COT 6410 Assignment 6

Solution

For the 3SAT instance: $(x_1 \vee x_2 \vee x_3) \wedge (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (x_1 \vee x_4 \vee x_4) \wedge (x_2 \vee x_3 \vee x_3)$:

		X 1	X ₂	X 3	X 4	$x_1 V x_2 V x_3$	$\neg x_1 \lor \neg x_2 \lor x_3$	$x_1 \mathrel{V} x_4 \mathrel{V} x_4$	x ₂ V x ₃ V x ₃
1	X 1	1	0	0	0	1	0	1	0
2	¬x ₁	1	0	0	0	0	1	0	0
3	X 2	0	1	0	0	1	0	0	1
4	¬x₂	0	1	0	0	0	1	0	0
5	X 3	0	0	1	0	1	1	0	2
6	¬X 3	0	0	1	0	0	0	0	0
7	X 4	0	0	0	1	0	0	2	0
8	¬X 4	0	0	0	1	0	0	0	0
9	C ₁	0	0	0	0	1	0	0	0
10	C1'	0	0	0	0	1	0	0	0
11	C ₂	0	0	0	0	0	1	0	0
12	C2'	0	0	0	0	0	1	0	0
13	C₃	0	0	0	0	0	0	1	0
14	C₃'	0	0	0	0	0	0	1	0
15	C ₄	0	0	0	0	0	0	0	1
16	C4'	0	0	0	0	0	0	0	1
	Goal	1	1	1	1	3	3	3	3

(1) The equivalent SubsetSum instance:

To achieve the desired sum, below rows can be selected: $1 (x_1=True)$, $3 (x_2=True)$, $5 (x_3=True)$, $7 (x_4=True)$, $11 (C_2=True)$, and $12 (C_2'=True)$. In this case, all clauses are satisfied.

(2) The equivalent Vertex Cover instance:

Variable gadgets:

Combined gadgets:

The number of vertices needed to be selected is k = n + 2m = 4 (the number of variables) + 2 x 4 (the number of clauses) = 12. Since the graph above has a vertex cover with exact 12 vertices (the circled ones), all clauses are satisfied.

(3) The equivalent Independent Set instance:

Clause gadgets:

Combined gadgets:

The number of vertices needed to be selected in the independent set is k = m = 4 (the number of clauses). Since the graph above has an independent set with exact 4 vertices (the circled ones), all clauses are satisfied.

(4) The equivalent Hamiltonian Circuit instance:

Assume for each path i has 3m + 3 vertices (i.e. vertex 1, vertex 2, ..., vertex 3m + 3), where m is the number of clauses. If variable x_i is True, the direction of passing the path i is left to right. If variable $\neg x_i$ is True, the direction of passing the path i is right to left. For clause C_j , if x_i is in C_j , C_j , has edge from vertex 3j to vertex 3j + 1; if $\neg x_i$ is in C_j , C_j , has edge from vertex 3j + 1 to vertex 3j.

Variable gadgets:

Combined gadgets:

Below is the graph with a Hamiltonian Circuit highlighted, indicating all clauses are satisfied:

5