Generally useful information.

- The notation \(z = <x, y> \) denotes the pairing function with inverses \(x = <z>_1 \) and \(y = <z>_2 \).
- The minimization notation \(\mu \ y \ [P(\ldots, y)] \) means the least \(y \) (starting at 0) such that \(P(\ldots, y) \) is true. The bounded minimization (acceptable in primitive recursive functions) notation \(\mu \ y \ (u \leq y \leq v) \ [P(\ldots, y)] \) means the least \(y \) (starting at \(u \) and ending at \(v \)) such that \(P(\ldots, y) \) is true. Unlike the text, I find it convenient to define \(\mu \ y \ (u \leq y \leq v) \ [P(\ldots, y)] \) to be \(v \! + \! 1 \), when no \(y \) satisfies this bounded minimization.
- The tilde symbol, \(\sim \), means the complement. Thus, set \(\sim S \) is the set complement of set \(S \), and predicate \(\sim P(x) \) is the logical complement of predicate \(P(x) \).
- A function \(P \) is a predicate if it is a logical function that returns either 1 (true) or 0 (false). Thus, \(P(x) \) means \(P \) evaluates to true on \(x \), but we can also take advantage of the fact that true is 1 and false is 0 in formulas like \(y \times P(x) \), which would evaluate to either \(y \) (if \(P(x) \)) or 0 (if \(\sim P(x) \)).
- A set \(S \) is recursive if \(S \) has a total recursive characteristic function \(\chi_S \), such that \(x \in S \iff \chi_S(x) \). Note \(\chi_S \) is a predicate. Thus, it evaluates to 0 (false), if \(x \not\in S \).
- When I say a set \(S \) is re, unless I explicitly say otherwise, you may assume any of the following equivalent characterizations:
 1. \(S \) is either empty or the range of a total recursive function \(f_S \).
 2. \(S \) is the domain of a partial recursive function \(g_S \).
- If I say a function \(g \) is partially computable, then there is an index \(g \) (I know that’s overloading, but that’s okay as long as we understand each other), such that \(\Phi_g(x) = \Phi(x, g) = g(x) \). Here \(\Phi \) is a universal partially recursive function. Moreover, there is a primitive recursive function \(\text{STP} \), such that \(\text{STP}(g, x, t) \) is 1 (true), just in case \(g \), started on \(x \), halts in \(t \) or fewer steps. \(\text{STP}(g, x, t) \) is 0 (false), otherwise.
 Finally, there is another primitive recursive function \(\text{VALUE} \), such that \(\text{VALUE}(g, x, t) \) is \(g(x) \), whenever \(\text{STP}(g, x, t) \).
 \(\text{VALUE}(g, x, t) \) is defined but meaningless if \(\sim \text{STP}(g, x, t) \).
- The notation \(f(x) \downarrow \) means that \(f \) converges when computing with input \(x \), but we don’t care about the value produced. In effect, this just means that \(x \) is in the domain of \(f \).
- The notation \(f(x) \uparrow \) means \(f \) diverges when computing with input \(x \). In effect, this just means that \(x \) is not in the domain of \(f \).
- The Halting Problem for any effective computational system is the problem to determine of an arbitrary effective procedure \(f \) and input \(x \), whether or not \(f(x) \downarrow \). The set of all such pairs, \(K_0 \), is a classic re non-recursive one.
- The Uniform Halting Problem is the problem to determine of an arbitrary effective procedure \(f \), whether or not \(f \) is an algorithm (halts on all input). The set of all such function indices is a classic non re one.
- \(A \leq_m B \) (\(A \) many-one reduces to \(B \)) means that there exists a total recursive function \(f \) such that \(x \in A \iff f(x) \in B \). If \(A \leq_m B \) and \(B \leq_m A \) then we say that \(A \equiv_m B \) (\(A \) is many-one equivalent to \(B \)). If the reducing function is 1-1, then we say \(A \leq_1 B \) (\(A \) one-one reduces to \(B \)) and \(A \equiv_1 B \) (\(A \) is one-one equivalent to \(B \)).
1. Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re non-recursive, (NRNC) non-re/non-co-re, categorize each of the sets in a) through d). Justify your answer by showing some minimal quantification of some known recursive predicate.

