
Generally useful information.

• The notation z = <x,y> denotes the pairing function with inverses x = <z>1 and y = <z>2.

• The minimization notation µ y [P(…,y)] means the least y (starting at 0) such that P(…,y) is
true. The bounded minimization (acceptable in primitive recursive functions) notation
µ y (u≤y≤v) [P(…,y)] means the least y (starting at u and ending at v) such that P(…,y) is true.
Unlike the text, I find it convenient to define µ y (u≤y≤v) [P(…,y)] to be v+1, when no y
satisfies this bounded minimization.

• The tilde symbol, ~, means the complement. Thus, set ~S is the set complement of set S, and
predicate ~P(x) is the logical complement of predicate P(x).

• A function P is a predicate if it is a logical function that returns either 1 (true) or 0 (false). Thus,
P(x) means P evaluates to true on x, but we can also take advantage of the fact that true is 1 and
false is 0 in formulas like y × P(x), which would evaluate to either y (if P(x)) or 0 (if ~P(x)).

• A set S is recursive if S has a total recursive characteristic function χS, such that x ∈ S ⇔
χS(x). Note χS is a predicate. Thus, it evaluates to 0 (false), if x ∉ S.

• When I say a set S is re, unless I explicitly say otherwise, you may assume any of the following
equivalent characterizations:
1. S is either empty or the range of a total recursive function fS.
2. S is the domain of a partial recursive function gS.

• If I say a function g is partially computable, then there is an index g (I know that’s overloading,
but that’s okay as long as we understand each other), such that Φg(x) = Φ(x, g) = g(x). Here Φ is
a universal partially recursive function.
Moreover, there is a primitive recursive function STP, such that
STP(g, x, t) is 1 (true), just in case g, started on x, halts in t or fewer steps.
STP(g, x, t) is 0 (false), otherwise.
Finally, there is another primitive recursive function VALUE, such that
VALUE(g, x, t) is g(x), whenever STP(g, x, t).
VALUE(g, x, t) is defined but meaningless if ~STP(g, x, t).

• The notation f(x)↓ means that f converges when computing with input x, but we don’t care about
the value produced. In effect, this just means that x is in the domain of f.

• The notation f(x)↑ means f diverges when computing with input x. In effect, this just means that
x is not in the domain of f.

• The Halting Problem for any effective computational system is the problem to determine of an
arbitrary effective procedure f and input x, whether or not f(x)↓ . The set of all such pairs, K0, is
a classic re non-recursive one.

• The Uniform Halting Problem is the problem to determine of an arbitrary effective procedure f,
whether or not f is an algorithm (halts on all input). The set of all such function indices is a
classic non re one.

• A ≤m B (A many-one reduces to B) means that there exists a total recursive function f such that
x ∈ A ⇔ f(x) ∈ B. If A ≤m B and B ≤m A then we say that A ≡m B (A is many-one equivalent
to B). If the reducing function is 1-1, then we say A ≤1 B (A one-one reduces to B) and A ≡1 B
(A is one-one equivalent to B).

COT 6410 Spring 2014 Midterm#1 Name:

12 1. Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re non-recursive,
(NRNC) non-re/non-co-re, categorize each of the sets in a) through d). Justify your answer by
showing some minimal quantification of some known recursive predicate.

a.) { f | there is a constant C such that, for every x, f(x) ≤ C, }
 Justification:

b.) { <f,x,c> | f(x) halts in no fewer than c*x+1 steps }
Justification:

c.) { f | range(f) ⊆ {0,1} // This means range can be {}, {0}, {1} or {0,1} }
 Justification:
d.) { f | range(f) contains at least two elements }

 Justification:

6 2. Let set A be recursive, B be re non-recursive and C be non-re. Choosing from among (REC)
recursive, (RE) re non-recursive, (NR) non-re, categorize the set D in each of a) through d) by
listing all possible categories. No justification is required.
a.) D = ~A

b.) D = B ∩ ~A

c.) D ⊆ C

d.) D = A − C

6 3. Prove that the Uniform Halting Problem (the set TOTAL) is not recursive enumerable within any
formal model of computation. (Hint: A diagonalization proof is required here.)

COT 6410 EXAM#1 – 3 – Spring 2014 – Hughes

5 4. Using many-one reduction from the known non-recursive set HasADouble, where
HasADouble = { f | ∃xϕ f (x)=2*x }, show that IsDouble is non-recursive,
where IsDouble = { f | ∀xϕ f (x)=2*x }
Just giving a construction is not sufficient; you must also explain why it satisfies the desired
properties of the reduction.

 5. Define NullDomain as ND = { f | for all x ϕ f(x)↑ }.
3 a.) Show some minimal quantification of some known recursive predicate that provides an upper bound

for the complexity of this set. (Hint: Look at c.) and d.) to get a clue as to what this must be.)

5 b.) Use Rice’s Theorem to prove that ND is undecidable.

(Problem Continued on next page)

COT 6410 EXAM#1 – 4 – Spring 2014 – Hughes

5 c.) Show that NotHalt ≤m ND, where NotHalt = { <f,x> | ϕ f(x)↑ }. Justify your construction.

5 d.) Show that ND ≤m NotHalt. Justify your construction.

3 e.) From (a.) through (d.) what can you conclude about the complexity of ND (choose from REC, RE,

RE-MANY-ONE-COMPLETE, CO-RE, CO-RE-MANY-ONE -COMPLETE, NON-RE/NON-
CO-RE)? Briefly justify your conclusion, stating what each of (a), (b), (c) and (d) show.

COT 6410 EXAM#1 – 5 – Spring 2014 – Hughes

6 6. Rice’s Theorem has a strong and two weak forms. Given the problem of determining membership in

IsDouble = { f | ∀xϕ f (x)=2*x }
Show how the strong form can prove this undecidable, but the weak forms cannot. Be sure to cover
all conditions that must apply, indicating what is common between the three forms and what is not.

COT 6410 EXAM#1 – 6 – Spring 2014 – Hughes

6 7. Let S be an arbitrary infinite re set. Furthermore, let S be the range of some total recursive function

fs. Show that S has an infinite recursive subset enumerated by some monotonically increasing total
recursive function gs. You must give an explicit definition of gs that you form from fs. Justify that
your gs enumerates a subset of S and that it is monotonically increasing. The fact that gs is a
monotonically increasing function is sufficient to show the subset it enumerates is infinite and
recursive, so you do not have to show those properties.

