Generally useful information.

- The notation $z = \langle x, y \rangle$ denotes the pairing function with inverses $x = \langle z \rangle_1$ and $y = \langle z \rangle_2$.
- The minimization notation µ y [P(...,y)] means the least y (starting at 0) such that P(...,y) is true. The bounded minimization (acceptable in primitive recursive functions) notation µ y (u≤y≤v) [P(...,y)] means the least y (starting at u and ending at v) such that P(...,y) is true. Unlike the text, I find it convenient to define µ y (u≤y≤v) [P(...,y)] to be v+1, when no y satisfies this bounded minimization.
- The tilde symbol, ~, means the complement. Thus, set ~S is the set complement of set S, and predicate ~P(x) is the logical complement of predicate P(x).
- A function **P** is a predicate if it is a logical function that returns either **1** (**true**) or **0** (**false**). Thus, **P**(**x**) means **P** evaluates to **true** on **x**, but we can also take advantage of the fact that **true** is **1** and **false** is **0** in formulas like **y** × **P**(**x**), which would evaluate to either **y** (if **P**(**x**)) or **0** (if ~**P**(**x**)).
- A set S is recursive if S has a total recursive characteristic function χ_S , such that $x \in S \Leftrightarrow \chi_S(x)$. Note χ_S is a predicate. Thus, it evaluates to 0 (false), if $x \notin S$.
- When I say a set S is re, unless I explicitly say otherwise, you may assume any of the following equivalent characterizations:
 - 1. S is either empty or the range of a total recursive function f_S .
 - 2. S is the domain of a partial recursive function g_s .
- If I say a function g is partially computable, then there is an index g (I know that's overloading, but that's okay as long as we understand each other), such that Φ_g(x) = Φ(x, g) = g(x). Here Φ is a universal partially recursive function. Moreover, there is a primitive recursive function STP, such that STP(g, x, t) is 1 (true), just in case g, started on x, halts in t or fewer steps. STP(g, x, t) is 0 (false), otherwise. Finally, there is another primitive recursive function VALUE, such that VALUE(g, x, t) is g(x), whenever STP(g, x, t). VALUE(g, x, t) is defined but meaningless if ~STP(g, x, t).
- The notation $f(x)\downarrow$ means that f converges when computing with input x, but we don't care about the value produced. In effect, this just means that x is in the domain of f.
- The notation **f**(**x**)↑ means **f** diverges when computing with input **x**. In effect, this just means that **x** is **not** in the domain of **f**.
- The Halting Problem for any effective computational system is the problem to determine of an arbitrary effective procedure f and input x, whether or not $f(x)\downarrow$. The set of all such pairs, K_0 , is a classic re non-recursive one.
- The **Uniform Halting Problem** is the problem to determine of an arbitrary effective procedure **f**, whether or not **f** is an algorithm (halts on all input). The set of all such function indices **(TOTAL)** is a classic non re one.
- A ≤_m B (A many-one reduces to B) means that there exists a total recursive function f such that x ∈ A ⇔ f(x) ∈ B. If A ≤_m B and B ≤_m A then we say that A ≡_m B (A is many-one equivalent to B). If the reducing function is 1-1, then we say A ≤₁ B (A one-one reduces to B) and A ≡₁ B (A is one-one equivalent to B).

C	OT 6410	Spring 2015	Midterm#1	Name:	
<i>12</i> 1.	Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re non-recursive, (NRNC) non-re/non-co-re, categorize each of the sets in a) through d). Justify your answer by showing some minimal quantification of some known recursive predicate.				
	a.) { f f is a Fibonacci function, i.e. f(0)=f(1)=1 and f(x+2)=f(x)+f(x+1) } Justification:				
	<i>,</i>	f f(x) converges, it d fication:	oes so in more than (2 ^x) units of	' time }	
		x> if f(x) converges fication:	, it does so in more than (2 ^x) uni	its of time }	
	<i>,</i>	f(x) = f(x+1) for at le fication:	east one value of x }		