a.) \{ f \mid \text{domain}(f) \text{ is finite} \} \\
 Justification: \exists x \forall y \exists t \neg \text{STP}(f, y, t)

b.) \{ f \mid \text{domain}(f) \text{ is empty} \} \\
 Justification: \forall x \forall t \neg \text{STP}(f, x, t)

c.) \{ <f,x> \mid f(x) \text{ converges in at most 20 steps} \} \\
 Justification: \text{STP}(f, x, 20)

d.) \{ f \mid \text{domain}(f) \text{ converges in at most 20 steps for some input } x \} \\
 Justification: \exists x \text{STP}(f, x, 20)

2. Let set A be recursive, B be re non-recursive and C be non-re. Choosing from among (REC) recursive, (RE) re non-recursive, (NR) non-re, categorize the set D in each of a) through d) by listing all possible categories. No justification is required.

a.) D = \sim C \quad \text{RE, NR}

b.) D \subseteq A \cup C \quad \text{REC, RE, NR}

c.) D = \sim B \quad \text{NR}

d.) D = B - A \quad \text{REC, RE}

3. Prove that the Halting Problem (the set \text{HALT} = K_0 = L_a) is not recursive (decidable) within any formal model of computation. (Hint: A diagonalization proof is required here.)

 Look at notes.

4. Using reduction from the known undecidable HasZero, \text{HZ} = \{ f \mid \exists x f(x) = 0 \}, show the non-recursiveness (undecidability) of the problem to decide if an arbitrary partial recursive function g has the property IsZero, \text{Z} = \{ f \mid \forall x f(x) = 0 \}. Hint: there is a very simple construction that uses STP to do this. Just giving that construction is not sufficient; you must also explain why it satisfies the desired properties of the reduction.

\text{HZ} = \{ f \mid \exists x \exists t \ \text{STP}(f, x, t) \& \text{VALUE}(f, x, t) = 0 \}

Let f be the index of an arbitrary effective procedure.

Define \text{g}_f(y) = 1 - \exists x \exists t \ \text{STP}(f, x, t) \& \text{VALUE}(f, x, t) = 0

If \exists x f(x) = 0, we will find the x and the run-time t, and so we will return 0 (1 - 1)

If \forall x f(x) \neq 0, then we will diverge in the search process and never return a value.

Thus, f \in \text{HZ} \iff g_f \in \text{Z}.
5. Define \(\text{RANGE_ALL} = \{ f \mid \text{range}(f) = \mathbb{N} \} \).

a.) Show some minimal quantification of some known recursive predicate that provides an upper bound for the complexity of this set. (Hint: Look at c.) and d.) to get a clue as to what this must be.)

\[\forall x \exists <y,t> [\text{STP}(f,y,t) \& \& \text{Value}(f,y,t) = x] \]

b.) Use Rice’s Theorem to prove that \(\text{RANGE_ALL} \) is undecidable.

This is non-trivial as \(I(x) = x \in \text{RANGE_ALL} \) and \(C_0(x) = 0 \notin \text{RANGE_ALL} \)

Let \(f, g \) be such that \(\forall x \varphi_f(x) = \varphi_g(x) \).

\(f \in \text{RANGE_ALL} \iff \text{range}(f) = \mathbb{N} \)

\(\iff \text{range}(g) = \mathbb{N} \) since \(g \) outputs the same value as \(f \) for any input

\(\iff g \in \text{RANGE_ALL} \)

Since the property is non-trivial and is an I/O property, Rice’s Theorem says it is undecidable.

c.) Show that \(\text{TOTAL} \leq_m \text{RANGE_ALL} \), where \(\text{TOTAL} = \{ f \mid \forall y \varphi_f(y) \downarrow \} \).

Let \(f \) be the index of an arbitrary effective procedure \(\varphi_f \). Define \(g \) such that \(g(f) \), denoted \(g_f \), is the index of the function \(\varphi_{g_f} \) defined by \(\varphi_{g_f}(x) = \varphi_f(x) - \varphi_f(x) + x \).

\(f \in \text{TOTAL} \iff \forall x \varphi_f(x) \downarrow \iff \forall x \varphi_{g_f}(x) = x \iff \forall x x \in \text{range}(g_f) \iff g_f \in \text{RANGE_ALL} \)

\(f \notin \text{TOTAL} \iff \exists x \varphi_f(x) \uparrow \iff \exists x \varphi_{g_f}(x) \uparrow \iff \exists x x \notin \text{range}(g_f) \iff g_f \notin \text{RANGE_ALL} \)

This shows that \(\text{TOTAL} \leq_m \text{RANGE_ALL} \), as was desired.

d.) Show that \(\text{RANGE_ALL} \leq_m \text{TOTAL} \).

