
COT5310: Formal Languages and

Automata Theory

Lecture Notes #3: Complexity

Dr. Ferucio Laurenţiu Ţiplea

Visiting Professor

School of Computer Science

University of Central Florida

Orlando, FL 32816

E-mail: tiplea@cs.ucf.edu

http://www.cs.ucf.edu/~tiplea

Complexity

1. Time and space bounded computations

2. Central complexity classes

3. Reductions and completeness

4. Hierarchies of complexity classes

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

1

1. Time and space bounded computations

1.1. Orders of magnitude

1.2. Running time and work space of Turing machines

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

2

1.1. Orders of magnitude

Let g : N→R+ be a function. Define the following sets:

O(g) = {f : N→R+|(∃c ∈ R∗+)(∃n0 ∈ N)(∀n ≥ n0)(f(n) ≤ cg(n))}

Ω(g) = {f : N→R+|(∃c ∈ R∗+)(∃n0 ∈ N)(∀n ≥ n0)(cg(n) ≤ f(n))}

Θ(g) = {f : N→R+|(∃c1, c2 ∈ R∗+)(∃n0 ∈ N)(∀n ≥ n0)

(c1g(n) ≤ f(n) ≤ c2g(n))}

o(g) = {f : N→R+|(∀c ∈ R∗+)(∃n0 ∈ N)(∀n ≥ n0)(f(n) ≤ cg(n))}

Let f, g : N→R+ and X ∈ {O,Ω,Θ, o}. f is said to be X of

g, denoted f(n) = X(g(n)), if f ∈ X(g).

O (“big O”), Ω (“big Ω”), Θ (“big Θ”), and o (“little o”)

are order of magnitude symbols.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

3

1.1. Orders of magnitude

cg(n)

f(n)

n0

cg(n)

f(n)

n0

c g(n)

f(n)

n0

1

c g(n)2

W(g(n)) q(g(n))O (g(n))

• f(n) = O(g(n))

– g(n) is an asymptotic upper bound for f(n)

– f(n) is no more than g(n)

– used to state the complexity of a worst case analysis;

• f(n) = Ω(g(n)) – similar interpretation;

• f(n) = o(g(n)) – f(n) is less than g(n) (the difference

between O and o is analogous to the difference between

≤ and <).

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

4

1.1. Orders of magnitude

Proposition 1 Let f, g, h, k : N→R+. Then:

(1) f(n) = O(f(n));

(2) if f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) =

O(h(n));

(3) f(n) = O(g(n)) iff g(n) = Ω(f(n));

(4) f(n) = Θ(g(n)) iff f(n) = O(g(n)) and f(n) = Ω(g(n));

(5) if f(n) = O(h(n)) and g(n) = O(k(n)), then (f · g)(n) =

O(h(n)k(n)) and (f + g)(n) = O(max{h(n), k(n)});

(6) if there exists n0 ∈ N such that g(n) 6= 0 for any n ≥ n0,

then f(n) = o(g(n)) iff limn→∞f(n)
g(n)

= 0.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

5

1.1. Orders of magnitude

Some useful inequalities:

• (Stirling’s formula)

√
2πn

(

n

e

)n
e

1
12n+1 ≤ n! ≤

√
2πn

(

n

e

)n
e

1
12n,

for any n ≥ 1;

• for any real constants ǫ and c such that 0 < ǫ < 1 < c,

1 < ln lnn < lnn < e
√

(ln n)(ln ln n) < nǫ < nc < nln n < cn < nn < cc
n

(each inequality holds for all n ≥ n0, where n0 is suitable

chosen).

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

6

1.1. Orders of magnitude

Example 1

1. if f(x) = a0 + a1x+ · · ·+ akx
k is a polynomial of degree

k with real coefficients and f(x) ≥ 0 for any x ∈ N, then

f(n) = Θ(nk);

2. logc n = Θ(log n), for any real constant c > 1;

3. log n = O(nǫ), for any real number ǫ such that 0 < ǫ < 1;

4. logk n = O(n), for any natural number k ≥ 1;

5. n! = Ω(2n) and n! = o(nn);

6. log(n!) = Θ(nlog n).

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

7

1.1. Orders of magnitude

Example 2 If f : N→R+ satisfies f(n) ≥ 1 for any n ≥ n0

and some n0 ∈ N, then:

1. 1
22
⌈log2 f(n)⌉ ≤ f(n) ≤ 2⌈log2 f(n)⌉, for any n ≥ n0;

2. f(n) = Θ(2⌈log2 f(n)⌉).

