Computability Theory

Some Formal Language Material
- Pumping Lemmas (What they are; not their proofs or applications)
- MyHill-Nerode (What it says and its implications, not its proof or applications)
- Reduced Grammars and CNF (implications not proofs)
- Decidable Problems and why they are decidable (Examples: Membership in Regular Languages and CFLs; Emptiness of Regular Languages and CFLs)
- Various operations on CSLs, CFLs and Regular Languages (Examples Union, Intersection)

Relations between rec, re, co-re, non-re/non-co-re
Proofs about relations, e.g., re & co-re => decidable;
union of re and rec is re but can be rec
Various operations on non-re/non-co-re, re and recursive sets (Examples Sum, Product)
Use of quantified decidable predicates to categorize complexity
Reduction (many-one); degrees of unsolvability (many-one)
Rice’s Theorem (including its proof)
Applications of Rice’s Theorem
Proof of re-completeness (re and known re-complete reduces to problem)
Basic decidability results in formal grammars
Trace languages (CSL) and complement of trace languages (CFL)
\[L = \Sigma^* \text{ for CFL, } L \neq \emptyset \text{ for CSL} \]
For CFL \(L \), \(L = L^2 \) ?

Post Correspondence Problem
Semi-Thue word problem to PCP (No details, just that it’s so and is a quick pathway)
PCP and context free grammars
- From any PCP instance, P, can specify CFGs, G1 and G2, such that
 \(L(G1) \cap L(G2) \neq \emptyset \) iff P has a solution
- Merging these together to new grammar G with start symbol S and rule
 \(S \rightarrow S1 | S2 \) where S1 is start symbol of G1 and S2 is start symbol of G2 we have that G is ambiguous iff P has a solution

PCP and context sensitive grammars
- From any PCP instance, P, can specify CSG, G, such that
 \(L(G) \neq \emptyset \) iff P has a solution; it is also the case that \(L(G) \) is infinite if so
 Note that this is second proof of undecidability of emptiness for CSG

PSG
- Given TM, M, can specify PSG, G, such that \(L(G) = L(M) \)
- Every PSL is homomorphic image of a CSL
 Closure of CSL’s under \(\lambda \)-free homomorphisms

Quotient
- Given TM, M, can specify CFGs, G1 and G2, such that \(L(G1) / L(G2) = L(M) \)
Complexity Theory

P, NP (verification vs non-det. Solution), co-NP, NP-Complete
Polynomial many-one versus polynomial Turing reductions
Problems I will focus on
- Polynomial-time bounded NDTM to SAT (basic idea)
- Polynomial step bounded Semi-Thue to Bounded Tiling
- SAT to 3-SAT; 3SAT to Independent Set problem (IS) for undirected graph
- 3SAT to SubsetSum; SubsetSum to Partition
- Knapsack is limited to one bin and asks for best fit (usually with values & weights)
 SubsetSum optimization problem for \(\leq G \) when weight and value are same
- Bin Packing allows multiple bins and optimizes number of bins of some fixed size
- Scheduling with fixed number (p) of processors and no deadlines
 Goal is to finish all tasks as soon as possible
 This is an optimization version of a p-partition problem

Deadline scheduling
- Bin Packing uses all items in list so list could be times of tasks leading to an Optimization problem to minimize the number of processors while obeying a deadline

Scheduling heuristics and anomalies
- Unit execution scheduling of tree/forest and of anti-tree/anti-forest

Hamiltonian circuit (cycle)
- Travelling Salesman adds distances (weights) and seeks circuit of distance \(\leq K \)
 Reduce HC to TSP set K to \(|V|\) and distances to 1 where links and to \(K+1\) otherwise
- Optimization version looks for minimum distance circuit

Integer Linear Programming Feasibility
- Is there an assignment that satisfies the constraints?
- SAT3 and 0-1 case.

k-vertex cover, k-coloring (3-coloring),
 Optimization versions: min vertex cover; min coloring
Tiling the plane (basic concepts)
- Polynomial step bounded Semi-Thue to Bounded Tiling
- Parallels and non-parallels to Recursive, RE, RE-Complete, Co-RE, Co-RE-Complete, RE-Hard (Turing versus many-one reductions)

NP-Easy, NP-Hard, NP-Equivalent
- NP-Equivalent Optimization Problems associate with K-Coloring (min coloring) and SubsetSum
 (max SubsetSum less than a Goal value) – reduction and proof

What about Deadline Scheduling that optimizes number of processors with a fixed deadline?
What about min vertices in Vertex Cover?

P \(\subseteq \) NP \(\subseteq \) PSPACE = NPSPACE \(\subseteq \) EXPTIME \(\subseteq \) NEXPTIME \(\subseteq \) EXPSPACE
\(\not\subseteq \) 2-EXPTIME \(\not\subseteq \) 3-EXPTIME \(\not\subseteq \) \ldots \(\not\subseteq \) ELEMENTARY \(\not\subseteq \) PRF \(\not\subseteq \) REC

P \(\neq \) EXPTIME; At least one of these is true
- P \(\not\subseteq \) NP
- NP \(\not\subseteq \) PSPACE
- PSPACE \(\not\subseteq \) EXPTIME

NP \(\neq \) NEXPTIME
- Note that EXPTIME = NEXPTIME iff P=NP
- Note that k-EXPTIME \(\not\subseteq \) (k+1)-EXPTIME, \(k>0 \)

PSPACE \(\neq \) EXPSPACE; At least one of these is true
- PSPACE \(\not\subseteq \) EXPTIME
- EXPTIME \(\not\subseteq \) EXPSPACE

ATM (Alternating Turing Machine) – This is just concept stuff with no details
- AP = PSPACE, where AP is solvable in polynomial time on an ATM
- QSAT is solvable by an alternating TM in polynomial time and polynomial space (Why?)
- QSAT is PSPACE-Complete
- Petri net reachability is EXPSPACE-hard and requires 2-EXPTIME
- Presburger arithmetic is at least in 2-EXPTIME, at most in 3-EXPTIME, and can be solved by an ATM with n alternating quantifiers in doubly exponential time