Let \(f \) be the index of an arbitrary effective procedure \(\varphi_f \). Define \(g \) such that \(g(f) \), denoted \(g_f \), is the index of the function \(\varphi_{g_f} \) defined by \(\varphi_{g_f}(x) = \exists <y,t> [\text{STP}(f,y,t) \& \& \text{Value}(f,y,t) = x] \).

\(f \in \text{RANGE_ALL} \iff \forall x \exists <y,t> [\text{STP}(f,y,t) \& \& \text{Value}(f,y,t) = x] \iff \forall x \varphi_{g_f}(x) \downarrow \iff g_f \in \text{TOTAL} \)

This shows that \(\text{RANGE_ALL} \leq_m \text{TOTAL} \), as was desired.

e.) From a.) through d.) what can you conclude about the complexity of \(\text{RANGE_ALL} \)?

a) shows that \(\text{RANGE_ALL} \) is no more complex than others that must use the alternating qualifiers \(\forall \exists \).

b) shows the problem is non-recursive.

c) and d) combine to show that the problem is in fact of equal complexity with the non-re problem \(\text{TOTAL} \), so the result in a) was optimal.
6. This is a simple question concerning Rice’s Theorem.
 a.) State the strong form of Rice’s Theorem. Be sure to cover all conditions for it to apply.

 Let P be a property of indices of partial recursive function such that the set
 \[S_P = \{ f \mid f \text{ has property P} \} \] has the following two restrictions
 (1) \(S_P \) is non-trivial. This means that \(S_P \) is neither empty nor is it the set of all indices.
 (2) P is an I/O behavior. That is, if f and g are two partial recursive functions whose I/O
 behaviors are indistinguishable, \(\forall x \ f(x) = g(x) \), then either both of f and g have property P
 or neither has property P.

 Then P is undecidable.

 b.) Describe a set of partial recursive functions whose membership cannot be shown undecidable
 through Rice’s Theorem. What condition is violated by your example?

 There are many possibilities here. For example \(\{ f \mid \exists x \ \neg \text{STP}(f,x,x) \} \) is not an I/O property and
 \(\{ f \mid \exists x \ f(x) \neq f(x) \} \) is trivial (empty).

7. Using the definition that S is recursively enumerable iff S is either empty or the range of some
 algorithm \(f_S \) (total recursive function), prove that if both S and its complement \(\neg S \) are recursively
 enumerable then S is decidable. To get full credit, you must show the characteristic function for S,
 \(\chi_S \), in all cases. Be careful to handle the extreme cases (there are two of them). Hint: This is not an
 empty suggestion.

 Let \(S = \emptyset \) then \(\neg S = \infty \). Both are re and \(\forall x \ \chi_S(x) = 0 \) is S’s characteristic function.

 Let \(S = \infty \) then \(\neg S = \emptyset \). Both are re and \(\forall x \ \chi_S(x) = 1 \) is S’s characteristic function.

 Assume then that \(S \neq \emptyset \) and \(S \neq \infty \) then each of S and \(\neg S \) is enumerated by some total recursive
 function. Let S be enumerated by \(f_S \) and \(\neg S \) by \(f_{\neg S} \). Define
 \(\chi_S(x) = f_S(\mu y [f_S(y)==x || f_{\neg S}(y)==x]) == x. \)

 Moreover, the minimization, while conceptually unbounded, always converges because both \(f_S \)
 and \(f_{\neg S} \) are algorithms.

 Further, x must be in the range of one and only one of \(f_S \) or \(f_{\neg S} \). Thus,
 \(\exists y f_S(y) == x \) or \(\exists y f_{\neg S}(y) == x. \)

 The min operator \((\mu y) \) finds the smallest such y and the predicate
 \(f_S(\mu y [f_S(y)==x || f_{\neg S}(y)==x]) == x \) checks that x is in the range of \(f_S \).

 If it is, then \(\chi_S(x) = 1 \) else \(\chi_S(x) = 0 \), as desired.