
A Factor Replacement System (FRS) is a finite set of pair of positive integers  
F = {(a1,b1), … (an,bn)}. Each pair is called a rule and may be denoted as a fraction bi/ai 
or a grammar style rule aix → bix or as a pair as shown in the definition. 
 
A configuration (ID), x, of a FRS is a positive integer. 
 
A rule bi/ai is enabled by some ID x, if x is divisible by ai. 
Computation is defined by multiplying x by the fraction bi/ai.provided the rule is enabled 
by x.  
 
We define derivation in F by x ⇒F y iff y = x × bi/ai.where x is divisible by ai. . 
 
The concept of derivation in zero or more steps, ⇒F* is then the reflexive, transitive 
closure of  ⇒F. As usual, we omit the F if it is understood by context. 
 
The derivation or word problem for F is then the problem to determine of two arbitrary 
positive integers x and y, whether or not x ⇒F* y. 
 
Ordered Factor Replacement Systems are merely FRS’s where the rules are totally 
ordered and  
x ⇒F y iff y = x × bi/ai.where x is divisible by ai and x is not divisible by any aj, j<i. 
 
The halting problem for an ordered FRS F is the problem to determine of an arbitrary 
positive integer x whether or not there is some y such that x ⇒F* y and y is terminal, 
meaning that there is no z such that y ⇒F z. This means that y enables no rules. An 
alternative version says there is no z, z≠y, such that y ⇒F z. This allows termination by 
reaching a fixed point, rather than having no applicable rule. 
 
FRS’s are not computationally complete, whereas ordered FRS’s are.  
 
The notion of computation with ordered FRS’s is typically to start with inputs as the 
exponents of successive primes, starting with 3, e.g., if we call the 0-th prime 2, the first 
3, etc, then 3x15x2 … pn

xn represents a start with input x1, x2, …, xn. When termination 
occurs, we have the answer as the exponent of p0 = 2. That is, for function f, FRS F 
computes f, if, for all x1, x2, …, xn, 
3x15x2 … pn

xn ⇒F* p0
f(x1, x2, …, xn) Z. where Z contains no factors of 2. 

Moreover, the last ID above is terminal (or a fixed point). 
 



A Factor Replacement System with Residue is a finite set of quads of positive integers  
F = {(a1,b1,c1,d1), … (an,bn,cn,dn)}. Each quad is called a rule and may be denoted as a a 
grammar style rule aix + bi → cix + di or as a quad as shown in the definition. 
 
A configuration (ID), x, of a FRS is a positive integer. 
 
A rule aix + bi is enabled by some ID w, if w = aix + bi for some positive integer x. 
 
We define derivation in F by w ⇒F y iff y = cix + di where w = aix + bi. 
 
The concept of derivation in zero or more steps, ⇒F* is then the reflexive, transitive 
closure of  ⇒F. As usual, we omit the F if it is understood by context. 
 
The derivation or word problem for F is then the problem to determine of two arbitrary 
positive integers x and y, whether or not x ⇒F* y. 
 
There is no need for a notion of ordered FRS’s with residue as the unordered variety are 
complete computational devices. 
 
The halting problem for an FRS with residue F is the problem to determine of an 
arbitrary positive integer w whether or not there is some y such that w ⇒F* y and y is 
terminal, meaning that there is no z such that y ⇒F z. This means that y enables no 
rules. An alternative version says there is no z, z≠y, such that y ⇒F z. This allows 
termination by reaching a fixed point, rather than having no applicable rule. 
 
The notion of computation with FRS’s with Residue is typically to start with inputs as the 
exponents of successive primes, starting with 3, e.g., if we call the 0-th prime 2, the first 
3, etc, then 3x15x2 … pn

xn represents a start with input x1, x2, …, xn. When termination 
occurs, we have the answer as the exponent of p0 = 2. That is, for function f, FRS F 
computes f, if, for all x1, x2, …, xn, 
3x15x2 … pn

xn ⇒F* p0
f(x1, x2, …, xn) Z. where Z contains no factors of 2. 

Moreover, the last ID above is terminal (or a fixed point). Of course, these can compute 
multiple values, so we restrict ourselves to FRS’s with residue that have no overlapping 
rules. That is, for i≠j, there is no w that enables both i and j. 
 
 



A Petri Net is a 4-tuple P = (S,T,F,W) where 
 
S is a finite, non-empty set of places or nodes; 
T is a finite, non-empty set of transitions; 
S ∩ T = ∅ 
F ⊆ S×T ∪ T×S is the flow relation, one associated with each transition; 
W: S×T ∪ T×S → ℵ is the weight function, where W(x,y) = 0 iff (x,y) ∉ F 
 
A configuration (ID), M, of a Petri Net, aka a marking, is a point in non-negative integer 
|S|-space. The i-th element of the marking vector, M(i), specifies the number of markers 
in the corresponding place. 
 
