COT 5405 Homework: Due Monday in class (9/7/09).

The bounds of the summations are L = 0 and H = n, where n is any fixed, but arbitrary, positive integer.

1) Prove by induction that, for n ≥ 0, (i = n(n+1)/2.

Proof: By definition of the summation symbol, when n = 0, (i = (i = 0. Also, when n = 0, n(n+1)/2 = 0(0+1)/2 = 0. Therefore, the two quantities are equal when n = 0, and a base case is established to proceed by induction on n. 

     Assume n is an arbitrary integer greater than 0 (this MUST be greater than that needed for the base case) and, for any nonnegative integer m < n, that (i = m(m+1)/2, i.e., the Induction Hypothesis. 

     Now, from the definition of the summation symbol, (i =  (i + n. From the Induction Hyposthesis, since 0 ≤ n-1 < n, (i = (n-1)(n)/2 = n(n-1)/2. Thus, we have that  (i = n(n-1)/2 + n = n(n+1)/2 and establishes the result for all nonnegative integers n.

2) Prove by induction that, for n ≥ 0, (2i = 2n+1– 1.

Proof: We proceed by way of induction on n. When n = 0, ( 2i =  (2i = 20 = 1. Also, when n = 0, 2n+1 - 1 = 2(0+1) - 1 = 2 - 1 = 1. Therefore, the two quantities are equal when n = 0, establishing a base case to proceed by induction on n.

     Assume n is an arbitrary integer  greater than 0 and, for any integer m,  0 ≤ m < n, that (2i = 2m+1 - 1, i.e., the Induction Hypothesis. 

    Now, from the definition of the summation symbol, (2i =  (2i  + 2n. From the Induction Hyposthesis, since 0 ≤ n-1 < n, (2i = 2n - 1. Thus, we have that  (2i = 2n - 1 + 2n = 2n+1 - 1, and establishes the result for all nonnegative integers n.

Recurrences: Find their "closed forms."
(I wouldn't really expect them to go through all this detail on  Prob. 3 and 4, I've just put it here to show them complete exhaustive proof).

3) t(1) = 1 and t(n) = 2t(n–1) + n–1 when n ≥ 2.

"Telescope" to try to see a "pattern." If n > 2, then n–1 ≥ 2, so


t(n–1) = 2t(n–2) + n–2

t(n–2) = 2t(n–3) + n–3

t(n–3) = 2t(n–4) + n–4

.

.

t(n–k) = 2t(n–k) + n–k,

or


t(n–1)   = 2t(n–2) +       n–2

2t(n–2) = 2*2t(n–3) + 2(n–3)

22t(n–3) = 222t(n–4) + 22(n–4)

.

.

2k–1t(n–k+1) = 2k–12t(n–k) + 2k–1(n–k)

Now, add all of these equations  together.

     t(n) = 2kt(n–k)+[20(n–2)+21(n–3)+22(n–4) +…+2k–1(n–k)]

= 2kt(n–k)+ (2i(n–i) for 0 ≤ i ≤ k–1

  Choose k so that t(n–k) = t(1). That is, so that n–k = 1, or k = n–1. Then,

t(n) = 2kt(1)+ (2i(n–i), for 0 ≤ i ≤ n–2

t(n) = 2n–1+(2in–(2ii, for 0 ≤ i ≤ n–2

t(n) = 2n–1+n(2i–(2ii, for 0 ≤ i ≤ n–2

t(n) = 2n–1+n(2n–1–1)–(2ii, for 0 ≤ i ≤ n–2

t(n) = (n+1)2n–1–n–(2ii, for 0 ≤ i ≤ n–2

Next, solve (2ii, for 0 ≤ i ≤ n–2

t(n) = 3*2n–1-n-1

{Now, you must finish the proof by using induction.}

4) t(1) = 1 and for n ≥ 2, t(n) = 2t(n–1)+1.

Telescoping needs a bit of work to make it do what we want:


t(n) = 2t(n–1)+1


t(n–1) = 2t(n–2)+1

What we want to happen is that the t(n–1) term be eliminated when we add the two equations. This doesn't happen here, but we can make it happen by first multiplying the second equation by 2. Then we get:


t(n) = 2t(n–1)+1


2t(n–1) = 22t(n–2)+2

The next equation is t(n–2) = t(n–3)+1. We need to multiply this by 22. Then we have:


t(n) = 2t(n–1)+1


2t(n–1) = 22t(n–2)+2

22t(n–2) = 23t(n–3)+22
Continuing we finally have:


t(n) = 2t(n–1)+1


2t(n–1) = 22t(n–2)+2

22t(n–2) = 23t(n–3)+22

.


.


.

2kt(n–k) = 2k+1t(n–k–1)+2k
Adding these and all the intermediate terms cancel:

t(n) = 2k+1t(n–k–1)+2k+2k–1+…+22+21+20.

Thus, t(n) = 2k+1t(n–k–1)+(2k+1–1)

Now, choose k so that t(n–k–1) is known. That is, we want n–k–1 = 1, or k = n–2. Then,

t(n) = 2n–1t(1)+2n–1–1 = 2n–1+2n–1–1 = 2n–1

Ceiling and Floor function.

5) Prove for any integers n > 0 that (n/3( = ((n–2)/3(. 

m = (n/3(
m ≤ n/3 < m+1

3m ≤ n < 3m+3

3m–2 ≤ n–2 <  3m+1 

3m–3 < n–2 ≤ 3m

m–1 < (n–2)/3 ≤ m

((n–2)/3( = m
