Assignment #5; Due February 26 at start of class

1. Consider the set of indices $\text{SemiConstant} = SC = \{ f \mid |\text{range}(\varphi_f)| = 1 \}$.

 a) Using STP, VALUE and a minimum number of alternating quantifiers, describe the set SemiConstant.
 $$\exists <x,t> \forall <y,s> [\text{STP}(f,x,t) \land (\text{STP}(f,y,s) \implies \text{VALUE}(f,x,t) = \text{VALUE}(f,y,s))]$$

 b) Show that $K \leq_m \text{SemiConstant}$, where $K = \{ f \mid \varphi_f(f) \downarrow \}$.
 Let f be arbitrary. Define an algorithmic mapping G from indices to indices as $G_f(x) = f(f)$. Now, the range of $G_f = \{f(f)\}$. If f is in K, then this range is a singleton value and so G_f is in SC. If f is not in K, then this range is empty and so G_f is not in SC. Thus, $K \leq_m SC$.

c) Use Rice’s Theorem to show that SemiConstant is not recursive (not decidable).
 Note that members of SemiConstant do not need to converge for all input, but they must converge on at least one input and when they do converge they always produce the same output value. Hint: There are two properties that must be demonstrated.

 First, SC is non-trivial as $Z(x) = 0$ is in SC and $Z(x) = x$ is not.

 Second, SC is an I/O Property.
 To see this, let f and g be arbitrary indices of computable functions such that
 $$\forall x \varphi_f(x) = \varphi_g(x).$$
 f is in SC iff $|\text{range}(\varphi_f)| = 1$. But g’s range is exactly that of f and so,
 $|\text{range}(\varphi_f)| = 1$ iff $|\text{range}(\varphi_g)| = 1$. But then,
 f is in SC iff g is in SC

 Since SC is not trivial and is an I/O property then it is not recursive by Rice’s Theorem.