Term Rewriting Systems

Ferucio Laurentiu Tiplea
Visiting Professor
School of Computer Science
University of Central Florida
E-mail: tiplea@cs.ucf.edu

November 18, 2004

r
\ r
3/ Term Rewriting Systems

Contents:
e Motivations
e [Terms and term rewriting systems
e Canonical form
e Proving termination

e Proving confluence

r
b)
SV Term Rewriting Systems

Bibliography:

1. Term Rewriting Systems, Cambridge Tracts in Theoret-
ical Computer Science 55, Cambridge University Press,
2003 (884 pages)

2. F. Baader, T. Nipkow. Term Rewriting and All That,
Cambridge University Press, 1998 (301 pages)

r
l\ -
S/ Motivations

Syntactically, rewrite rules are a special kind of equations
that can be applied in one direction only.

A term rewriting system (trs, for short) is a set of rewrite
rules. They have many applications to:

e theorem proving

e algebraic specification (of data types, programs etc.)
e computer algebra

e)\-calculus

e implementation of declarative languages

e Operational semantics of programming languages

r
l\ -
S/ Motivations

Example: Ackerman-Peter function f: N x N—N
(R1) f(0,y) =y+1
(R2) f(z+1,0) = f(z,1)
(R3) fz+1,y+1) = f(z, f(z+1,9))

for all z,y € N.

A few values of this function:
e f(O,y) =y—+1
e f(Ly)=y+2
e f(2,y) =2y+3

for all y € N.

s
<

Motivations

Example of computation:

f(2,1)

(R3), x;l, y—0
(RQ),:a:—>1
(R3), x;O, y—0
(R2), -0
(R1), y—1

(Rl),_y—>2

f(1,5(2,0))
f(1,7(2,0))

F(1,7(1,1))
f(1,f(1,1))

f(1,7(0,f(1,0)))
f(1, 50, f(1,0)))

F(1,5(0,5(0,1)))
f(1,7(0,/(0,1)))

f(1,5(0,2))
f(1,7(0,2))

f(1,3)

r
i &
S/ Motivations

Conclusions:
e cach element of this computation is a term

e cach computation step is based on applying one of the
equations (R1), (R2) or (R3)

e cach equation is used in one direction only (“from left to
right')

e cach equation is based on a substitution (“z—1, y—0")
which matches the left hand side of the equation to some
subterm of the current term

e the immediate successor of a term ¢ is obtained by re-
placing a subterm of ¢t by an instance of the right hand
side of some equation

r
W G5
S/ Terms and Term Rewriting Systems

Let F be a set of function symbols each of which having
associated an arity, and let X be a set of variables. Assume
that F and X are disjoint sets. The set of terms over F and

X is defined inductively as follows:

e cach function symbol of arity O is a term;

e cach variable is a term;

o if t1,...,ty are terms and f is a function symbol of arity
n > 1, then f(tq1,...,tn) is a term.

Function symbols of arity O are usually called constant sym-
bols.

Denote by T'(F, X) the set of all terms over F and X.

o

3/ Terms and Term Rewriting Systems

Examples of terms:
e x iS a term, for any variable x
e o iS a term, for any constant symbol a
e f(x,x) is a term, where f is a function symbol of arity 2
e f(f(x,z),a) is a term

o f(g(a), f(f(x,x),a)) is a term, where g is a function sym-
bol of arity 1

e all expressions in the computation

of the Ackerman-Peter function are terms

s,

S/ Terms and Term Rewriting Systems

Variables in a term ¢

Given a term t, we denote by Var(t) the set of all variables
occurring in t. If Var(t) = 0 then t is called a ground term.

Example: if t = f(x,9(y,x),z), then Var(t) = {z,y, z}

Subterms

Given a term ¢, we denote by Sub(t) the set of all subterms
of t.

Example: ift = f(z,g(y,x), z), then Sub(t) = {t,z,y,2,9(y, 2)}

o

3/ Terms and Term Rewriting Systems

Rewrite rule: a pair of terms r = (¢1,t>), also written as
r . t1—to, such that

e t1 is not a variable
e Var(to) C Var(t1)

t1 (to, resp.) is usually called the left hand side (right hand
side, resp.) of r and it is denoted by lhs(r) (rhs(r), resp.).

