COT6410 Topics for Final Exams

Computability Theory

Some Formal Language Material
Pumping Lemmas (What they are; not their proofs or applications)
MyHill-Nerode (What it says and its implications, not its proof or applications)
Reduced Grammars and CNF (implications not proofs)
Decidable Problems and why they are decidable (Examples: Membership in Regular Languages and CFLs; Emptiness of Regular Languages and CFLs)
Various operations on CSLs, CFLs and Regular Languages (Examples Union, Intersection)
Relations between rec, re, co-re, re-complete, non-re/non-co-re
Proofs about relations, e.g., re \& co-re $=>$ decidable;
union of re and rec is re but can be rec
Various operations on non-re/non-co-re, re and recursive sets (Examples Sum, Product)
Use of quantified decidable predicates to categorize complexity
Reduction (many-one); degrees of unsolvability (many-one)
Rice's Theorem (including its proof)
Applications of Rice's Theorem
Proof of re-completeness (re and known re-complete reduces to problem)
Basic decidability results in formal grammars
Trace languages (CSL) and complement of trace languages (CFL)
$\mathrm{L}=\Sigma^{*}$ for CFL, $\mathrm{L} \neq \varnothing$ for CSL
For CFL L, L= L^{2} ?
Post Correspondence Problem
Semi-Thue word problem to PCP (No details, just that it's so and is a quick pathway)
PCP and context free grammars
From any PCP instance, P, can specify CFGs, G1 and G2, such that
$\mathrm{L}(\mathrm{G} 1) \cap \mathrm{L}(\mathrm{G} 2) \neq \varnothing$ iff P has a solution
Merging these together to new grammar G with start symbol S and rule
$\mathrm{S} \rightarrow \mathrm{S} 1 \mid \mathrm{S} 2$ where S 1 is start symbol of G1 and S2 is start symbol of G2 we have that G is ambiguous iff P has a solution
PCP and context sensitive grammars
From any PCP instance, P, can specify CSG, G, such that
$\mathrm{L}(\mathrm{G}) \neq \varnothing$ iff P has a solution; it is also the case that $\mathrm{L}(\mathrm{G})$ is infinite if so
Note that this is second proof of undecidability of emptiness for CSG
PSG
Given TM, M, can specify PSG, G, such that $\mathrm{L}(\mathrm{G})=\mathrm{L}(\mathrm{M})$
Every PSL is homomorphic image of a CSL
Closure of CSL's under λ-free homomorphisms
Quotient
Given TM, M, can specify CFGs, G1 and G2, such that L(G1) / L(G2) $=\mathrm{L}(\mathrm{M})$

Complexity Theory

P, NP (verification vs non-det. Solution), co-NP, NP-Complete
Polynomial many-one versus polynomial Turing reductions
Problems I will focus on
Polynomial-time bounded NDTM to SAT (basic idea)
Polynomial step bounded Semi-Thue to Bounded Tiling SAT to 3-SAT; 3SAT to Independent Set problem (IS) for undirected graph 3SAT to SubsetSum; SubsetSum to Partition
KnapSack is limited to one bin and asks for best fit (usually with values \& weights)
SubsetSum optimization problem for $\leq G$ when weight and value are same
BinPacking allows multiple bins and optimizes number of bins of some fixed size
Scheduling with fixed number (p) of processors and no deadlines
Goal is to finish all tasks as soon as possible
This is an optimization version of a p-partition problem
Deadline scheduling
BinPacking uses all items in list so list could be times of tasks leading to an Optimization problem to minimize the number of processors while obeying a deadline
Scheduling heuristics and anomalies
Unit execution scheduling of tree/forest and of anti-tree/anti-forest
Hamiltonian circuit (cycle)
Travelling Salesman adds distances (weights) and seeks circuit of distance $\leq \mathrm{K}$
Reduce HC to TSP set K to $|\mathrm{V}|$ and distances to 1 where links and to $\mathrm{K}+1$ otherwise
Optimization version looks for minimum distance circuit
Integer Linear Programming Feasibility
Is there an assignment that satisfies the constraints?
SAT3 and 0-1 case.
k -vertex cover, k-coloring (3-coloring),
Optimization versions: min vertex cover; min coloring
Tiling the plane (basic concepts)
Polynomial step bounded Semi-Thue to Bounded Tiling
Parallels and non-parallels to Recursive, RE, RE-Complete,
Co-RE, Co-RE-Complete, RE-Hard (Turing versus many-one reductions)
NP-Easy, NP-Hard, NP-Equivalent
NP-Equivalent Optimization Problems associate with K-Coloring (min coloring) and SubsetSum (max SubsetSum less than a Goal value) - reduction and proof
What about Deadline Scheduling that optimizes number of processors with a fixed deadline?
What about min vertices in Vertex Cover?
$\mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE}=\mathrm{NPSPACE} \subseteq E X P T I M E \subseteq$ NEXPTIME \subseteq EXPSPACE
$\nsubseteq 2$-EXPTIME $\nsubseteq 3$-EXPTIME $\nsubseteq \ldots \nsubseteq$ ELEMENTARY \nsubseteq PRF \ddagger REC
$\mathrm{P} \neq$ EXPTIME; At least one of these is true
$\mathrm{P} \nsubseteq \mathrm{NP}$
NP \ddagger PSPACE
PSPACE \ddagger EXPTIME
NP \neq NEXPTIME
Note that EXPTIME = NEXPTIME iff $\mathrm{P}=\mathrm{NP}$
Note that k -EXPTIME $\nsubseteq(\mathrm{k}+1)$-EXPTIME, $\mathrm{k}>0$
PSPACE \neq EXPSPACE; At least one of these is true
PSPACE \ddagger EXPTIME
EXPTIME \ddagger EXPSPACE
ATM (Alternating Turing Machine) - This is just concept stuff with no details
AP = PSPACE, where AP is solvable in polynomial time on an ATM
QSAT is solvable by an alternating TM in polynomial time and polynomial space (Why?)
QSAT is PSPACE-Complete
Petri net reachability is EXPSPACE-hard and requires 2-EXPTIME
Presburger arithmetic is at least in 2-EXPTIME, at most in 3-EXPTIME, and can be solved by an
ATM with n alternating quantifiers in doubly exponential time

