Sample Question#1. Part a

1. Prove that the following are equivalent

a) S is an infinite recursive (decidable) set.

b) S is the range of a monotonically increasing total recursive function.

Note: f is monotonically increasing means that $\forall x \ f(x+1) > f(x)$.

a) Implies b)

Let $x \in S \iff \chi_S(x)$

Define $f_R(0) = \mu x \chi_S(x)$; $f_R(y+1) = \mu x \ [\chi_S(x) \&\& (x > f_R(y))]$

Clearly, since S is non-empty, it has a least one value and so there exist a smallest value such that $\chi_S(x)$; we will enumerate this as $f_R(0) = \mu x \chi_S(x)$.

Assume we have enumerated the y-th value in S as $f_R(y)$. Since S is infinite, there will be values in S greater than $f_R(y)$ and our search $\mu x \ [\chi_S(x) \&\& (x > f_R(y))]$ will find the next largest value for which $\chi_S(x)$. Thus, inductively, we will enumerate the elements of S in increasing order, as desired.
1. Prove that the following are equivalent
a) S is an infinite recursive (decidable) set.
 b) S is the range of a monotonically increasing total recursive function.
 Note: f is monotonically increasing means that \(\forall x \ f(x+1) > f(x) \).
b) Implies a)
Let \(S \) be enumerated by the monotonically increasing algorithm \(f_S \).
Define \(\chi_S \) by
\[
\chi_S(x) = (f_R ((\mu z \ [f_R (z) \geq x]) == x))
\]
Clearly, if \(x \) is enumerated, it must appear before any values greater than it are enumerated and consequently this is a bounded search to find the first element listed that is at least as large as \(x \). If this element is \(x \), then \(x \) is in \(S \), else it is not. The fact that \(f_R \) is monotonically increasing makes \(S \) infinite. The fact that it has a characteristic function makes it decidable.
Sample Question#2

2. Let A and B be re sets. For each of the following, either prove that the set is re, or give a counterexample that results in some known non-re set.

Let A be semi decided by f_A and B by f_B

a) $A \cup B$: must be re as it is semi-decided by
 \[f_{A \cup B}(x) = \exists t \left[\text{stp}(f_A, x, t) \mathbin{||} \text{stp}(f_B, x, t) \right] \]

b) $A \cap B$: must be re as it is semi-decided by
 \[f_{A \cap B}(x) = \exists t \left[\text{stp}(f_A, x, t) \mathbin{\&\&} \text{stp}(f_B, x, t) \right] \]

c) $\neg A$: can be non-re. If $\neg A$ is always re, then all re are recursive as any set that is re and whose complement is re is decidable. However, $A = K$ is a non-rec, re set and so $\neg A$ is not re.
Sample Question#3

3. Present a demonstration that the *even* function is primitive recursive.

\[
even(x) = 1 \text{ if } x \text{ is even} \\
even(x) = 0 \text{ if } x \text{ is odd}
\]

You may assume only that the base functions are prf and that prf’s are closed under a finite number of applications of composition and primitive recursion.

DONE in class.
Sample Question#4

4. Given that the predicate \textbf{STP} and the function \textbf{VALUE} are prf’s, show that we can semi-decide

\[\{ f \mid \varphi_f \text{ evaluates to 0 for some input} \} \]

This can be shown re by the predicate

\[\{ f \mid \exists <x,t> \ [\text{stp}(f,x,t) \ \&\& \ \text{value}(f,x,t) = 0] \} \]
Sample Question#5

5. Let S be an re (recursively enumerable), non-recursive set, and T be re, non-empty, possibly recursive set. Let $E = \{ z \mid z = x + y, \text{ where } x \in S \text{ and } y \in T \}.$

(a) Can E be non re?
No as we can let S and T be semi-decided by f_S and f_T, resp., E is then semi-dec. by $f_E(z) = \exists <x,y,t> [\text{stp}(f_S, x, t) \land \text{stp}(f_T, y, t) \land (z = \text{value}(f_S, x, t) + \text{value}(f_T, y, t))]$

(b) Can E be re non-recursive? Yes, just let $T = \{0\}$, then $E = S$ which is known to be re, non-rec.

(c) Can E be recursive? Yes, let $T = \mathbb{N}$, then $E = \{ x \mid x \geq \text{min} \ (S) \}$ which is a co-finite set and hence rec.
Sample Question#6

6. Assuming TOTAL is undecidable, use reduction to show the undecidability of
Incr = \{ f \mid \forall x \ \varphi_f(x+1) > \varphi_f(x) \}

Let f be arb.

Define \(G_f(x) = \varphi_f(x) - \varphi_f(x) + x \)

\(f \in \text{TOTAL} \) iff \(\forall x \varphi_f(x) \downarrow \) iff \(\forall x \ G_f(x) \downarrow \) iff

\(\forall x \varphi_f(x) - \varphi_f(x) + x = x \) iff \(G_f \in \text{Incr} \)
Sample Question#7

7. Let \(\text{Incr} = \{ f \mid \forall x, \varphi_f(x+1) > \varphi_f(x) \} \).

Let \(\text{TOT} = \{ f \mid \forall x, \varphi_f(x) \downarrow \} \).

Prove that \(\text{Incr} \equiv_m \text{TOT} \). Note Q#6 starts this one.

Let \(f \) be arb.

Define \(G_f(x) = \exists t [\text{stp}(f,x,t) \&\& \text{stp}(f,x+1,t) \&\& (\text{value}(f,x+1,t) > \text{value}(f,x,t))] \)

\(f \in \text{Incr} \) iff \(\forall x \varphi_f(x+1) > \varphi_f(x) \) iff \(\forall x G_f(x) \downarrow \) iff \(G_f \in \text{TOT} \)
8. Let \(\text{Incr} = \{ f \mid \forall x \, \varphi_f(x+1) > \varphi_f(x) \} \). Use Rice’s theorem to show \(\text{Incr} \) is not recursive.

Non-Trivial as
\[
C_0(x) = 0 \notin \text{Incr}; \quad S(x) = x+1 \in \text{Incr}
\]

Let \(f, g \) be arb. Such that \(\forall x \, \varphi_f(x) = \varphi_g(x) \)
\[
f \in \text{Incr} \iff \forall x \, \varphi_f(x+1) > \varphi_f(x) \quad \text{iff} \quad \forall x \, \varphi_g(x+1) > \varphi_g(x) \quad \text{iff} \quad g \in \text{Incr}
\]
9. Let S be a recursive (decidable set), what can we say about the complexity (recursive, re non-recursive, non-re) of T, where $T \subseteq S$?

Nothing. Just let $S = \mathbb{N}$, then T could be any subset of \mathbb{N}. There are an uncountable number of such subsets and some are clearly in each of the categories above.
Sample Question#10

10. Define the pairing function \(<x,y>\) and its two inverses \(<z>_1\) and \(<z>_2\), where if
z = \(<x,y>\), then \(x = <z>_1\) and \(y = <z>_2\).

Right out of Notes.
11. Assume $A \leq_m B$ and $B \leq_m C$.
Prove $A \leq_m C$.

Done in class
12. Let $P = \{ f \mid \exists x \ [\text{STP}(f, x, x)] \}$. Why does Rice’s theorem not tell us anything about the undecidability of P?

This is not an I/O property as we can have implementations of C_0 that are efficient and satisfy P and others that do not.