2 2. Looking back at Question 1, which of these are candidates for using Rice's Theorem to show their unsolvability? Check all for which Rice Theorem might apply.

a) ____ b) ___ c) ___ d) ___

6 3. Let set A be recursive, B be re non-recursive and C be non-re. Choosing from among (REC) recursive, (RE) re non-recursive, (NR) non-re, categorize the set D in each of a) through d) by listing all possible categories. No justification is required.

a.) D = C – A (set difference)	
b.) $A \subseteq D$ (set containment)	
c.) $D = A \times B$ (cross product)	
d.) D = A – B (set difference)	

- 4. Define NON_TRIVIAL_RANGE = $(f | |range(f)| > 1 \}$.
- 2 a.) Show some minimal quantification of some known recursive predicate that provides an upper bound for the complexity of this set. (Hint: Look at c.) and d.) to get a clue as to what this must be.)
- 5 b.) Use Rice's Theorem to prove that NON TRIVIAL RANGE is undecidable.

4 c.) Show that $K_0 \leq_m NON_TRIVIAL_RANGE$, where $K_0 = \{ \langle x, y \rangle | \phi_x(y) \downarrow \}$.

4 d.) Show that NON_TRIVIAL_RANGE $\leq_m K_0$.

2 e.) From a.) through d.) what can you conclude about the complexity of NON_TRIVIAL_RANGE (Recursive, RE, RE-COMPLETE, CO-RE, CO-RE-COMPLETE, NON-RE/NON-CO-RE)?

5. Rice's Theorem deals with properties **P** of partial recursive functions and their corresponding sets of indices S_P . The following image describing a function $f_{x,y,r}$ that is central to understanding Rice's Theorem.

Given the hypotheses \mathbf{P} is non-trivial and is an I/O behavior and that we assume, without loss of generality that all functions with empty domains/ranges do not have property \mathbf{P} , explain the meaning of this diagram by doing the following:

- 2 a.) Indicate what \mathbf{r} is, how it is chosen and how we can guarantee its existence.
- 2 b.) Using recursive function notations, write down precisely what $f_{x,y,r}$ computes for the Strong Form of Rice's Theorem.
- 5 c.) Specify how the function $f_{x,y,r}$ behaves with respect to x,y and r, and how this relates to the original problem, P, and set, S_P.

6 6. Let S be an arbitrary semi-decidable set. This means that S is the domain of some partial recursive function f_s , whose domain is infinite. Using f_S , show that S has an infinite recursive subset, call it R. To be complete you will need to create a characteristic function for R, χ_R , and argue that the set R you defined is infinite. Hint: Inductively define a monotonically increasing algorithm that enumerates R. I'll even do this part for you.

 $f_{R}(0) = \langle \mu \langle x, t \rangle [STP(f_{S}, x, t)] \rangle_{1}$ $f_{R}(y+1) =$

// Extract first component of <x, t> // You fill this part in

You now need to argue that $\mathbf{f}_{\mathbf{R}}$ is total and monotonically increasing. From that you must argue that the set \mathbf{R} enumerated by $\mathbf{f}_{\mathbf{R}}$ is an infinite subset of \mathbf{S} and then you must define the characteristic function $\boldsymbol{\chi}_{\mathbf{R}}$ for \mathbf{R} . I started the hardest part.

3 7. We proved that $TOTAL = \{ f | \forall x \phi_f(x) \downarrow \}$ is not recursively enumerable. The proof is straightforward in that we assume the property to be so and that implies there is an algorithm A that enumerates the indices of all algorithms. Using the universal machine, ϕ , where $\phi(f,x) = \phi_f(x)$, we have that $\phi(A(f),x) = \phi_{Af}(x)$, that is, the value of the f-th algorithm at the input x. We then can define a new algorithm $D(x) = \phi(A(x),x) + 1$. Now you must finish the arguments that show that D contradicts its own existence and hence of the existence of the enumerating algorithm A.