COT 6410 Assignment 6

Solution

For the 3SAT instance: $\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{4} \vee x_{4}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{3}\right)$:
(1) The equivalent SubsetSum instance:

		x_{1}	x_{2}	x_{3}	x_{4}	$x_{1} \vee x_{2} \vee x_{3}$	$-x_{1} \vee-x_{2} \vee x_{3}$	$x_{1} \vee x_{4} \vee x_{4}$	$x_{2} \vee x_{3} \vee x_{3}$
1	x_{1}	1	0	0	0	1	0	1	0
2	$-x_{1}$	1	0	0	0	0	1	0	0
3	x_{2}	0	1	0	0	1	0	0	1
4	$-x_{2}$	0	1	0	0	0	1	0	0
5	x_{3}	0	0	1	0	1	1	0	2
6	$-x_{3}$	0	0	1	0	0	0	0	0
7	x_{4}	0	0	0	1	0	0	2	0
8	$-\mathrm{x}_{4}$	0	0	0	1	0	0	0	0
9	C_{1}	0	0	0	0	1	0	0	0
10	$\mathrm{C}_{1}{ }^{\prime}$	0	0	0	0	1	0	0	0
11	C_{2}	0	0	0	0	0	1	0	0
12	$\mathrm{C}_{2}{ }^{\prime}$	0	0	0	0	0	1	0	0
13	C_{3}	0	0	0	0	0	0	1	0
14	$\mathrm{C}_{3}{ }^{\prime}$	0	0	0	0	0	0	1	0
15	C_{4}	0	0	0	0	0	0	0	1
16	$\mathrm{C}_{4}{ }^{\prime}$	0	0	0	0	0	0	0	1
	Goal^{2}	1	1	1	1	3	3	3	3

To achieve the desired sum, below rows can be selected: 1 ($x_{1}=$ True), 3 ($x_{2}=$ True), 5 ($x_{3}=$ True), 7 ($\mathrm{x}_{4}=$ True), 11 ($\mathrm{C}_{2}=$ True), and $12\left(\mathrm{C}_{2}{ }^{\prime}=\right.$ True $)$. In this case, all clauses are satisfied.
(2) The equivalent Vertex Cover instance:

Variable gadgets:

Clause gadgets:

Combined gadgets:

The number of vertices needed to be selected is $k=n+2 m=4$ (the number of variables) $+2 \times 4$ (the number of clauses) $=12$. Since the graph above has a vertex cover with exact 12 vertices (the circled ones), all clauses are satisfied.
(3) The equivalent Independent Set instance:

Clause gadgets:

Combined gadgets:

The number of vertices needed to be selected in the independent set is $\mathrm{k}=\mathrm{m}=4$ (the number of clauses). Since the graph above has an independent set with exact 4 vertices (the circled ones), all clauses are satisfied.
(4) The equivalent Hamiltonian Circuit instance:

Assume for each path i has $3 m+3$ vertices (i.e. vertex 1 , vertex $2, \ldots$, vertex $3 m+3$), where m is the number of clauses. If variable x_{i} is True, the direction of passing the path i is left to right. If variable $-x_{i}$ is True, the direction of passing the path i is right to left. For clause C_{j}, if x_{i} is in C_{j}, C_{j}, has edge from vertex $3 j$ to vertex $3 j+1$; if $\neg x_{i}$ is in C_{j}, C_{j}, has edge from vertex $3 j+1$ to vertex $3 j$.

Variable gadgets:
x_{1}

Combined gadgets:

Below is the graph with a Hamiltonian Circuit highlighted, indicating all clauses are satisfied:

