COT6410 Spring 2019 Assignment #4 Sample

Define NTR = NON_TRIVIAL_RANGE = (f | |range(f)| > 1 }.

- **a.**) Show some minimal quantification of some known recursive predicate that provides an upper bound for the complexity of this set. (Hint: Look at **c.**) and **d.**) to get a clue as to what this must be.)
- **b.)** Use Rice's Theorem to prove that **NTR** is undecidable.
- c.) Show that $K_0 \leq_m NTR$, where $K_0 = \{ \langle x, y \rangle | \phi_x(y) \downarrow \}$.
- **d.**) Show that $NTR \leq_m K_0$.
- e.) From a.) through d.) what can you conclude about the complexity of NTR (Recursive, RE, RE-COMPLETE, CO-RE, CO-RE-COMPLETE, NON-RE/NON-CO-RE)?

COT6410 Spring 2019 Assignment #4 Sample with Solutions

Define NTR = NON_TRIVIAL_RANGE = (f | |range(f)| > 1 }.

a.) Show some minimal quantification of some known recursive predicate that provides an upper bound for the complexity of this set. (Hint: Look at **c.**) and **d.**) to get a clue as to what this must be.)

 $\exists \langle x, y, t \rangle [STP(f, x, t) \&\& STP(f, y, t) \&\& (VALUE(f, x, t) \neq VALUE(f, y, t))]$

b.) Use Rice's Theorem to prove that NTR is undecidable.

First show NTR is non-trivial:

 $I(x) = x \in NTR$ $C_0(x) = 0 \notin NTR$ and thus, the set and its complement are non-empty as required.

Let f, g be two arbitrary indices (functions) such that range (φ_f) = range (φ_g).

 $f \in NTR$ iff $| range(\varphi_f) | > 1$ Definition of NTRiff $| range(\varphi_g) | > 1$ Since we assumed range $(\varphi_f) = range(\varphi_g)$ iff $g \in NTR$ Definition of NTR

This weak form of Rice's Theorem shows NTR to be undecidable.

c.) Show that $K_0 \leq_m NTR$, where $K_0 = \{ \langle x, y \rangle | \phi_x(y) \downarrow \}$.

Let $\langle x,y \rangle$ be an arbitrary pair of natural numbers. Define $f_{x,y}(z) = \varphi_x(y) - \varphi_x(y) + z$ $\langle x,y \rangle \in K_0$ implies $\forall z f_{x,y}(z) = z$ implies $Range(f_{x,y})$ is infinite implies $f_{x,y} \in NTR$ $\langle x,y \rangle \notin K_0$ implies $\forall z f_{x,y}(z) \uparrow$ implies $Range(f_{x,y})$ is empty implies $f_{x,y} \notin NTR$ $Thus, \langle x,y \rangle \in K_0 \Leftrightarrow f_{x,y} \in NTR$ $And so, K_0 \leq_m NTR$

d.) Show that $NTR \leq_m K_0$.

Let f be an arbitrary index (function) Define $g_f(z) = \exists \langle x, y, t \rangle [STP(f,x,t) \&\& STP(f,y,t) \&\& (VALUE(f,x,t) \neq VALUE(f,y,t))]$ $f \in NTR$ implies $\forall z \ g_f(z) = 1$ implies $\langle g_{f_i} 0 \rangle \in K_0$ $f \notin NTR$ implies $\forall z \ g_f(z) \uparrow$ implies $\langle g_{f_i} 0 \rangle \notin K_0$ Thus, $f \in NTR \Leftrightarrow \langle g_{f_i} 0 \rangle \in K_0$ And so, $NTR \leq_m K_0$

e.) From a.) through d.) what can you conclude about the complexity of NTR (Recursive, RE, RE-COMPLETE, CO-RE, CO-RE-COMPLETE, NON-RE/NON-CO-RE)?

RE-COMPLETE