Example:
o f(x+1,0)—f(x,1) is a rewrite rule

e neither x—f(a,a) nor f(x,y)—f(0,z) is a rewrite rule

A non-empty set of rewrite rules is called a term rewriting
system.

10

r
W &=
= Terms and Term Rewriting Systems

Substitution: function from X into T(F, X)

Example: ¢ : X—T(F,X) given by o(x) = f(z,2), o(y) = a
and o(z) =z, for all z %=z and z # y.

Substitutions can be applied to terms. They substitute all
variables but leave unchanged all function symbols.

Formally, each substitution o : X—T(F,X) is extended to
a homomorphism from T(F,X) to T(F,X), which is also
denoted by o.

11

r

l“ -
S/ Terms and Term Rewriting Systems
Example:

e o(f(z,z)) = f(o(x),0(x)) = f(f(z,z), f(z,2))

e o(f(z,9(y,2),2)) = fo(x),9(0(y),0(x)),0(2))
= f(f(z,2),9(a, f(z,2)),2)

The domain of a substitution o is

Dom(o) = {x € Xl|o(x) # x}

If Dom(o) is finite, Dom(c) = {x1,...,zn}, We may write o
as a set

o= {x1—0(x1),...,en—0(xn)}

In such a case, o(t) is usually writen as

tlx1/o(x1),...,xn/o(xn)]

12

k(=
=Y

Terms and Term Rewriting Systems

Unification

A substitution o is called a unifier of two terms t1 and to if

o(t1) = o(tr). Moreover, t1 and to are called unifiable.

Example:

let ¢ : X—>T(F,X) given by o(x) = a, o(y) = a and
o(z) =z, forall z£=x and z #y

let t1 = f(x,2) and t> = f(a,a)
o is a unifier of t1 and t»
let t3 = f(a,b), where b # a

o is not a unifier of t; and t3

13

o

3/ Terms and Term Rewriting Systems

Rewriting

Let R be a trs. Define a binary relation on terms, =p, as
follows:

t1=Rt>
ifF

e t1 = utpv, where the decomposition utgv means that g
is a subterm of t;

e there exist a rule r : t—t' € R and a unifier ¢ of tg and ¢
o to =uo(t)v

X - is the transitive closure, and =5 is the reflexive and

transitive closure, of =p

14

r
.l‘ -
S/ Terms and Term Rewriting Systems

Example: Let R = {r1: f(0,y)—y+1, ro: f(z+1,0)—f(z,1),

r3: fl@e+1,y+1)=f(z f(z+1,y))}. Then,
e f(2,1)=R f(1,f(2,0))
e f(1,(2,0)=rf(1,f(1,1))
o f(1,f(1,1))=r f(1,f(0,f(1,0)))
e f(1,7(0,7(1,0))) =g f(1,f(0,2))

Therefore,

f(2,1) =g f(1,£(0,2))

15

o

S/ Canonical Form

Let R be a trs.

e R is called terminating or noetherian if there is no infinite
sequence of terms

t1,0o, ...
such that t;=gt;41, for all ¢+ > 1;

e R is called confluent or Church-Rosser if
(Vt,t1,t0)(t =>p t1 At =>p to = (BNt Sp t'Ate = t))

e 1 is called canonical or complete if there it is terminating
and confluent

16

r
W G5
S/ Canonical Form

Exercise: Let R ={r1: f(0,y)—y+1, ro: f(z+1,0)—f(z, 1),
rz: flz+Ly+ 1)—f(z, f(x+1,y))}.

Prove that R is a canonical trs

Hint: By mathematical induction on x and y

17

s,

S/ Canonical Form

Let R be a trs and t a term. Then,

e ¢t is called irreducible or a normal or reduced form under
R if there is not ¢/ such that t=p

e t' is called a normal or reduced form of t under R ift =p t/

and t' is a normal form

Example: Let R = {r1: f(0,y)—y+1, ro: f(z+1,0)—f(x,1),
rz: fz+1Ly+ 1)—f(x, f(x+1,y))}. Then,

e 2 is a normal form

e f(1,0)=5, f(0,1)=p2 and, therefore, 2 is a normal form
of f(1,0)

18

o

3/ Canonical Form

Theorem 1 If R is a canonical term rewriting system, then
any term t has a unique normal form.

