Assignment#2 Key
1a. EveryOther(L) = \{ a_1 a_3 \ldots a_{2n-1} \mid a_1 a_2 a_3 \ldots a_{2n-1} a_{2n} \text{ is in } L \} \\

• Approach 1: Let L be a Regular language over the finite alphabet \(\Sigma \). For each \(a \in \Sigma \), define \(f(a) = \{ a, a' \} \), \(g(a) = a' \) and \(h(a) = a \), \(h(a') = \lambda \), \(f \) is a substitution, \(g \) and \(h \) are homomorphisms. EveryOther(L) = h(f(L) \cap (\Sigma \cdot g(\Sigma))^*) \\

• Why this works: \(f(L) \) gets us every possible random priming of letters of strings in L. \((\Sigma \cdot g(\Sigma))^* \) gets every word composed of pairs of unprimed and primed letters from \(\Sigma \). Intersecting this with \(f(L) \) gets strings of the form \(a_1 a_2' a_3 a_4' \ldots a_{2n-1}a_{2n}' \) where \(a_1 a_2 a_3 a_4 \ldots a_{2n-1}a_{2n} \text{ is in } L \)

Applying the homomorphism \(h \) erases all primed letters resulting in every string \(a_1 a_3 \ldots a_{2n-1} \) where \(a_1 a_2 a_3 a_4 \ldots a_{2n-1}a_{2n} \text{ is in } L \), precisely the language EveryOther(L) that we sought. This works as Regular Languages are closed under intersection, concatenation, *, substitution and homomorphism.
1a. EveryOther(L) = \{ a_1 a_3 \ldots a_{2n-1} \mid a_1 a_2 a_3 \ldots a_{2n-1}a_{2n} \text{ is in } L \} \\

• Approach 2: Let L be a Regular language over the finite alphabet \(\Sigma \). Assume L is recognized by the DFA \(A_1 = (Q, \Sigma, \delta_1, q_1, F) \). Define NFA \(A_2 = (Q, \Sigma, \delta_2, q_1, F) \), where \(\delta_2(q,a) = \text{union}(b \in \Sigma) \{ \delta_1(\delta_1(q,a),b) \} \)

• Why this works: Every transition that \(A_2 \) takes is one that \(A_1 \) would have taken when reading a pair that starts with the character read by \(A_1 \) followed by any arbitrary character.
1b. \(\text{Half}(L) = \{ x \mid \text{there exists a } y, |x| = |y| \) and \(xy \) is in \(L \) \}

- Let \(L \) be a Regular language over the finite alphabet \(\Sigma \). Assume \(L \) is recognized by the DFA \(A_1 = (Q, \Sigma, \delta_1, q_1, F) \). Define the NFA \(A_2 = ((Q \times Q \times Q) \cup \{q_0\}, \Sigma, \delta_2, q_0, F') \), where \(\delta_2(q_0, \lambda) = \text{union}(q \in Q) \{< q_1, q, q >\} \) and \(\delta_2(< q, r, s >, a) = \text{union}(b \in \Sigma) \{ < \delta_1(q, a), \delta_1(r, b), s > \} \), \(q, r, s \in Q \)

\(F' = \text{union}(q \in Q) \{< q, f, q >\}, f \in F \)

- Why this works:
 - The first part of a state \(< q, r, s > \) tracks \(A_1 \).
 - The second part of a state \(< q, r, s > \) tracks \(A_1 \) for precisely all possible strings that are the same length as what \(A_1 \) is reading in parallel. This component starts with a guess as to what state \(A_1 \) might end up in.
 - The third part of a state \(< q, r, s > \) remembers the initial guess.

Thus, \(\delta_2(< q_1, q, q >, x) = \{ \delta_1*(q_0, x), \delta_1*(q, y), q >\} \) for arbitrary \(y, |x| = |y| \)

We accept if the initial guess was right and the second component is final, meaning \(xy \) is in \(L \).
2. \(L = \{ a^m b^n c^t \mid t = \min(m,n) \} \)

a.) Use the **Myhill-Nerode Theorem** to show \(L \) is not Regular. Define the equivalence classes \([a^i b^i], \ i \geq 0\)
Clearly \(a^i b^i c^i \) is in \(L \), but \(a^j b^j c^i \) is not in \(L \) when \(j \neq i \)
Thus, \([a^i b^i] \neq [a^j b^j]\) when \(j \neq i \) and so the index of \(R_L \) is infinite.
By Myhill-Nerode, \(L \) is not Regular.
2. \(L = \{ a^m b^n c^t \mid t = \min(m,n) \} \)

b.) Use the **Pumping Lemma for CFLs** to show \(L \) is not a CFL

Me: \(L \) is a CFL

PL: Provides \(N > 0 \)

Me: \(z = a^N b^N c^N \)

PL: \(z = uvwxy, |vwx| \leq N, |vx| > 0, \) and \(\forall i \geq 0 \ uv^iwx^iy \in L \)

Me: Since \(|vwx| \leq N \), it can consist of \(a \)'s and/or \(b \)'s or \(b \)'s and/or \(c \)'s but never all three. Assume it contains no \(c \)'s then \(i = 0 \) decreases the number of \(a \)'s and/or the number of \(b \)'s, but not the \(c \)'s and so there are more \(c \)'s than the minimum of \(a \)'s and \(b \)'s.

Assume it contains \(c \)'s then \(i = 2 \) increases the number of \(c \)'s and maybe number of \(b \)'s, but not the \(a \)'s and so there are more than \(N \) \(c \)'s but just \(N \) \(a \)'s.
2. \(L = \{ a^m b^n c^t \mid t = \min(m,n) \} \)

c.) Present a CSG for \(L \) to show it is context sensitive

\[G = (\{ A, B, C, <a>, \}, \{ a, b, c \}, R, A) \]

\[
A \rightarrow aBbc \mid abc \mid a \mid b \mid \lambda \\
B \rightarrow aBbC \mid a<a>bC \mid abC \quad \text{// allow more a’s or more b’s} \\
Cb \rightarrow bC \quad \text{// Shuttle C over to a c} \\
Cc \rightarrow cc \quad \text{// Change C to a c} \\
<a> \rightarrow a<a> \mid \lambda \\
 \rightarrow b \mid \lambda
\]