
Assignment#2 Key



1a. EveryOther(L) = { a1 a3 ... a2n-1 | 
a1 a2 a3 ... a2n-1a2n is in L }
• Approach 1: Let L be a Regular language over the finite alphabet Σ. For 

each a∈Σ, define f(a) = {a,a’}, g(a) = a’ and h(a) = a, h(a’) = λ, 
f is a substitution, g and h are homomorphisms.
EveryOther(L) = h(f(L) ∩ ( Σ� g(Σ) )* )
• Why this works: 

f(L) gets us every possible random priming of letters of strings in L.
( Σ� g(Σ) )* gets every word composed of pairs of unprimed and primed 
letters from Σ. Intersecting this with f(L) gets strings of the form 
a1 a2’ a3 a4’... a2n-1a2n’ where a1 a2 a3 a4... a2n-1a2n is in L 
Applying the homomorphism h erases all primed letters resulting in every
string a1 a3 ... a2n-1 where a1 a2 a3 a4 ... a2n-1a2n is in L, precisely the language 
EveryOther(L) that we sought. This works as Regular Languages are closed 
under intersection, concatenation, *, substitution and homomorphism.



1a. EveryOther(L) = { a1 a3 ... a2n-1 | 
a1 a2 a3 ... a2n-1a2n is in L }
• Approach 2: Let L be a Regular language over the finite alphabet Σ. 

Assume L is recognized by the DFA A1 = (Q, Σ, δ1, q1, F). Define NFA 
A2 = (Q, Σ, δ2, q1, F), where δ2(q,a) = union(b∈Σ) { δ1(δ1(q,a),b) }
• Why this works: 

Every transition that A2 takes is one that A1 would have taken when 
reading a pair that starts with the character read by A1 followed by 
any arbitrary character.



1b. Half(L) = { x | there exists a y, |x| = |y| 
and xy is in L }
• Let L be a Regular language over the finite alphabet Σ. Assume L is recognized by 

the DFA A1 = (Q, Σ, δ1, q1, F). Define the NFA 
A2 = ((Q×Q ×Q)∪{q0}, Σ, δ2, q0, F’), where 
δ2(q0,λ) = union(q∈Q) {<q1, q, q>} and 
δ2(< q, r, s > ,a) = union(b∈Σ) { < δ1(q,a), δ1(r,b), s > } ,  q,r,s ∈ Q
F’ = union(q∈Q) {<q, f, q>}, f∈F
• Why this works: 

The first part of a state < q, r, s > tracks A1.
The second part of a state < q, r, s > tracks A1 for precisely all possible strings that 
are the same length as what A1 is reading in parallel. This component starts with 
a guess as to what state A1 might end up in.
The third part of a state < q, r, s > remembers the initial guess.
Thus, δ2*(< q1, q, q > ,x) = {δ1*(q0,x), δ1*(q,y), q >} for arbitrary y, |x|=|y| 
We accept if the initial guess was right and the second component is final, 
meaning xy is in L..



2. L = { am bn ct | t = min(m,n) }

a.) Use the Myhill-Nerode Theorem to show L is not Regular.
Define the equivalence classes [aibi], i ≥ 0
Clearly aibici is in L, but ajbjci is not in L when j ≠ i
Thus, [aibi] ≠ [ajbj] when j ≠ i and so the index of RL is infinite.
By Myhill-Nerode, L is not Regular.



2. L = { am bn ct | t = min(m,n) }

b.) Use the Pumping Lemma for CFLs to show L is not a CFL
Me: L is a CFL
PL: Provides N>0
Me: z = aN bN cN

PL: z = uvwxy, |vwx| ≤ N, |vx| > 0, and ∀i≥0 uviwxiy ∈ L
Me: Since |vwx| ≤ N, it can consist of a’s and/or b’s or b’s and/or c’s but 
never all three. 
Assume it contains no c’s then i=0 decreases the number of a’s and/or the 
number of b’s, but not the c’s and so there are more c’s than the minimum of 
a’s and b’s. 
Assume it contains c’s then i=2 increases the number of c’s and maybe 
number of b’s, but not the a’s and so there are more than N c’s but just N a’s.



2. L = { am bn ct | t = min(m,n) }

c.) Present a CSG for L to show it is context sensitive
G = ( { A, B, C, <a>, <b> }, { a, b, c }, R, A )
A   → aBbc | abc | a | b | λ
B   → aBbC | a<a>bC | ab<b>C // allow more a’s or more b’s
Cb → bC // Shuttle C over to a c
Cc → cc // Change C to a c
<a> → a<a> | λ
<b> → b<b> | λ