Proof (Sketch) Each term has at least a normal form by
the termination property.

If tis a term and t1 and to, are normal forms of ¢, then t1 = t-
by confluence. O

The unique normal form of a term ¢t under a canonical trs R
is called the canonical form of ¢t under R, and it is denoted

by [[t[r-

19

r
e _
SV Canonical Form

Why canonical forms are important?

Theorem 2 If R is a canonical term rewriting system, then

R=t; =ty < |tillr = llt2llr,

for any terms t1 and ¢t (R = t1 = tp means that the equation
t1 = t» can be deduced from the equations in R).

The theorem above provides us with a very natural procedure
for deciding the equality of two terms: we can decide whether
or not t1 and to can be proved equal using the equations in
R by checking whether their canonical forms are identical.

20

r
l\ ra
S/ Proving Termination

Theorem 3 The following problem is undecidable:

Instance: finite term rewriting system R and a term ¢
Question: are all computations starting with ¢t terminating?

Proof (Sketch)

Reduce the halting problem for Turing machines to this prob-
lem:

Instance: Turing machine M and input w
Question: does M halt on w?

(associate to M a trs Ry, and to each configuration C a term
tc such that Ok, C" & to=pR,, tor) O

21

.l\("'

S/ Proving Termination

Theorem 4 The following problem is undecidable:

Instance: finite term rewriting system R
Question: is R terminating?

Proof (Sketch)

Reduce the uniform halting problem for Turing machines to
this problem:

Instance: Turing machine M
Question: does M halt on all inputs?

22

o

Y/ Proving Termination

A trs R is called right-ground if each rewrite rule t1—t> € R
satisfies Var(ty) = 0.

Theorem 5 Let R be a right-ground trs. Then, R does not
terminate if and only if there exists a rule t1—to € R such

that to i>R utov (i.e., to is a subterm of utov).

Corollary 1 Termination for finite right-ground trs is decid-
able.

23

r
l\ - . .
S/ Proving Termination

Decision procedure for the termination of right-ground trs

1. consider all right hand sides of the rewrite rules in R, and

simultaneously generate all reduction sequences starting
with these terms;

2. if R does not terminate then there exists a right hand side
t> which generate utov for some uw and v, where t, is a

subterm in utov. Moreover, utov IS obtained after finitely
many steps;

3. if R terminates then all computation trees are finite and
they can be obtained after finitely many steps.

24

o

Y/ Proving Termination

T herefore, after finitely many steps

e cither we get a term utov for some uw and v, where t5 is a
subterm in utov (and in this case R does not terminate),

e Or all computation trees associated to the right hand sides
of the rewrite rules in R are finite (and in this case R is
terminating).

Example: Let R = {f(z,z)—g(a), g(z)—f(g(a),b)}. Then,

g(a) =g f(g(a),b),

which shows that R is not terminating.

25

r
W G5
S/ Proving Termination

Techniques for proving termination (see [1] for details):

1. semantic methods - based on suitable interpretations
(a) well-founded monotone algebras

(b) polynomial interpretations

2. syntactic methods - based upon orders on terms
(a) recursive path order
(b) Knuth-Bendix order
3. transformational methods - based on applying transfor-
mations to term rewriting systems
(a) dummy elimination
(b) semantic labeling

(c) abstract commutations

26

.l\("'

S/ Proving Confluence

Theorem 6 The following problem is undecidable:

Instance: finite term rewriting system R
Question: is R confluent?

Proof (Sketch)
Reduce the word problem to this problem:

Instance: set E of equations
Question: does t1 = to can be deduced from FE, Vtq,t57

(associate to F a trs Rg such that the word problem for E
is decidable iff R is confluent) O

27

o

3/ Proving Confluence

A trs R is locally confluent if
(Vt,t1,t0)(t=pt1 A t=pto = @ty St A to =>p t))

Lemma 1 (Newman Lemma)
Let R be a terminating trs. Then, R is confluent iff it is

locally confluent.

Theorem 7 Confluence of finite and terminating trs is de-
cidable.

28

