
COT 6410 Spring 2019 Legal Cheat Sheet Name:

• Formal languages are categorized via a hierarchy from the simplest to the more complex – regular,
content-free, context sensitive, phrase structured. Each class in the hierarchy is properly contained in
the next with the phrase-structured being equivalent to class of re (Turing recognizable) languages.

• Every class of formal languages has an associated accepting automata family and an associated
generative grammar family.

• The Regular Languages, in addition to being recognized by finite state automata and generated by
either right or left linear grammars, can be specified by regular expressions, the solutions to regular
equations and the union of some of the classes of a right-invariant equivalence relation. Moreover,
Regular Languages have unique minimal state deterministic recognizers.

• Remember that Context Free Languages can be generated by Context Free Grammars and
recognized by non-deterministic Pushdown Automata. Also, membership of a string w in the
language associated with a CFG can be checked in (n3), where n = |w|.

• Remember that Context Sensitive Grammar rules are non-length reducing, but Phrase Structured
Grammars may have length-reducing rules. Also, recall that Context Sensitive Languages are
generated by Context Sensitive Grammars and recognized by Linear Bounded Automata. Phrase
Structured Languages are generated by Phrase Structured Grammars and recognized by Turing
Machines.

• The languages {ww | w is a word in some alphabet with more than one letter}, {anbncn | n³0 },
{aibjck | k = min(i,j)}, and {aibjck | k = max(i,j)} are not CFLs. All of these are, however, CSLs.
The languages {wwR | w is a word in some alphabet with more than one letter}, {xy | |x| = |y|, x ¹ y,
x,y are words in some alphabet with more than one letter} and {anbn | n³0 } are CFLs, but none is
Regular.

• Languages can be shown non-regular using the Pumping Lemma for Regular Languages or by
employing Myhill-Nerode. Languages can be shown non-context-free using the Pumping Lemma for
Context-Free Languages.

• Non-determinism is necessary for PDAs to recognize all CFLs, but adds nothing to the power of
finite state automata, linear-bounded automata or Turing Maxhines. Oddly non-determinism detracts
from the power of Factor Replacement System.

• The notation z = <x,y> denotes some 1-1 onto pairing function with inverses
x = <z>1 and y = <z>2.

• The notation f(x)¯ means that f converges when computing with input x, but we don’t care about the
value produced. In effect, this just means that x is in the domain of f. The notation f(x) means f
diverges when computing with input x. In effect, this just means that x is not in the domain of f.

• The minimization notation µ y [P(…,y)] means the least y (starting at 0) such that P(…,y) is true.
The bounded minimization (acceptable in primitive recursive functions) notation
µ y (u£y£v) [P(…,y)] means the least y (starting at u and ending at v) such that P(…,y) is true. I
define µ y (u£y£v) [P(…,y)] to be v+1, when no y satisfies this bounded minimization.

• A function P is a predicate if it is a logical function that returns either 1 (true) or 0 (false). Thus,
P(x) means P evaluates to true on x, but we can also take advantage of the fact that true is 1 and
false is 0 in formulas like y ´ P(x), which would evaluate to either y (if P(x)) or 0 (if not P(x)).

• The tilde symbol, ~, means the complement. Thus, set ~S is the set complement of set S, and the
predicate ~P(x) is the logical complement of predicate P(x).

• A set S is recursive (decidable) if S has a total recursive characteristic function cS, such that
x Î S Û cS(x). Note cS is a total predicate. Thus, it evaluates to 0 (false), iff x Ï S.

COT 6410 – 2 – Spring 2019: Midterm Exam– Hughes
• When I say a set S is re, unless I explicitly say otherwise, you may assume any of the following

equivalent characterizations:
1. S is either empty or the range of a total recursive function (algorithm) fS.
2. S is the domain of a partial recursive function (one that may diverge on some input) gS.
3. S is the range of a partial recursive function (one that may diverge on some input) hS.
4. S is recognizable by a Turing Machine.
5. S is the language generated by a phrase structured grammar.

• If I say a function g is partially computable, then there is an index g (I know that’s overloading, but
that’s okay as long as we understand each other), such that jg(x) = j(g, x) = g(x). Here j is a
universal partial recursive function (an interpreter).
Moreover, there is a primitive recursive predicate STP, such that
STP(g, x, t) is 1 (true), just in case g, started on x, halts in t or fewer steps.
STP(g, x, t) is 0 (false), otherwise.
Finally, there is another primitive recursive function VALUE, such that
VALUE(g, x, t) is g(x), whenever STP(g, x, t).
VALUE(g, x, t) is defined but meaningless if ~STP(g, x, t).

• The Halting Problem for any effective computational system is the problem to determine of an
arbitrary effective procedure f and input x, whether or not f(x)¯. The set of all such pairs, K0, is a
classic re non-recursive set. K0 is also known as Lu, the universal language. The related set, K, is the
set of all effective procedures f such that f(f)¯ or more precisely Ff(f). K and K0 are classic RE-
Complete sets, meaning that every RE set many-one reduces these hardest RE sets.

• The Uniform Halting Problem is the problem to determine of an arbitrary effective procedure f,
whether f is an algorithm (halts on all input). The set of all such function indices is a classic non-re
one and is often called TOTAL. It can be described as { f | "x jf(x) ¯ }.

• When I ask you to show one set of indices, A, is many-one reducible (or simply reducible) to
another, B, denoted A ≤m B (or simply A ≤ B), you must demonstrate a total computable function f,
such that x Î A Û f(x) Î B. The stronger relationship that A and B are many-one equivalent, A ºm
B, requires that you show A ≤m B and B ≤m A.

• In the computability domain, we usually categorize problems as Recursive, Recursively
Enumerable (RE), Co-Recursively Enumerable (co-RE), RE-Complete, Co-RE-Complete, and
NRNC (my own term to describe a set for which we can show a reduction from some RE-
Complete, e.g., TOTAL is in NRNC since K ≤t TOTAL).

• While reduction is a general tool to show undecidability, Rice’s Theorem, though constrained, si a
very easy tool to employ, provided you use it properly. Quantification is also great for estimating
complexity; well at least to put an upper bound.

• The Post Correspondence Problem (PCP) is known to be undecidable. This problem is
characterized by instances that are described by a finite alphabet, S, a number n>0 and two n-ary
sequences of non-empty words <x1,x2,…,xn>, <y1,y2,…,yn>, each in S+. The question is whether or
not there exists a sequence, i1,i2,…,ik, such that 1≤ij≤n, 1≤j≤k, and xi1xi2

…xik = yi1yi2
…yik

• PCP can be used to show the undecidability of Ambiguity in CFGs, the undecidability of two CFGs
producing overlapping words and the undecidability of non-emptiness problem for CSGs.

• The undecidability of a CFG producing S* is based on traces of terminating computations in Turing
machines. Really, it’s based on the complements of such traces. Traces can also show the complexity
of the quotient of CFLs and of power problems for CFLs.

