COT5405 - Homework 2

Out date: 09/22/2010 (Wednesday), due date: 09/29/2010 (Wednesday)

15 points each problem.

You need to turn in the solutions for all four problems. But we will select two problems and only grade these two.

[image: image1.jpg]

(i.a) {CDFJ}, {GHI}, {A},{B},{E}

(i.b) Source SCCs: {B},{E}
 Sink SCCs: {CDFJ}

(i.c) Metagraph:

[image: image8.png]5.1. Consider the following graph.

s 85"

(a) What is the cost of its minimum spanning tree?

(b) How many minimum spanning trees does it have?

(c) Suppose Kruskal’s algorithm is run on this graph. In what order are the
edges added to the MST? For each edge in this sequence, give a cut that
justifies its addition.

(i.d) 2

(ii.a) {DFGHI}, {C}, {ABE}

(ii.b) Source SCCs: {ABE}

 Sink SCCs: {DFGHI}

(ii.c) Metagraph:

[image: image2.png]3.4. Run the strongly connected components algorithm on the following directed
graphs G. When doing DFS on GX: whenever there is a choice of vertices to
explore, always pick the one that is alphabetically first.

(i)

@‘@0

(a) In what order are the strongly connected components (SCCs) found?
(b) Which are source SCCs and which are sink SCCs?
(c) Draw the “metagraph” (each meta-node is an SCC of G).

In each case answer the following questions.

(d) What is the minimum number of edges you must add to this graph to
make it strongly connected?

(ii.d) 1

[image: image3.png]4.1. Suppose Dijkstra’s algorithm is run on the following graph, starting at node A.

&)

(a) Draw a table showing the intermediate distance values of all the nodes at
each iteration of the algorithm.

(b) Show the final shortest-path tree.

(a)

	Node
	Iteration

	
	0
	1
	2
	3
	4
	5
	6
	7

	A
	0
	0
	0
	0
	0
	0
	0
	0

	B
	ꝏ
	1
	1
	1
	1
	1
	1
	1

	C
	ꝏ
	ꝏ
	3
	3
	3
	3
	3
	3

	D
	ꝏ
	ꝏ
	ꝏ
	4
	4
	4
	4
	4

	E
	ꝏ
	4
	4
	4
	4
	4
	4
	4

	F
	ꝏ
	8
	7
	7
	7
	7
	6
	6

	G
	ꝏ
	ꝏ
	7
	5
	5
	5
	5
	5

	H
	ꝏ
	ꝏ
	ꝏ
	ꝏ
	8
	8
	6
	6

(b)

[image: image4.png]4.2. Just like the previous problem, but this time with the Bellman-Ford algorithm.

[image: image5.png]BB A
©G)

N

D.F. \
)

Start at node S. Update the edges in the following order: S->A, S->C, S->E, S->F and the remaining edges in lexicographic order. For example, E->F comes before E->H and C->F comes before F->D.

(a)
Both the following tables are correct. The big table below is obtained from the official solution manual. It seems the authors showed the results of a new iteration whenever there are updates overwriting previous shortest distances.
	Node
	Iteration

	
	0
	1
	2
	3
	4
	5
	6

	S
	0
	0
	0
	0
	0
	0
	0

	A
	ꝏ
	7
	7
	7
	7
	7
	7

	B
	ꝏ
	ꝏ
	11
	11
	11
	11
	11

	C
	ꝏ
	6
	5
	5
	5
	5
	5

	D
	ꝏ
	ꝏ
	8
	7
	7
	7
	7

	E
	ꝏ
	6
	6
	6
	6
	6
	6

	F
	ꝏ
	5
	4
	4
	4
	4
	4

	G
	ꝏ
	ꝏ
	ꝏ
	9
	8
	8
	8

	H
	ꝏ
	ꝏ
	9
	7
	7
	7
	7

	I
	ꝏ
	ꝏ
	ꝏ
	ꝏ
	8
	7
	7

This is what some of you may be getting, where each iteration corresponds to an iteration of the outer for loop.
	Node
	Iteration

	
	0
	1
	2
	
	
	
	

	S
	0
	0
	0
	
	
	
	

	A
	ꝏ
	7
	7
	
	
	
	

	B
	ꝏ
	11
	11
	
	
	
	

	C
	ꝏ
	5
	5
	
	
	
	

	D
	ꝏ
	7
	7
	
	
	
	

	E
	ꝏ
	6
	6
	
	
	
	

	F
	ꝏ
	4
	4
	
	
	
	

	G
	ꝏ
	8
	8
	
	
	
	

	H
	ꝏ
	7
	7
	
	
	
	

	I
	ꝏ
	8
	7
	
	
	
	

[image: image6.png]

(b)
[image: image7.png]

(a) 19

(b) 2

(c)

	No
	Edge included
	Cut

	1
	AE
	ABCD
	EFGH

	2
	EF
	ABCDE
	FGH

	3
	BE
	AEFGH
	BCD

	4
	FG
	ABEF
	CDGH

	5
	GH
	ABEFG
	CDH

	6
	CG
	ABEFGH
	CD

	7
	GD
	ABCEFGH
	D

