Assignment\#3 Key

1. Check F to be sure it's legit

- GreaterThanZero(F, 0$)=\exp (F, 0)>0$

GreaterThanZero(F, $y+1)=$ GreaterThanZero(F, y) \&\& $(\exp (F, y+1)>0)$

- $N(F)=\exp (F, 0)$
- WellFormed(F) = GreaterThanZero(F, $\left.2^{*} N(F)\right) \& \&$ $\left(\exp \left(F, 2^{*} N(F)+1\right)==1\right) \& \&\left(\exp \left(F, 2^{*} N(F)+2\right)==1\right)$
- Really, really inefficient NoExtraPrimeFactors(F) =~ヨ 2* $(N(F)+1)<z \leq F / / 2[\exp (F, z)>0]$
- AllGood(F) = WellFormed(F) \&\& NoExtraPrimeFactors(F)
- There are other approaches for NoExtraPrimeFactors

1. Alternate approach to NoExtraPrimeFactors

- ValueOf_F(F, 0) = prime $(0)^{\wedge} \exp (F, 0)$

ValueOf_F(F, y+1) = ValueOf_F(F, y) * (prime $\left.(y+1)^{\wedge} \exp (F, y+1)\right)$

- ExpectedValueOf_F(F) = ValueOf_F(F, $\exp \left(F, 2^{*} N(F)+1\right)$
- NoExtraPrimeFactors(\mathbf{F}) = ExpectedValueOf_F(F) $==\mathbf{F}$
- The idea here is that we compute the expected value of \mathbf{F} from \mathbf{F}, by multiplying all its expected factors. If there is an extraneous factor (a prime factor $>\mathbf{p}_{2 n+2}$) then our actual value of \mathbf{F} will be larger than expected and that can be checked just by using equality or, if you prefer, ExpectedValueOf_F(F) < F

2. Show S inf. rec. iff S is the range of a monotonically increasing function

- Let $f_{s}(\mathbf{x}+\mathbf{1})>\mathrm{f}_{\mathbf{s}}(\mathbf{x})$, and Range $\left(\mathbf{f}_{\mathbf{s}}(\mathbf{x})\right)=\mathbf{S}$. \mathbf{S} is decided by the characteristic function

$$
\chi_{S}(x)=\exists y \leq x\left[f_{s}(y)=x\right]
$$

The above works as \mathbf{x} must show up within the first $\mathbf{x + 1}$ numbers listed since f_{s} is monotonically increasing.

- Let \mathbf{S} be infinite recursive. As \mathbf{S} is recursive, it has a characteristic function where $\chi_{s}(x)$ is true iff x is in S.
Define the monotonically increasing enumerating function $f_{s}(\mathbf{x})$ where
$\mathrm{f}_{\mathrm{s}}(0)=\mu \mathrm{x}\left[\chi_{\mathrm{s}}(\mathrm{x})\right]$
$f_{s}(y+1)=\mu x>f_{s}(y)\left[\chi_{s}(x)\right]$
As required, this enumerates the elements of \mathbf{S} in order, low to high.

3. If S is infinite re, then S has an infinite recursive subset R

- Let $\mathbf{f}_{\mathbf{s}}$ be an algorithm where $\mathbf{S}=$ range $\left(\mathbf{f}_{\mathrm{s}}\right)$ is an infinite set
- Define the monotonically increasing function $f_{R}(\mathbf{x})$ by $f_{R}(0)=f_{s}(0)$ $f_{R}(y+1)=f_{s}\left(\mu x\left[f_{s}(x)>f_{R}(y)\right]\right)$
- The above is monotonically increasing because each iteration seeks a larger number and it will always succeed since \mathbf{S} is itself infinite and so has no largest value. Also, \mathbf{R} is clearly a subset of \mathbf{S} since each element is in the range of f_{s}.
- From \#2, \mathbf{R} is infinite recursive as it is the range of a monotonically increasing algorithm f_{R}.
- Combining, \mathbf{R} is an infinite recursive subset of \mathbf{S}, as was desired.

