\qquad
\qquad

6 1. In each case below, consider $\mathbf{R} 1$ and $\mathbf{R 2}$ to be Regular and $\mathbf{L} 1$ and $\mathbf{L} 2$ to be non-regular CFLs. Fill in the three columns with \mathbf{Y} or \mathbf{N}, indicating what kind of language \mathbf{L} can be. No proofs are required. Read \supseteq as "contains and may equal."
Put \mathbf{Y} in all that are possible and \mathbf{N} in all that are not.

Definition of L	Regular?	CFL, non-Regular?	Not even a CFL?
$\mathbf{L}=\mathbf{L} 1 / \mathbf{R 1}$	Y	Y	N
$\mathbf{L}=\mathbf{R} 1-\mathbf{L} 1$	Y	Y	Y
$\mathbf{L}=\mathbf{R} 1 \cap \mathbf{L} 1$	Y	Y	N
$\mathbf{L} \supseteq \mathbf{R 1}$	Y	Y	Y

3 2. Choosing from among (D) decidable, (U) undecidable, (?) unknown, categorize each of the following decision problems. No proofs are required. \mathbf{L} is a language over $\boldsymbol{\Sigma} ; \mathbf{w}$ is a word in Σ^{*}

Problem / Language Class	Regular	Context Free	Context Sensitive	Phrase Structured
$w \in L$?	D	D	D	U
L is infinite?	D	D	U	U

4 3. Prove that any class of languages, \boldsymbol{C}, closed under union, concatenation, intersection with regular languages, homomorphism and substitution (e.g., the Context-Free Languages) is closed under
Double Interior Loss with Regular Sets, denoted by the operator $\|$, where $\mathbf{L} \in \boldsymbol{C}, \mathbf{R}$ is Regular, \mathbf{L} and \mathbf{R} are both over the alphabet $\boldsymbol{\Sigma}$, and
$\mathbf{L} \| \mathbf{R}=\{\mathbf{u w y} \mid \exists \mathbf{v}, \mathbf{x} \in \mathbf{R}$, such that uvwxy $\in \mathbf{L}\}$.
You may assume substitution $\mathbf{f}(\mathbf{a})=\{\mathbf{a}, \mathbf{a}\}$, and homomorphisms $\mathbf{g}(\mathbf{a})=\mathbf{a}^{\prime}$ and
$\mathbf{h}(\mathbf{a})=\mathbf{a}, \mathbf{h}\left(\mathbf{a}^{\prime}\right)=\boldsymbol{\lambda}$. Here $\mathbf{a} \in \boldsymbol{\Sigma}$ and \mathbf{a}^{\prime} is a new character associated with each such $\mathbf{a} \in \boldsymbol{\Sigma}$.
You only need give me the definition of $\mathbf{L} \| \mathbf{R}$ in an expression that obeys the above closure properties; you do not need to prove or even justify your expression.

$$
\mathbf{L} \| \mathbf{R}=\quad h\left(f(L) \cap \Sigma^{*} g(R) \Sigma^{*} g(R) \Sigma^{*}\right)
$$

4. Specify True (T) or False (F) for each statement.

Statement	T or F
Rice's Theorem demonstrates the undecidability of the Halting Problem	\boldsymbol{F}
The Context Free Languages are closed under intersection	\boldsymbol{F}
The Ambiguity problem for Context Free Languages is undecidable	\boldsymbol{T}
The Quotient of two Context Free Languages is Context Sensitive	\boldsymbol{F}
An algorithm exists to determine if a Context Free Language is Σ^{*}	\boldsymbol{F}
Every RE set can be generated by a Phrase Structured Grammar	\boldsymbol{T}
The set difference of two Context Free Languages is Context Sensitive	\boldsymbol{F}
There is an algorithm to determine if $\mathbf{L}=\varnothing$, for \mathbf{L} a Context Sensitive Language	