Computation is defined by the firings of transitions. 
A transition t∈T is enabled by some marking M, denoted M[t> if  
W(s,t) ≥ M(s) for all s∈S. 
 
If t∈T is enabled by M then t may fire. If it fires, then M is changed to M’, where 
M’(s) = M(s) – W(s,t) + W(t,s) for all s∈S. 
 
We denote a single step derivation by firing t as M [t> M’. 
 
We define derivation in P by M ⇒P M’ iff M [t> M’, for some t∈T. 
 
The concept of derivation in zero or more steps, ⇒P* is then the reflexive, transitive 
closure of  ⇒P. As usual, we omit the P if it is understood by context. 
 
The derivation or word problem for P is then the problem to determine of two arbitrary 
markings M and M’, whether or not M ⇒P* M’. 
 
Ordered Petri Nets are merely Petri Nets where the transitions are totally ordered and  
M [t> M’ iff t is the least numbered transition enabled by marking M. 
 
The halting problem for an ordered Petri Net P is the problem to determine of an 
arbitrary marking M whether or not there is some M’ such that M ⇒P* M’ and M’ is 
terminal, meaning that there is no M’’ such that M’ ⇒P M’’. This means that M’ enables 
no transition.  
 
For normal (unordered transitions) Petri Nets, we are often interested in knowing if any 
firing sequence will lead to a deadlock, defined as a terminal marking. It is important to 
see that this is a different problem than halting since there can be many marking 
sequences in a normal Petri Net, but only one such sequence in an ordered Petri Net. 
 
Petri Nets are not computationally complete, whereas ordered Petri Nets are.  
 
The notion of computation with ordered Petri Nets is typically to start with inputs, x1, x2, 
…, xn, as the contents of successive nodes, starting with node 1, and assuming a node 
n+1 that will contain the answer. That is, for function f, Petri Net P computes f, if, for all 
x1, x2, …, xn, 
< x1, x2, …, xn, 0, …, 0> ⇒P* <?, ?, …, ?, f(x1, x2, …, xn), ?, …, ?>  
Moreover, this last ID is terminal. 



A Vector Addition System (VAS) is a 4-tuple V = (n, R) where 
 
n is a positive integer 
R is a finite, non-empty set of rule vectors in integer n-space 
 
A configuration (ID), u, of a VAS, is a point in non-negative integer n-space. 
 
Computation is defined by the application of rule vectors. 
A rule vector r = <r1, …, rn>∈R is enabled by some point u = <u1, …, un>, denoted u[r> if  
ui ≥ |ri|, for all ri < 0. 
 
If r∈R is enabled by u then r may be added to u. If it is, then u is changed to w, where 
w = u + r. 
 
We denote a single step derivation by firing r as u [r> w. 
 
We define derivation in V by u ⇒V w iff u [r> w, for some r∈R. 
 
The concept of derivation in zero or more steps, ⇒V* is then the reflexive, transitive 
closure of  ⇒V. As usual, we omit the V if it is understood by context. 
 
The derivation or word problem for V is then the problem to determine of two arbitrary 
points in non-negative integer n-space u and w, whether or not u ⇒V* w. 
 
Ordered VAS’s are merely VAS’s where the rule vectors are totally ordered and  
u [r> w iff r is the least numbered rule vector enabled by point u in non-negative integer 
n-space. 
 
The halting problem for an ordered VAS V is the problem to determine of an arbitrary 
point u in non-negative integer n-space whether or not there is some w in non-negative 
integer n-space such that u ⇒V* w and w is terminal, meaning that there is no x such 
that w ⇒P x. This means that w enables no rule vector.  
 
For normal (unordered rules) VAS’s, we are often interested in knowing if any derivation 
sequence will lead to a deadlock, defined as a terminal point. It is important to see that 
this is a different problem than halting since there can be many alternate derivations in a 
normal VAS, but only one such sequence in an ordered VAS. 
 
VAS’s are not computationally complete, whereas ordered VAS’s are.  
 
The notion of computation with ordered VAS’s is typically to start with inputs, x1, x2, …, 
xn, as the contents of successive coordinates, starting with the first, and assuming an 
n+1-st coordinate that will contain the answer. That is, for function f, VAS V computes f, 
if, for all x1, x2, …, xn, 
< x1, x2, …, xn, 0, …, 0> ⇒V* <?, ?, …, ?, f(x1, x2, …, xn), ?, …, ?>  
Moreover, this last ID is terminal. 