Remark 1 4n 6= O(2n).

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

8

1.1. Orders of magnitude

Let A and B be sets of functions as those defined above (e.g.,

O(g) etc.), and let f : N→R+. Then, we denote

1. f +A = {f + g|g ∈ A};

2. A+ B = {f + g|f ∈ A, g ∈ B};

3. fA = {f · g|g ∈ A}. If f is the constant c function, then

we will write cA instead of fA;

4. AB = {fg|f ∈ A, g ∈ B};

5. O(A) =
⋃

f∈AO(f).

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

9

1.1. Orders of magnitude

Convention: A = B stands for A ⊆ B.

Proposition 2 Let f, g : R+R+ and c ∈ R+. Then:

(1) O(f(n)) +O(g(n)) = O(f(n) + g(n));

(2) cO(f(n)) = O(f(n));

(3) O(O(f(n))) = O(f(n));

(4) O(f(n))O(g(n)) = O(f(n)g(n));

(5) O(f(n)g(n)) = f(n)O(g(n)).

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

10

1.2. Running time and workspace of TMs

Decidable

Semi-decidable
but not decidable

Undecidable

Not semi-decidable }
Classify them into complexity classes}

Decidable problems are classified into complexity classes ac-

cording to the amount of work (time, space etc.) needed to

solve them.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

11

1.2. Running time and work space of TMs

Let M be a deterministic TM (DTM) that halts on all inputs,

and let w be an input.

1. The computation time of M on w is the number of steps

required by M to halt on w (regardless of whether M

accepts or not w);

2. The running time or time complexity of M is the function

timeM given by:

• timeM(n) is the maximum computation time of M on

inputs of length n, for any n ≥ 0.

Assumption: timeM(n) ≥ n, for any n (M needs at least n

steps to read the entire input).

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

12

1.2. Running time and work space of TMs

Let M be a non-deterministic TM (NTM) wherein all com-

putations halt on all words, and let w be an input.

1. The computation time of M on w is the maximum number

of steps required by M to halt on w (regardless of whether

or not M accepts w);

2. The running time ot time complexity of M is the function

timeM given by:

• timeM(n) is the maximum computation time of M on

inputs of length n, for any n ≥ 0.

Assumption: timeM(n) ≥ n, for any n.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

13

1.2. Running time and work space of TMs

1

2

3

f(n)

All words of length n

D
is

c
re

te
 tim

e

1

2

3

f(n)

All words of length n

D
is

c
re

te
 tim

e

.
.
.

.
.
.

DTM: computation threads NTM: computation trees

accept

accept

accept

accept

reject

reject

reject

reject

rejectreject

reject

Measuring deterministic and non-deterministic running time.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

14

1.2. Running time and work space of TMs

Let f : N→N. We say that a language L is accepted by a

DTM (NTM) M within time f(n) if M accepts L and the

running time of M is at most f(n) for every n.

Remark 2 The above concepts can be generalized to multiple-

tape TM (mTM) as well.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

15

1.2. Running time and work space of TMs

Theorem 1 (Reduction in the number of tapes)

If L is accepted by an mDTN within time f(n) and f(n) ≥ n
for any n, then L is accepted by a DTM within time O(f2(n)).

Proof Given an mDTN M , construct a DTM M ′ as follows.

M ′ stores the contents of M ’s tapes on its single tape and

uses a new symbol # to separate them. In addition, M ′

keeps track of the locations of M ’s heads by marking the

corresponding cells on its tape.

To simulate a single move of M , M ′ scans its tape from left

to right, records the marked symbols, and then makes a pass

from right to left in order to update the tapes according to

M ’s transition relation.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

16

1.2. Running time and work space of TMs

The total time to simulate one step of M is O(f(n)). The

initial stage (where M ′ puts its tape into the proper format)

requires O(n) steps. Afterward, M ′ simulates each of the

steps of M using O(f(n))) steps. Therefore, the entire sim-

ulation uses O(n) + O(f2(n)) steps. As f(n) ≥ n + 1, we

conclude that M ′’s running time is O(f2(n)). 2

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

17

1.2. Running time and work space of TMs

Theorem 2 If L is accepted by an NTN within time f(n)

and f(n) ≥ n for any n, then L is accepted by a DTM within

time 2O(f(n)).

Proof Given an NTM M , construct a 3-tape DTM M ′ which

tries all possible branches of M ’s non-deterministic compu-

tation. If M ′ ever finds an accept state on one of these

branches, then accepts; otherwise, rejects.