4
5. Let $\mathbf{P}=\left\langle<\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathbf{n}}\right\rangle,\left\langle\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{\mathbf{n}} \gg, \mathbf{x}_{\mathbf{i}}, \mathbf{y}_{\mathbf{1}} \in \boldsymbol{\Sigma}^{+}, \mathbf{1} \leq \mathbf{i} \leq \mathbf{n}\right.$, be an arbitrary instance of $\mathbf{P C P}$. We can use PCP's undecidability to show the undecidability of the problem to determine if a Context Free Grammar is ambiguous. Present the grammar, G, associated with an arbitrary instance of PCP, \mathbf{P}, such that $\mathcal{L}(\mathbf{G})$ is ambiguous if and only if there is a solution to \mathbf{P}.
Define $\mathbf{G}=(\{\mathbf{S}, \mathbf{X}, \mathbf{Y}\}, \mathbf{\Sigma} \cup\{[\mathbf{i}] \mid \mathbf{1} \leq \mathbf{i} \leq \mathbf{n}\}, \mathbf{S}, \mathbf{R})$, where \mathbf{R} is the set of rules:

$$
\begin{array}{ll}
S \rightarrow X \mid Y & \\
X \rightarrow x_{i} X[i] \mid X \rightarrow x_{i}[i] & 1 \leq i \leq n \\
Y \rightarrow y_{i} Y[i] \mid Y \rightarrow y_{i}[i] & 1 \leq i \leq n
\end{array}
$$

12 6. Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re non-recursive, (NRNC) non-re/non-co-re, categorize each of the sets in a) through d). Justify your answer by showing some minimal quantification of some known recursive predicate.
a.) $\{f \mid \operatorname{domain}(f)=\operatorname{range}(f)\}$
NRNC
Justification: $\forall<x, t>\exists<y, s>[\operatorname{STP}(f, x, t) \Rightarrow(\operatorname{STP}(f, y, s) \& \& \operatorname{VALUE}(f, y, s)=x)]$
b.) $\{\langle\mathbf{f}, \mathbf{x}\rangle \mid \mathbf{f}(\mathbf{x})=\mathbf{x}\}$
$R E$
Justification: $\exists t[\operatorname{STP}(f, x, t) \& \& \operatorname{VALUE}(f, x, t)=x)]$
c.) $\{f \mid f(x)$ converges in x steps for at least one value of $x\}$

RE
Justification: $\exists<x, t>[\operatorname{STP}(f, x, x)]$
d.) $\{f \mid$ whenever f converges, $f(x)=x\}$

Justification: $\forall<x, t>[\operatorname{STP}(f, x, t) \Rightarrow(\operatorname{VALUE}(f, x, t)=x)]$

2 7. Looking back at Question 6, which of these are candidates for using Rice's Theorem to show their unsolvability? Check all for which Rice Theorem might apply.
a) \qquad
b) \qquad
c) \qquad
d) \qquad

6 8. Let \mathbf{S} be an arbitrary, non-empty re/semi-decidable set. One definition is that \mathbf{S} is the range of some total recursive $\mathbf{f}_{\mathbf{s}}$. Using $\mathbf{f}_{\mathbf{s}}$, show that \mathbf{S} is the domain of some partial recursive function $\mathbf{g}_{\mathbf{s}}$. Here the function $\mathbf{g}_{\mathbf{s}}$ that you define based on the existence of $\mathbf{f}_{\mathbf{S}}$ semi-decides \mathbf{S}.
$g_{S}(x)=\exists y\left[f_{S}(y)=x\right]$

