Block Cipher Principles

Two types: stream, block

A stream cipher encrypts one bit or byte at a time, often times adapting the encrypting key based upon the previous bit or byte encrypted.

A block cipher breaks the plaintext into blocks of equal size and uses the same algorithm to encrypt each block.

The total number of reversible mappings between n bit blocks is 2n! This is a very, very large number!

Notice that if n is small, what we have is something similar to a substitution cipher. However, for large n, (56 for DES), frequency analysis is clearly impossible.

Feistel wanted to approximate a large substitution cipher through easier means. (The key for an arbitrary substitution cipher of 56 bits is ridiculously large. This is the block size for DES.)

Claude Shannon proposed that a good cipher system should use both diffusion and confusion. Feistel incorporated these ideas.

Ideally, the statistics of the ciphertext should be independent of the plaintext language and the key.

Diffusion: Have one plaintext character affect many ciphertext characters. Can be achieved by repeated permutations and functions

Confusion: reduce the relationship between the ciphertext and the key

Basic structure:

Plaintext is size 2w. Split into L0, R0. Pass R0 with K1 through a function and then xor it with L0 to create R1. L1 is just R0, and repeat a bunch.

Key terms: block size, key size, number of rounds, subkey generation algorithm, round function

You want: fast encryption/decryption, ease of analysis

Decryption for feistel: Use subkeys in reverse order.

**NEED TO PROVE BACKWARDS IS SAME AS FORWARDS w/REVERSED KEY SCHEUDLE

IBM Feistel created Lucifer done by 1971. sold to Lloyd's of London for a cash-dispensing system. 64 bits using key size = 128.

Then IBM looked for commercial product in one chip. Work with Walter Tuchman and Carl Meyer + NSA. More resistant to cryptanalysis but key down to 56 bits, adopted in 1977 as Data Encryption Standard.

Critics: Too short key to withstand brute force attack.

S-box: classified internal structure

IBM people said that s-boxes were changed to be strengthened.

DES:

Key = 56 bits

Block = 64 bits

Data Encryption Standard(DES)

Here is the basic algorithm used for DES:

To encrypt a plaintext x of 64 bits and a secret key K of 56 bits do the following:

1) Compute x0 = IP(x), a fixed permutation of the bits in x. IP is specified in the text.

2) Let xi = LiRi, for 0 ( i ( 16, where Li is the 32 leftmost bits of xi and Ri is the 32 rightmost bits of xi. Make the following sequence of computations:

     for (i=1 to 16) {

         Li = Ri-1
         Ri = Li-1 ( f(Ri-1, Ki)

     }

Essentially, each loop iteration is known as a Feistel round. (Feistel is the creator of DES.) DES comprises 16 of these rounds. Each round encrypts ½ of the bits from the pervious round. The function f and the key for the ith round Ki will be discussed in detail later in these notes.

3) y = IP-1(R16L16), this means applying the inverse permutation applied in step 1 to the string R16L16. (Notice the “reverse” order of the two blocks L16 and R16.)

In essence, you would repeat this process for every block of 64 bits that needs to be encrypted.

Now, we need to mention the details of step 2. First the function f:

The first input to f, Ri-1 is 32 bits, while the second input Ki is 48 bits from the 56 bits of the key K.

1) Expand the 32 bits of Ri-1 to 48 bits using the matrix E, which is also shown in the book. This matrix delineates an ordering of the bits of Ri-1 where 16 of the bits are repeated. Let this computed value be E(Ri-1).

2) Compute E(Ri-1) ( Ki. Let this computation produce B = B1B2...B8, where each Bj, 1 ( j ( 8 is 6 bits of B.

3) This is probably the most strange part of the algorithm. In this step the 48 bits of B need to be reduced to 32 bits. This is done via 8 S-boxes, S1, S2, ... S8. One way to think about these S-boxes is the following. Each is a lookup table with 64 rows, 1 for each possible set of 6 binary bits. The right-hand side of the table has entries from 0 to 15, which correspond to 4 binary bits. In essence an S-box specifies a function from 6 binary bits to 4 binary bits. Compute Cj = Sj(Bj) for , 1 ( j ( 8. Let C = C1C2...C8.

4) f(Ri-1, Ki) = P(C), where P is a fixed permutation of the bits in C. (P is included in the text.)

How to use the S-boxes in the text

Let the 6 input bits be b1b2b3b4b5b6. Let R = b1b6, a binary value that ranges from 0 to 3, and C = b2b3b4b5, a binary value ranging from 0 to 15. R will tell you the row to look on in the S-box. (Top row is 0, bottom is 3.) S will tell you the column to look on in the S-box. Each value in an S-box is from 0 to 15. This corresponds to 4 binary bits, the output.

How to determine the Key schedule K1...K16 from the key K

The total key including parity bits is 64 bits. The parity bits are bits 8, 16, 24, ... 64. The other 56 bits are the key K. Here is how you compute each Ki :

1) Compute PC-1(K) = C0D0, where C0 is the leftmost 28 bits of PC-1(K), and D0 is the rightmost 28 bits of PC-1(K). PC-1 is a fixed permutation, also stated in the text.

2) Here is the computation of the key schedule:

    for i=1 to 16 {

        Ci = LSi(Ci-1)

        Di = LSi(Di-1)

        Ki = PC-2(CiDi)

    }

    PC-2 is another fixed permutation. LSi is a left-shift of either 1 bit or 2 bits. If i=1,2,9, 

    or 16, then LSi is a left-shift of 1 bit. Otherwise it is a two bit left shift.

Characteristics of the S-boxes, as pointed out by the NSA

1) Each row is a permutation of the values 0, 1, ..., 15.

2) No S-box is a linear or affine function of its inputs.

3) Changing one input bit to an S-box causes at least 2 output bit changes.

4) For all x, S(x) and S(x ( 001100) differ in at least 2 digits.

5) S(x) ( S(x ( 11ef00), for all binary bits e and f.

6) If you fix a single input bit and observe a particular output bit, that output bit is relatively random. (The 32 possible inputs (when fixing a bit) lead to at worst a 13-19 split of 0s and 1s in any particular output bit.)

Four modes of DES

1) Electronic Code Book(ECB): This is normal 64-bit block DES as described above.

2) Cipher Block Chaining(CBC) mode:

     y0 = IV (initialization vector)

     i = 1

     while (!done)  {

        yi = eK(yi-1 ( xi)

        i++

     }

     xi and yi stand for the ith 64 bit block of plain and cipher text respectively.

3) Output Feedback Mode(OFB):

     This is a stream cipher.

     z0 = IV

     i = 1

     while (!done) {

         zi = eK(zi-1)

         yi = xi ( zi 

         i++

     }

4) Cipher Feedback Mode(CFB):
     This is a stream cipher.

     y0 = IV

     i = 1

     while (!done) {

         zi = eK(yi-1)

         yi = xi ( zi 

         i++

     }

5) Counter Mode:

    counter = IV

    while (!done) {

         zi = eK(counter)

         yi = xi ( zi 

         i++, counter++

    }

