Assignment#3 Key
1. Check F to be sure it’s legit

- $\text{GreaterThanZero}(F, 0) = \exp(F, 0) > 0$
 $\text{GreaterThanZero}(F, y+1) = \text{GreaterThanZero}(F, y) \&\& (\exp(F, y+1) > 0)$

- $N(F) = \exp(F, 0)$

- $\text{WellFormed}(F) = \text{GreaterThanZero}(F, 2*N(F)) \&\& (\exp(F, 2*N(F)+1) == 1) \&\& (\exp(F, 2*N(F)+2) == 1)$

- Really, really inefficient
 $\text{NoExtraPrimeFactors}(F) = \sim \exists 2*(N(F)+1)<z\leq F/2 [\exp(F, z) > 0]$

- $\text{AllGood}(F) = \text{WellFormed}(F) \&\& \text{NoExtraPrimeFactors}(F)$

- There are other approaches for $\text{NoExtraPrimeFactors}$
1. Alternate approach to NoExtraPrimeFactors

• $\text{ValueOf}_F(F, 0) = \text{prime}(0)^{\text{exp}(F, 0)}$
 $\text{ValueOf}_F(F, y+1) = \text{ValueOf}_F(F, y) \times (\text{prime}(y+1)^{\text{exp}(F, y+1)})$

• $\text{ExpectedValueOf}_F(F) = \text{ValueOf}_F(F, \text{exp}(F, 2*N(F)+1))$

• $\text{NoExtraPrimeFactors}(F) = \text{ExpectedValueOf}_F(F) == F$

• The idea here is that we compute the expected value of F from F, by multiplying all its expected factors. If there is an extraneous factor (a prime factor $> p_{2n+2}$) then our actual value of F will be larger than expected and that can be checked just by using equality or, if you prefer, $\text{ExpectedValueOf}_F(F) < F$
2. Show S inf. rec. iff S is the range of a monotonically increasing function

- Let $f_S(x+1) > f_S(x)$, and $\text{Range}(f_S(x)) = S$. S is decided by the characteristic function
 $$\chi_S(x) = \exists y \leq x \left[f_S(y) = x \right]$$
 The above works as x must show up within the first $x+1$ numbers listed since f_S is monotonically increasing.

- Let S be infinite recursive. As S is recursive, it has a characteristic function where $\chi_S(x)$ is true iff x is in S.
 Define the monotonically increasing enumerating function $f_S(x)$ where
 $$f_S(0) = \mu x \left[\chi_S(x) \right]$$
 $$f_S(y+1) = \mu x > f_S(y) \left[\chi_S(x) \right]$$
 As required, this enumerates the elements of S in order, low to high.
3. If S is infinite re, then S has an infinite recursive subset R

- Let f_s be an algorithm where $S = \text{range}(f_s)$ is an infinite set
- Define the monotonically increasing function $f_R(x)$ by
 \[
 f_R(0) = f_S(0),
 f_R(y+1) = f_S(\mu x \ [f_S(x) > f_R(y)]) \]
 - The above is monotonically increasing because each iteration seeks a larger number and it will always succeed since S is itself infinite and so has no largest value. Also, R is clearly a subset of S since each element is in the range of f_S.
- From #2, R is infinite recursive as it is the range of a monotonically increasing algorithm f_R.
- Combining, R is an infinite recursive subset of S, as was desired.