Generally useful information.

- The notation $z = <x,y>$ denotes the pairing function with inverses $x = <z>_1$ and $y = <z>_2$.
- The minimization notation $\mu y \{P(\ldots y)\}$ means the least y (starting at 0) such that $P(\ldots y)$ is true. The bounded minimization (acceptable in primitive recursive functions) notation $\mu y (u \leq y \leq v) \{P(\ldots y)\}$ means the least y (starting at u and ending at v) such that $P(\ldots y)$ is true. Unlike the text, I find it convenient to define $\mu y (u \leq y \leq v) \{P(\ldots y)\}$ to be $v+1$, when no y satisfies this bounded minimization.
- The tilde symbol, \sim, means the complement. Thus, set $\sim S$ is the set complement of set S, and predicate $\sim P(x)$ is the logical complement of predicate $P(x)$.
- A function P is a predicate if it is a logical function that returns either 1 (true) or 0 (false). Thus, $P(x)$ means P evaluates to true on x, but we can also take advantage of the fact that true is 1 and false is 0 in formulas like $y \times P(x)$, which would evaluate to either y (if $P(x)$) or 0 (if $\sim P(x)$).
- A set S is recursive if S has a total recursive characteristic function χ_S, such that $x \in S \Leftrightarrow \chi_S(x)$. Note χ_S is a predicate. Thus, it evaluates to 0 (false), if $x \notin S$.
- When I say a set S is re, unless I explicitly say otherwise, you may assume any of the following equivalent characterizations:
 1. S is either empty or the range of a total recursive function f_S.
 2. S is the domain of a partial recursive function g_S.
- If I say a function g is partially computable, then there is an index g (I know that’s overloading, but that’s okay as long as we understand each other), such that $\Phi_g(x) = \Phi(x, g) = g(x)$. Here Φ is a universal partially recursive function. Moreover, there is a primitive recursive function STP, such that $\text{STP}(g, x, t)$ is 1 (true), just in case g, started on x, halts in t or fewer steps. $\text{STP}(g, x, t)$ is 0 (false), otherwise. Finally, there is another primitive recursive function VALUE, such that $\text{VALUE}(g, x, t)$ is $g(x)$, whenever $\text{STP}(g, x, t)$. $\text{VALUE}(g, x, t)$ is defined but meaningless if $\sim \text{STP}(g, x, t)$.
- The notation $f(x) \downarrow$ means that f converges when computing with input x, but we don’t care about the value produced. In effect, this just means that x is in the domain of f.
- The notation $f(x) \uparrow$ means f diverges when computing with input x. In effect, this just means that x is not in the domain of f.
- The Halting Problem for any effective computational system is the problem to determine of an arbitrary effective procedure f and input x, whether or not $f(x) \downarrow$. The set of all such pairs, K_0, is a classic re non-recursive one.
- The Uniform Halting Problem is the problem to determine of an arbitrary effective procedure f, whether or not f is an algorithm (halts on all input). The set of all such function indices is a classic non re one.
- $A \leq_m B$ (A many-one reduces to B) means that there exists a total recursive function f such that $x \in A \Leftrightarrow f(x) \in B$. If $A \leq_m B$ and $B \leq_m A$ then we say that $A \equiv_m B$ (A is many-one equivalent to B). If the reducing function is 1-1, then we say $A \leq_1 B$ (A one-one reduces to B) and $A \equiv_1 B$ (A is one-one equivalent to B).
1. Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re non-recursive, (NRNC) non-re/non-co-re, categorize each of the sets in a) through d). Justify your answer by showing some minimal quantification of some known recursive predicate.

a.) \{ f | \text{domain}(f) \text{ is finite} \}

Justification:

b.) \{ f | \text{domain}(f) \text{ is empty} \}

Justification:

c.) \{ <f,x> | f(x) \text{ converges in at most 20 steps} \}

Justification:

d.) \{ f | \text{domain}(f) \text{ converges in at most 20 steps for some input} x \}

Justification:

2. Let set A be recursive, B be re non-recursive and C be non-re. Choosing from among (REC) recursive, (RE) re non-recursive, (NR) non-re, categorize the set D in each of a) through d) by listing all possible categories. No justification is required.

a.) D = \neg C

b.) D \subseteq A \cup C

c.) D = \neg B

d.) D = B - A

3. Prove that the Halting Problem (the set \text{HALT} = K_0 = L_\mu) is not recursive (decidable) within any formal model of computation. (Hint: A diagonalization proof is required here.)

Look at notes.

4. Using reduction from the known undecidable HasZero, HZ = \{ f | \exists x f(x) = 0 \}, show the non-recursiveness (undecidability) of the problem to decide if an arbitrary partial recursive function g has the property IsZero, Z = \{ f | \forall x f(x) = 0 \}. Hint: there is a very simple construction that uses STP to do this. Just giving that construction is not sufficient; you must also explain why it satisfies the desired properties of the reduction.
5. Define $\text{RANGE_ALL} = \{ f \mid \text{range}(f) = \mathbb{R} \}$.

 a.) Show some minimal quantification of some known recursive predicate that provides an upper bound for the complexity of this set. (Hint: Look at c.) and d.) to get a clue as to what this must be.)

 b.) Use Rice’s Theorem to prove that RANGE_ALL is undecidable.

 c.) Show that $\text{TOTAL} \leq_m \text{RANGE_ALL}$, where $\text{TOTAL} = \{ f \mid \forall y \varphi_f(y) \downarrow \}$.

 d.) Show that $\text{RANGE_ALL} \leq_m \text{TOTAL}$.

 e.) From a.) through d.) what can you conclude about the complexity of RANGE_ALL?
6. This is a simple question concerning Rice’s Theorem.
 a.) State the strong form of Rice’s Theorem. Be sure to cover all conditions for it to apply.

b.) Describe a set of partial recursive functions whose membership cannot be shown undecidable through Rice’s Theorem. What condition is violated by your example?

7. Using the definition that S is recursively enumerable iff S is either empty or the range of some algorithm f_S (total recursive function), prove that if both S and its complement $\sim S$ are recursively enumerable then S is decidable. To get full credit, you must show the characteristic function for S, χ_S, in all cases. Be careful to handle the extreme cases (there are two of them). Hint: This is not an empty suggestion.