
Term Rewriting Systems

Ferucio Laurenţiu Ţiplea

Visiting Professor

School of Computer Science

University of Central Florida

E-mail: tiplea@cs.ucf.edu

November 18, 2004



Term Rewriting Systems

Contents:

• Motivations

• Terms and term rewriting systems

• Canonical form

• Proving termination

• Proving confluence

UCF-SCS/Term Rewriting Systems/Nov 18,2004/F.L. Tiplea

1



Term Rewriting Systems

Bibliography:

1. Term Rewriting Systems, Cambridge Tracts in Theoret-

ical Computer Science 55, Cambridge University Press,

2003 (884 pages)

2. F. Baader, T. Nipkow. Term Rewriting and All That,

Cambridge University Press, 1998 (301 pages)

UCF-SCS/Term Rewriting Systems/Nov 18,2004/F.L. Tiplea

2



Motivations

Syntactically, rewrite rules are a special kind of equations

that can be applied in one direction only.

A term rewriting system (trs, for short) is a set of rewrite

rules. They have many applications to:

• theorem proving

• algebraic specification (of data types, programs etc.)

• computer algebra

• λ-calculus

• implementation of declarative languages

• operational semantics of programming languages

UCF-SCS/Term Rewriting Systems/Nov 18,2004/F.L. Tiplea

3



Motivations

Example: Ackerman-Peter function f : N × N→N

(R1) f(0, y) = y + 1

(R2) f(x + 1,0) = f(x,1)

(R3) f(x + 1, y + 1) = f(x, f(x + 1, y))

for all x, y ∈ N.

A few values of this function:

• f(0, y) = y + 1

• f(1, y) = y + 2

• f(2, y) = 2y + 3

for all y ∈ N.

UCF-SCS/Term Rewriting Systems/Nov 18,2004/F.L. Tiplea

4



Motivations

Example of computation:

f(2,1)
(R3), x→1, y→0

= f(1, f(2,0))
f(1, f(2,0))

(R2), x→1
= f(1, f(1,1))

f(1, f(1,1))
(R3), x→0, y→0

= f(1, f(0, f(1,0)))
f(1, f(0, f(1,0)))

(R2), x→0
= f(1, f(0, f(0,1)))

f(1, f(0, f(0,1)))
(R1), y→1

= f(1, f(0,2))
f(1, f(0,2))

(R1), y→2
= f(1,3)
· · ·

UCF-SCS/Term Rewriting Systems/Nov 18,2004/F.L. Tiplea

5



Motivations

Conclusions:

• each element of this computation is a term

• each computation step is based on applying one of the

equations (R1), (R2) or (R3)

• each equation is used in one direction only (“from left to

right”)

• each equation is based on a substitution (“x→1, y→0”)

which matches the left hand side of the equation to some

subterm of the current term

• the immediate successor of a term t is obtained by re-

placing a subterm of t by an instance of the right hand

side of some equation

UCF-SCS/Term Rewriting Systems/Nov 18,2004/F.L. Tiplea

6



Terms and Term Rewriting Systems

Let F be a set of function symbols each of which having

associated an arity, and let X be a set of variables. Assume

that F and X are disjoint sets. The set of terms over F and

X is defined inductively as follows:

• each function symbol of arity 0 is a term;

• each variable is a term;

• if t1, . . . , tn are terms and f is a function symbol of arity

n ≥ 1, then f(t1, . . . , tn) is a term.

Function symbols of arity 0 are usually called constant sym-

bols.

Denote by T (F , X) the set of all terms over F and X.

