Let set A be non-empty recursive, B be non-recursive and C be non-re. Using the terminology (REC) recursive, (RE) non-recursive recursively enumerable, (NR) non-re, categorize each set below, saying whether or not the set can be of the given category and justifying each answer. You may assume, for any set S, the existence of comparably hard sets $S_E = \{2x|x \in S\}$ and $S_D = \{2x+1|x \in S\}$. The following is a sample of the kind of answer I require:

Sample.) $A \cap C = \{ x \mid x \in A \text{ and } x \in C \}$

REC: Yes. If $A = \{0\}$ then $A \cap C = \emptyset$ or $\{0\}$, each of which is in REC.

RE: Yes. Let $A = \mathcal{N}_E = \{ 2x \mid x \in \mathcal{N} \}$; let $C = \text{TOT}_D \cup \text{HALT}_E$ then $A \cap C = \text{HALT}_E$ which is in RE.

NR: Yes. If $A = \mathcal{N}$ then $A \cap C = C$, which is in NR.

a.) $A - B = \{ x \mid x \in A \text{ and } x \not\in B \}$ // Set difference

b.) $\min(A, B) = \{ \min(x, y) \mid x \in A \text{ and } y \in B \}$ // Minimum

c.) $A \oplus C = \{ x \mid x \in A \text{ or } x \in C \text{ but } x \not\in A \cap C \}$ // Set exclusive union

Be careful: Some may not be possible. If so, you must justify why this is so.

Note:
- $\text{TOT} = \{ x \mid \forall \varphi_x(y) \downarrow \}$. These are the indices of the set of algorithms.
- $\text{HALT} = \{ <x, y> \mid \varphi_x(y) \downarrow \}$. This is the set of pairs of procedures and input for which the given procedure halts.

The set S_E, for any set S, is defined as $\{2x \mid x \in S\}$
The set S_D, for any set S, is defined as $\{2x+1 \mid x \in S\}$.
The complexities of S, S_E and S_D are the same. That is, all three are either in REC, RE or NR.