COT6410 Spring 2019 Assignment \#4 Sample

Define NTR $=$ NON_TRIVIAL_RANGE $=(\mathbf{f}| |$ range(f) $\mid>\mathbf{1}\}$.
a.) Show some minimal quantification of some known recursive predicate that provides an upper bound for the complexity of this set. (Hint: Look at c.) and d.) to get a clue as to what this must be.)
b.) Use Rice's Theorem to prove that NTR is undecidable.
c.) Show that $\mathbf{K}_{\mathbf{0}} \leq_{\mathrm{m}} \mathbf{N T R}$, where $\mathbf{K}_{\mathbf{0}}=\left\{\langle\mathbf{x}, \mathbf{y}\rangle \mid \varphi_{\mathbf{x}}(\mathbf{y}) \downarrow\right\}$.
d.) Show that $\mathbf{N T R} \leq_{m} K_{0}$.
e.) From a.) through d.) what can you conclude about the complexity of NTR (Recursive, RE, RE-COMPLETE, CO-RE, CO-RE-COMPLETE, NON-RE/NON-CO-RE)?

Define NTR $=$ NON_TRIVIAL_RANGE $=(\mathbf{f}| |$ range(f)| $\mathbf{>} \mathbf{1}\}$.
a.) Show some minimal quantification of some known recursive predicate that provides an upper bound for the complexity of this set. (Hint: Look at c.) and d.) to get a clue as to what this must be.)

b.) Use Rice's Theorem to prove that NTR is undecidable.

First show NTR is non-trivial:
$I(x)=x \in N T R \quad C_{0}(x)=0 \notin N T R$
and thus, the set and its complement are non-empty as required.
Let f, g be two arbitrary indices (functions) such that range $\left(\varphi_{f}\right)=\operatorname{range}\left(\varphi_{g}\right)$.

$$
\begin{array}{ll}
f \in N T R \text { iff } \mid \text { range }\left(\varphi_{f}\right) \mid>1 & \text { Definition of NTR } \\
\text { iff } \mid \text { range }\left(\varphi_{g}\right) \mid>1 & \text { Since we assumed range }\left(\varphi_{f}\right)=\operatorname{range}\left(\varphi_{g}\right) \\
\text { iff } g \in N T R & \text { Definition of NTR }
\end{array}
$$

This weak form of Rice's Theorem shows NTR to be undecidable.
c.) Show that $\mathbf{K}_{\mathbf{0}} \leq_{\mathrm{m}} \mathbf{N T R}$, where $\mathbf{K}_{\mathbf{0}}=\left\{\langle\mathbf{x}, \mathbf{y}\rangle \mid \varphi_{\mathbf{x}}(\mathbf{y}) \downarrow\right\}$.

Let $\langle x, y>$ be an arbitrary pair of natural numbers.
Define $f_{x, y}(z)=\varphi_{x}(y)-\varphi_{x}(y)+z$
$\langle x, y\rangle \in K_{0}$ implies $\forall z f_{x, y}(z)=z$ implies Range $\left(f_{x, y}\right)$ is infinite implies $f_{x, y} \in$ NTR
$\left\langle x, y>\notin K_{0}\right.$ implies $\forall z f_{x, y}(z) \uparrow$ implies Range $\left(f_{x, y}\right)$ is empty implies $f_{x, y} \notin$ NTR
Thus, $\left\langle x, y>\in K_{0} \Leftrightarrow f_{x, y} \in N T R\right.$
And so, $K_{0} \leq_{m}$ NTR
d.) Show that NTR $\leq_{\mathrm{m}} \mathbf{K}_{\mathbf{0}}$.

Let f be an arbitrary index (function)
Define $g_{f}(z)=\nless x, y, t>[S T P(f, x, t) \& \& S T P(f, y, t) \& \&(V A L U E(f, x, t) \neq \operatorname{VALUE}(f, y, t))]$
$f \in N T R$ implies $\forall z g_{f}(z)=1$ implies $\left\langle g_{f}, 0\right\rangle \in K_{0}$
$f \notin$ NTR implies $\forall z g_{f}(z) \uparrow$ implies $\left\langle g_{f}, 0\right\rangle \notin K_{0}$
Thus, $\left.f \in N T R \Leftrightarrow<g_{f}, 0\right\rangle \in K_{0}$
And so, $N T R \leq_{m} K_{0}$
e.) From a.) through d.) what can you conclude about the complexity of NTR
(Recursive, RE, RE-COMPLETE, CO-RE, CO-RE-COMPLETE, NON-RE/NON-CO-RE)?

RE-COMPLETE