UCF-SCS/Term Rewriting Systems/Nov 18,2004/F.L. Tiplea

7



Terms and Term Rewriting Systems

Examples of terms:

• x is a term, for any variable x

• a is a term, for any constant symbol a

• f(x, x) is a term, where f is a function symbol of arity 2

• f(f(x, x), a) is a term

• f(g(a), f(f(x, x), a)) is a term, where g is a function sym-

bol of arity 1

• all expressions in the computation

f(2,1) = · · · = f(1,3)

of the Ackerman-Peter function are terms

UCF-SCS/Term Rewriting Systems/Nov 18,2004/F.L. Tiplea

8



Terms and Term Rewriting Systems

Variables in a term t

Given a term t, we denote by V ar(t) the set of all variables

occurring in t. If V ar(t) = ∅ then t is called a ground term.

Example: if t = f(x, g(y, x), z), then V ar(t) = {x, y, z}

Subterms

Given a term t, we denote by Sub(t) the set of all subterms

of t.

Example: if t = f(x, g(y, x), z), then Sub(t) = {t, x, y, z, g(y, z)}

UCF-SCS/Term Rewriting Systems/Nov 18,2004/F.L. Tiplea

9



Terms and Term Rewriting Systems

Rewrite rule: a pair of terms r = (t1, t2), also written as

r : t1→t2, such that

• t1 is not a variable

• V ar(t2) ⊆ V ar(t1)

t1 (t2, resp.) is usually called the left hand side (right hand

side, resp.) of r and it is denoted by lhs(r) (rhs(r), resp.).

Example:

• f(x + 1,0)→f(x,1) is a rewrite rule

• neither x→f(a, a) nor f(x, y)→f(0, z) is a rewrite rule

A non-empty set of rewrite rules is called a term rewriting

system.

UCF-SCS/Term Rewriting Systems/Nov 18,2004/F.L. Tiplea

10



Terms and Term Rewriting Systems

Substitution: function from X into T (F , X)

Example: σ : X→T (F , X) given by σ(x) = f(x, x), σ(y) = a

and σ(z) = z, for all z 6= x and z 6= y.

Substitutions can be applied to terms. They substitute all

variables but leave unchanged all function symbols.

Formally, each substitution σ : X→T (F , X) is extended to

a homomorphism from T (F , X) to T (F , X), which is also

denoted by σ.

UCF-SCS/Term Rewriting Systems/Nov 18,2004/F.L. Tiplea

11



Terms and Term Rewriting Systems

Example:

• σ(f(x, x)) = f(σ(x), σ(x)) = f(f(x, x), f(x, x))

• σ(f(x, g(y, x), z)) = f(σ(x), g(σ(y), σ(x)), σ(z))
= f(f(x, x), g(a, f(x, x)), z)

The domain of a substitution σ is

Dom(σ) = {x ∈ X|σ(x) 6= x}

If Dom(σ) is finite, Dom(σ) = {x1, . . . , xn}, we may write σ
as a set

σ = {x1→σ(x1), . . . , xn→σ(xn)}

In such a case, σ(t) is usually writen as

t[x1/σ(x1), . . . , xn/σ(xn)]

UCF-SCS/Term Rewriting Systems/Nov 18,2004/F.L. Tiplea

12



Terms and Term Rewriting Systems

Unification

A substitution σ is called a unifier of two terms t1 and t2 if

σ(t1) = σ(t2). Moreover, t1 and t2 are called unifiable.

Example:

• let σ : X→T (F , X) given by σ(x) = a, σ(y) = a and

σ(z) = z, for all z 6= x and z 6= y

• let t1 = f(x, x) and t2 = f(a, a)

• σ is a unifier of t1 and t2

• let t3 = f(a, b), where b 6= a

• σ is not a unifier of t1 and t3

UCF-SCS/Term Rewriting Systems/Nov 18,2004/F.L. Tiplea

13



Terms and Term Rewriting Systems

Rewriting

Let R be a trs. Define a binary relation on terms, ⇒R, as

follows:

t1⇒R t2

iff

• t1 = u t0 v, where the decomposition ut0v means that t0
is a subterm of t1

• there exist a rule r : t→t′ ∈ R and a unifier σ of t0 and t

• t2 = u σ(t′) v

+
⇒R is the transitive closure, and

∗
⇒R is the reflexive and

transitive closure, of ⇒R

UCF-SCS/Term Rewriting Systems/Nov 18,2004/F.L. Tiplea

14



Terms and Term Rewriting Systems

Example: Let R = {r1 : f(0, y)→y+1, r2 : f(x+1,0)→f(x,1),

r3 : f(x + 1, y + 1)→f(x, f(x + 1, y))}. Then,

• f(2,1)⇒R f(1, f(2,0))

