Assignment#4 Key

1. NotDominating(ND) = { f | for some x, f(x) < x }.

a.) Show some minimal quantification of some known primitive recursive predicate that provides an upper bound for the complexity of ND.

 $\exists \langle x,t \rangle [STP(f,x,t) \& (VALUE(f,x,t) < x)] \}$

b.) Use Rice's Theorem to prove that ND is undecidable. Be Complete.

ND is non-trivial as $CO(x) = 0 \in ND$ and $S(x) = x+1 \notin ND$

Let f,g be two arbitrary indices of procedures such that $\forall x f(x) = g(x)$

 $f \in ND$ iff $\exists x f(x) < x$ iff $f(x_0) < x_0$ for some x_0 iff $g(x_0) < x_0$ as $\forall x f(x) = g(x)$ implies $\exists x g(x) < x$ iff $g \in ND$

 $f \notin ND$ iff $\forall x [f(x) \downarrow implies f(x)>x]$ iff $\forall x [g(x) \downarrow implies g(x)>x]$ as $\forall x f(x) = g(x)$ iff $g \notin ND$

c.) Show that K = { f | f(f) converges } is many-one reducible to ND.

Let **f** be an arbitrary index. From **f**, define $\forall \mathbf{x} \mathbf{F}_{\mathbf{f}}(\mathbf{x}) = \mathbf{f}(\mathbf{f}) \cdot \mathbf{f}(\mathbf{f})$. $\mathbf{f} \in \mathbf{K}$ implies $\forall \mathbf{x} \mathbf{F}_{\mathbf{f}}(\mathbf{x}) = \mathbf{0}$ implies $\mathbf{F}_{\mathbf{f}} \in \mathbf{ND}$. $\mathbf{f} \notin \mathbf{K}$ implies $\forall \mathbf{x} \mathbf{F}_{\mathbf{f}}(\mathbf{x})$ diverges implies $\mathbf{F}_{\mathbf{f}} \notin \mathbf{ND}$.

Thus, K ≤_m ND

d.) Show that ND is many-one reducible to K = { f | f(f) converges }

Let **f** be an arbitrary index. From **f**, define $\forall y F_f(y) = \exists \langle x,t \rangle STP(f,x,t) \& (VALUE(f,x,t) \langle x \rangle f \in ND$ implies $\forall y F_f(y)$ converges implies $F_f(F_f)$ converges implies $F_f \in K$ **f** \notin ND implies $\forall y F_f(y)$ diverges implies $F_f \notin K$.

Thus, **ND** ≤_m K

2. AlwaysDominates(AD) = { f | for all x, f(x) > x }

a.) Show some minimal quantification of some known primitive recursive predicate that provides an upper bound for the complexity of **AD**.

 $\forall x \exists t [STP(f,x,t) \& (VALUE(f,x,t) > x)] \}$

b.) Use Rice's Theorem to prove that **AD** is undecidable. Be Complete.

AD is non-trivial as $S(x) = x+1 \in AD$ and $CO(x) = 0 \notin AD$

Let f,g be two arbitrary indices of procedures such that $\forall x f(x) = g(x)$

 $f \in AD$ iff $\forall x f(x) < x iff \forall x g(x) < x iff g \in ND$

c.) Show that TOT = { f | for all x, f(x) converges } is many-one reducible to AD.

Let **f** be an arbitrary index. From **f**, define $\forall x F_f(x) = f(x)-f(x) + x + 1$. **f** \in **TOT** implies $\forall x F_f(x) = x+1$ implies $F_f \in AD$. **f** \notin **TOT** implies $\exists x F_f(x)$ diverges implies $F_f \notin AD$.

Thus, **TOT** ≤_m **AD**

d.) Show that AD is many-one reducible to TOT = { f | for all x, f(x) converges }

Let **f** be an arbitrary index. From **f**, define $\forall x F_f(x) = \mu y [f(x) > x]$ **f** \in **AD** implies $\forall x F_f(x)$ converges implies $F_f \in TOT$ **f** \notin **AD** implies $\exists x F_f(x)$ diverges implies $F_f \notin TOT$.

Thus, **AD** ≤_m **TOT**