Let \mathbf{S} be an arbitrary, non-empty re/semi-decidable set. One definition is that \mathbf{S} is the domain of some partial recursive function $\mathbf{g}_{\mathbf{s}}$. Using $\mathbf{g}_{\mathbf{s}}$ and the fact that \mathbf{S} is non-empty (you may assume \mathbf{c} is some element guaranteed to be in \mathbf{S}), show that \mathbf{S} is the range of some total recursive \mathbf{f}. Here the function $\mathbf{f}_{\mathbf{S}}$ that you define based on the existence of $\mathbf{g}_{\mathbf{s}}$ enumerates the elements of \mathbf{S}. Hint: Each element of \mathbf{S} is enumerated a countably infinite number of times by your function $\mathbf{f}_{\mathbf{s}}$.
$f_{S}(\langle x, t\rangle)=x * \operatorname{STP}\left(g_{s}, x, t\right)+c *\left(1-S T P\left(g_{s}, x, t\right)\right)$
\qquad 9. Show example sets \mathbf{A} and \mathbf{B}, where \mathbf{A} is non-empty and recursive, and \mathbf{B} is re non-recursive and.
a.) $\operatorname{Max}(\mathbf{A}, \mathbf{B})=\{\mathbf{z} \mid \mathbf{z}=\boldsymbol{\operatorname { m a x }}(\mathbf{x}, \mathbf{y})$ where $\mathbf{x} \in \mathbf{A}$ and $\mathbf{y} \in \mathbf{B}\}$ is recursive $A=\mathfrak{N}, B=K, \operatorname{Max}(A, B)=\mathfrak{N}$ - $\{$ least value in $K\}$
b.) $\operatorname{Max}(\mathbf{A}, \mathbf{B})=\{\mathbf{z} \mid \mathbf{z}=\boldsymbol{\operatorname { m a x }}(\mathbf{x}, \mathbf{y})$ where $\mathbf{x} \in \mathbf{A}$ and $\mathbf{y} \in \mathbf{B}\}$ is re non-recursive
$A=\{0\}, B=K, \operatorname{Max}(A, B)=K$
Hint: Consider $\mathbf{B}=\mathbf{K}=\left\{\mathbf{f} \mid \varphi_{f}(\mathbf{f}) \downarrow\right\}$
Note: You must specify the results of $\operatorname{Max}(\mathbf{A}, \mathbf{B})$ for each case above.
10. Define SuccessorLike $(\mathbf{S L})=(\mathbf{f} \mid$ for some input $\mathbf{x}, \mathbf{f}(\mathbf{x})=\mathbf{x + 1}\}$.

2 a.) Show some minimal quantification of some known recursive predicate that provides an upper bound for the complexity of this set. (Hint: Look at c.) and d.) to get a clue as to what this must be.)
$\exists<x, t>[\operatorname{STP}(f, x, t) \& \&(\operatorname{VALUE}(f, x, t)=x+1)]$
5 b.) Use Rice's Theorem to prove that SL is undecidable.
$S(x)=x+1 \in S L ; I(x)=x \notin S L \quad / / S L$ is non-trivial
Let f and g be two arbitrary function indices such that $\forall x[f(x)=g(x)]$.
$f \in S L \Leftrightarrow \exists x f(x)=x+1 \Rightarrow$ for some $x_{0}, f\left(x_{0}\right)=x_{0}+1 \Rightarrow g\left(x_{0}\right)=x_{0}+1 \Rightarrow \exists x g(x)=x+1 \Rightarrow g \in S L$
$f \notin S L \Leftrightarrow$ for no x does $f(x)=x+1 \Leftrightarrow$ for no x does $g(x)=x+1 \Leftrightarrow g \notin S L / /$ Can just do this one
4 c.) Show that $K \leq_{\mathrm{m}} \mathbf{S L}$, where $K=\{\mathbf{f} \mid \mathbf{f}(\mathbf{f}) \downarrow$.
Let f be an arbitrary function index. Define $\forall x F_{f}(x)=f(f)-f(f)+x+1$
$f \in K \Leftrightarrow f(f) \downarrow \Leftrightarrow \forall x F_{f}(x)=x+1 \Rightarrow F_{f} \in S L$
$f \notin K \Leftrightarrow f(f) \uparrow \Leftrightarrow \forall x F_{f}(x) \uparrow \Rightarrow F_{f} \notin S L$

4 d.) Show that $\mathbf{S L} \leq_{\mathrm{m}} \mathbf{K}$.
Let f be an arbitrary function index.
Define $\forall y F_{f}(y)=\exists<x, t>[\operatorname{STP}(f, x, t) \& \&(\operatorname{VALUE}(f, x, t)=x+1)]$
$f \in S L \Leftrightarrow \exists<x, t>[\operatorname{STP}(f, x, t) \& \&(\operatorname{VALUE}(f, x, t)=x+1)] \Leftrightarrow \forall y F_{f}(y) \downarrow \Rightarrow F_{f} \in K$
$f \notin S L \Leftrightarrow \sim \exists<x, t>[\operatorname{STP}(f, x, t) \& \&(\operatorname{VALUE}(f, x, t)=x+1)] \Leftrightarrow \forall y F_{f}(y) \uparrow \Rightarrow F_{f} \notin K$

1 e.) From a.) through d.) what can you conclude about the complexity of SL (Recursive, RE, RECOMPLETE, CO-RE, CO-RE-COMPLETE, NON-RE/NON-CO-RE)?
RE-COMPLETE