• f(1, f(2,0))⇒R f(1, f(1,1))

• f(1, f(1,1))⇒R f(1, f(0, f(1,0)))

• f(1, f(0, f(1,0)))⇒R f(1, f(0,2))

Therefore,

f(2,1)
∗
⇒R f(1, f(0,2))

UCF-SCS/Term Rewriting Systems/Nov 18,2004/F.L. Tiplea

15



Canonical Form

Let R be a trs.

• R is called terminating or noetherian if there is no infinite

sequence of terms

t1, t2, . . .

such that ti ⇒R ti+1, for all i ≥ 1;

• R is called confluent or Church-Rosser if

(∀t, t1, t2)(t
∗
⇒R t1 ∧ t

∗
⇒R t2 ⇒ (∃t′)(t1

∗
⇒R t′ ∧ t2

∗
⇒R t′))

• R is called canonical or complete if there it is terminating

and confluent

UCF-SCS/Term Rewriting Systems/Nov 18,2004/F.L. Tiplea

16



Canonical Form

Exercise: Let R = {r1 : f(0, y)→y+1, r2 : f(x+1,0)→f(x,1),

r3 : f(x + 1, y + 1)→f(x, f(x + 1, y))}.

Prove that R is a canonical trs

Hint: By mathematical induction on x and y

UCF-SCS/Term Rewriting Systems/Nov 18,2004/F.L. Tiplea

17



Canonical Form

Let R be a trs and t a term. Then,

• t is called irreducible or a normal or reduced form under

R if there is not t′ such that t⇒R t′

• t′ is called a normal or reduced form of t under R if t
∗
⇒R t′

and t′ is a normal form

Example: Let R = {r1 : f(0, y)→y+1, r2 : f(x+1,0)→f(x,1),

r3 : f(x + 1, y + 1)→f(x, f(x + 1, y))}. Then,

• 2 is a normal form

• f(1,0)⇒R f(0,1)⇒R 2 and, therefore, 2 is a normal form

of f(1,0)

UCF-SCS/Term Rewriting Systems/Nov 18,2004/F.L. Tiplea

18



Canonical Form

Theorem 1 If R is a canonical term rewriting system, then

any term t has a unique normal form.

Proof (Sketch) Each term has at least a normal form by

the termination property.

If t is a term and t1 and t2 are normal forms of t, then t1 = t2
by confluence. 2

The unique normal form of a term t under a canonical trs R

is called the canonical form of t under R, and it is denoted

by ‖t‖R.

UCF-SCS/Term Rewriting Systems/Nov 18,2004/F.L. Tiplea

19



Canonical Form

Why canonical forms are important?

Theorem 2 If R is a canonical term rewriting system, then

R |= t1 = t2 ⇔ ‖t1‖R = ‖t2‖R,

for any terms t1 and t2 (R |= t1 = t2 means that the equation

t1 = t2 can be deduced from the equations in R).

The theorem above provides us with a very natural procedure

for deciding the equality of two terms: we can decide whether

or not t1 and t2 can be proved equal using the equations in

R by checking whether their canonical forms are identical.

UCF-SCS/Term Rewriting Systems/Nov 18,2004/F.L. Tiplea

20



Proving Termination

Theorem 3 The following problem is undecidable:

Instance: finite term rewriting system R and a term t

Question: are all computations starting with t terminating?

