x, but we can also take advantage of the fact that true is 1 and 
false is 0 in formulas like y ´ P(x), which would evaluate to either y (if P(x)) or 0 (if ~P(x)). 

• A set S is recursive if S has a total recursive characteristic function cS, such that x Î S  Û cS(x). 
Note cS is a predicate. Thus, it evaluates to 0 (false), if x Ï S. 

• When I say a set S is re, unless I explicitly say otherwise, you may assume any of the following 
equivalent characterizations: 
1. S is either empty or the range of a total recursive function fS. 
2. S is the domain of a partial recursive function gS. 

• If I say a function g is partially computable, then there is an index g (I know that’s overloading, 
but that’s okay as long as we understand each other), such that Fg(x) = F(x, g) = g(x). Here F is 
a universal partially recursive function.  
Moreover, there is a primitive recursive function STP, such that  
STP(g, x, t) is 1 (true), just in case g, started on x, halts in t or fewer steps.  
STP(g, x, t) is 0 (false), otherwise.  
Finally, there is another primitive recursive function VALUE, such that  
VALUE(g, x, t) is g(x), whenever STP(g, x, t).  
VALUE(g, x, t) is defined but meaningless if ~STP(g, x, t). 

• The notation f(x)¯ means that f converges when computing with input x, but we don’t care about 
the value produced. In effect, this just means that x is in the domain of f. 

• The notation f(x) means f diverges when computing with input x. In effect, this just means that 
x is not in the domain of f. 

• The Halting Problem for any effective computational system is the problem to determine of an 
arbitrary effective procedure f and input x, whether or not f(x)¯. The set of all such pairs, K0, is a 
classic re non-recursive one.  

• The Uniform Halting Problem is the problem to determine of an arbitrary effective procedure f, 
whether or not f is an algorithm (halts on all input). The set of all such function indices 
(TOTAL) is a classic non re one. 

• A £m B (A many-one reduces to B) means that there exists a total recursive function f such that  
x Î A  Û f(x) Î B. If A £m B and B £m A then we say that A ºm B (A is many-one equivalent to 
B). If the reducing function is 1-1, then we say A £1 B (A one-one reduces to B) and A º1 B (A 
is one-one equivalent to B). 
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12 1. Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re non-recursive, 
(NRNC) non-re/non-co-re, categorize each of the sets in a) through d). Justify your answer by 
showing some minimal quantification of some known recursive predicate.  
a.) { f |  f is a Fibonacci function, i.e. f(0)=f(1)=1 and f(x+2)=f(x)+f(x+1) }     
 Justification:          
 
 
b.) { f | if f(x) converges, it does so in more than (2x) units of time }      

Justification:            
 
 
c.) { <f,x> | if f(x) converges, it does so in more than (2x) units of time }     
 Justification:  
 
 
d.) { f  | f(x) = f(x+1) for at least one value of x }          
 Justification:           

 
 
 
2 2. Looking back at Question 1, which of these are candidates for using Rice’s Theorem to show their 

unsolvability? Check all for which Rice Theorem might apply. 
 
   a)   b)   c)   d)    
 
 
6 3. Let set A be recursive, B be re non-recursive and C be non-re. Choosing from among (REC) 

recursive, (RE) re non-recursive, (NR) non-re, categorize the set D in each of a) through d) by 
listing all possible categories. No justification is required. 

a.) D = C - A (set difference)         
 

b.) A Í D  (set containment)         
 

c.) D = A ´ B (cross product)           
 

d.) D = A - B (set difference)          
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 4. Define NON_TRIVIAL_RANGE = ( f | |range(f)| > 1 }.  
2 a.) Show some minimal quantification of some known recursive predicate that provides an upper bound 

for the complexity of this set. (Hint: Look at c.) and d.) to get a clue as to what this must be.) 
 
 
5 b.) Use Rice’s Theorem to prove that NON_TRIVIAL_RANGE is undecidable. 
 
 
 
 
 
 
 

4 c.) Show that K0 ≤m NON_TRIVIAL_RANGE, where K0= { <x,y> | jx(y)¯ }. 
 
 
 
 
 
 
 
 
 
4 d.) Show that NON_TRIVIAL_RANGE ≤m K0. 
 
 
 
 
 
 
 
 
2 e.) From a.) through d.) what can you conclude about the complexity of NON_TRIVIAL_RANGE 

(Recursive, RE, RE-COMPLETE, CO-RE, CO-RE-COMPLETE, NON-RE/NON-CO-RE)? 
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 5. Rice’s Theorem deals with properties P of partial recursive functions and their corresponding sets of 

indices SP. The following image describing a function fx,y,r that is central to understanding Rice’s 
Theorem.  

 

 

 

 

 
Given the hypotheses P is non-trivial and is an I/O behavior and that we assume, without loss of 
generality that all functions with empty domains/ranges do not have property P, explain the meaning 
of this diagram by doing the following: 

2 a.) Indicate what r is, how it is chosen and how we can guarantee its existence.  
 
 
 
 
 

2 b.) Using recursive function notations, write down precisely what fx,y,r computes for the Strong Form of 
Rice’s Theorem.  

 
 

5 c.) Specify how the function fx,y,r behaves with respect to x,y and r, and how this relates to the original 
problem, P, and set, SP.  
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6 6. Let S be an arbitrary semi-decidable set. This means that S is the domain of some partial recursive 

function fs, whose domain is infinite. Using fS, show that S has an infinite recursive subset, call it R. 
To be complete you will need to create a characteristic function for R, cR, and argue that the set R 
you defined is infinite. Hint: Inductively define a monotonically increasing algorithm that 
enumerates R. I’ll even do this part for you. 
 
fR(0) = < µ<x,t> [ STP(fS, x, t) ] >1     // Extract first component of <x, t> 
fR(y+1) =         // You fill this part in 
You now need to argue that fR is total and monotonically increasing. From that you must argue that 
the set R enumerated by fR is an infinite subset of S and then you must define the characteristic 
function cR for R. I started the hardest part. 
 

 

 

 

 

 

 

 

 

 

3 7. We proved that TOTAL = { f |  "x jf(x)¯ } is not recursively enumerable. The proof is 
straightforward in that we assume the property to be so and that implies there is an algorithm A that 
enumerates the indices of all algorithms. Using the universal machine, j, where j(f,x) = jf(x), we 
have that j(A(f),x) = jAf(x), that is, the value of the f-th algorithm at the input x. We then can define 
a new algorithm D(x) = j(A(x),x) + 1. Now you must finish the arguments that show that D 
contradicts its own existence and hence of the existence of the enumerating algorithm A. 
 