Proof (Sketch)

Reduce the halting problem for Turing machines to this prob-

lem:

Instance: Turing machine M and input w

Question: does M halt on w?

(associate to M a trs RM and to each configuration C a term

tC such that C ⊢M C′ ⇔ tC ⇒RM
tC′ ) 2

UCF-SCS/Term Rewriting Systems/Nov 18,2004/F.L. Tiplea

21



Proving Termination

Theorem 4 The following problem is undecidable:

Instance: finite term rewriting system R

Question: is R terminating?

Proof (Sketch)

Reduce the uniform halting problem for Turing machines to

this problem:

Instance: Turing machine M

Question: does M halt on all inputs?

2

UCF-SCS/Term Rewriting Systems/Nov 18,2004/F.L. Tiplea

22



Proving Termination

A trs R is called right-ground if each rewrite rule t1→t2 ∈ R

satisfies V ar(t2) = ∅.

Theorem 5 Let R be a right-ground trs. Then, R does not

terminate if and only if there exists a rule t1→t2 ∈ R such

that t2
+
⇒R ut2v (i.e., t2 is a subterm of ut2v).

Corollary 1 Termination for finite right-ground trs is decid-

able.

UCF-SCS/Term Rewriting Systems/Nov 18,2004/F.L. Tiplea

23



Proving Termination

Decision procedure for the termination of right-ground trs

1. consider all right hand sides of the rewrite rules in R, and

simultaneously generate all reduction sequences starting

with these terms;

2. if R does not terminate then there exists a right hand side

t2 which generate ut2v for some u and v, where t2 is a

subterm in ut2v. Moreover, ut2v is obtained after finitely

many steps;

3. if R terminates then all computation trees are finite and

they can be obtained after finitely many steps.

UCF-SCS/Term Rewriting Systems/Nov 18,2004/F.L. Tiplea

24



Proving Termination

Therefore, after finitely many steps

• either we get a term ut2v for some u and v, where t2 is a

subterm in ut2v (and in this case R does not terminate),

• or all computation trees associated to the right hand sides

of the rewrite rules in R are finite (and in this case R is

terminating).

Example: Let R = {f(x, x)→g(a), g(x)→f(g(a), b)}. Then,

g(a)⇒R f(g(a), b),

which shows that R is not terminating.

UCF-SCS/Term Rewriting Systems/Nov 18,2004/F.L. Tiplea

25



Proving Termination

Techniques for proving termination (see [1] for details):

1. semantic methods - based on suitable interpretations

(a) well-founded monotone algebras

(b) polynomial interpretations

2. syntactic methods - based upon orders on terms

(a) recursive path order

(b) Knuth-Bendix order

3. transformational methods - based on applying transfor-

mations to term rewriting systems

(a) dummy elimination

(b) semantic labeling

(c) abstract commutations

UCF-SCS/Term Rewriting Systems/Nov 18,2004/F.L. Tiplea

26



Proving Confluence

Theorem 6 The following problem is undecidable:

Instance: finite term rewriting system R

Question: is R confluent?

Proof (Sketch)

Reduce the word problem to this problem:

Instance: set E of equations

Question: does t1 = t2 can be deduced from E, ∀t1, t2?

(associate to E a trs RE such that the word problem for E

is decidable iff R is confluent) 2

UCF-SCS/Term Rewriting Systems/Nov 18,2004/F.L. Tiplea

27



Proving Confluence

A trs R is locally confluent if

(∀t, t1, t2)(t⇒R t1 ∧ t⇒R t2 ⇒ (∃t′)(t1
∗
⇒R t′ ∧ t2

∗
⇒R t′))

Lemma 1 (Newman Lemma)

Let R be a terminating trs. Then, R is confluent iff it is

locally confluent.

Theorem 7 Confluence of finite and terminating trs is de-

cidable.

UCF-SCS/Term Rewriting Systems/Nov 18,2004/F.L. Tiplea

28