On an input of length n, any computation tree of M has at

most cf(n) leaves, for some constant c. The time for starting

from the root and traveling down to a leaf node is O(f(n)).

Therefore, the running time of M ′ is

O(f(n)cf(n)) = 2O(f(n)).

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

18

1.2. Running time and work space of TMs

By Theorem 1, M ′ can be converted into a DTM whose

running time is

(2O(f(n)))2 = 2O(2f(n)) = 2O(f(n)).

(note that M ′ does not need to count the numbers of moves

of M because every computation of M on words of length n

halts in O(f(n)) steps). 2

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

19

1.2. Running time and work space of TMs

Remark 3 Some Turing machines may require only a very

limited amount of work space, although their inputs are ar-

bitrarily large. Therefore, to be able to talk about space

bounds smaller than linear we have to count only the tape

cells scanned by Turing machines during their computations,

except for those used by inputs. To do this correctly, we need

a suitable computation model.

An off-line Turing machine is a 2-tape TM with the following

particularities:

• one of its tapes is read-only. It holds the input surrounded

by two special symbols needed to detect the left-hand and

the right-hand ends of the input;

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

20

1.2. Running time and work space of TMs

• the other tape is a read/write work tape. It may be read

and written in the usual way. Only the cells scanned

on this tape contribute to the space complexity of the

machine.

Off-line TMs may be deterministic or non-deterministic.

q

#$ input

input tape

work tape

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

21

1.2. Running time and work space of TMs

Let M be an off-line DTM that halts on all inputs and let w

be an input.

1. The computation space of M on w is the maximum num-

ber of tape cells scanned by M on the work tape during

its computation on w;

2. The work space of M is the function spaceM given by:

• spaceM(n) is the maximum computation space of M

on inputs of length n, for any n ≥ 0.

Assumption: spaceM(n) ≥ 1, for any n (M needs at least

one tape cell to decide on its input).

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

22

1.2. Running time and work space of TMs

Let M be an off-line NTM wherein all computations halt on

all inputs, and let w be an input.

1. The computation space of M on w is the maximum num-

ber of tape cells scanned by M on the work tape during

any computation of M on w;

2. The work space of M is the function spaceM given by:

• spaceM(n) is the maximum computation space of M

on inputs of length n, for any n ≥ 0.

Assumption: spaceM(n) ≥ 1, for any n.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

23

1.2. Running time and work space of TMs

q

#$ input

input tape

work tape

q

#$ input

input tape

work tape

work space work space

work space < input work space > input

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

24

1.2. Running time and work space of TMs

Let f : N→N. We say that a language L is accepted by an

off-line DTM (NTM) M within space f(n) if M accepts L

and the work space of M is at most f(n) for every n.

Remark 4 The above concepts can be generalized to off-

line TMs with m work tapes (off-line mTM).

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

25

1.2. Running time and work space of TMs

Theorem 3 (Reduction in the number of tapes)

If L is accepted by an off-line mTM within space f(n), then

L is accepted by an off-line TM within space f(n).

Remark 5 In order to study space bounds f(n) satisfying

f(n) ≥ n for all n, we may consider single-tape TMs. For

such machines, space complexity is defined by counting the

tape cells scanned by the machine on its single tape, including

those used by the input.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

26

2. Central complexity classes

2.1. Definitions and basic properties

2.2. Closure under complementation

2.3. P and NP

2.4. L and NL

2.5. PSPACE and NPSPACE

2.6. EXPTIME and NEXPTIME

2.7. Beyond NEXPTIME

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

27

2.1. Definitions and basic properties

A proper complexity function is any function f from N into

N which satisfies:

• f is increasing (f(n+ 1) ≥ f(n) for any n);

• there exists an input-output TM that on inputs of length

n writes f(n) in unary on the output tape, and works

within time O(n+ f(n)) and space O(f(n)).

Example 3

1. logn, n logn, nk,
√
n are proper complexity functions;

2. Addition, multiplication, and exponentiation of proper

complexity functions is a proper complexity function.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

28

2.1. Definitions and basic properties

Remark 6 The class of proper complexity functions includes

essentially all reasonable functions one would expect to use in

the analysis of algorithms and the study of their complexity.

In what follows we will consider only proper complexity func-

tions, although some results may hold for arbitrary functions

from N into N.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

29

2.1. Definitions and basic properties

Time complexity classes

• TIME(f(n)) = the class of all languages that are decid-

able by DTMs within time O(f(n))

– P =
⋃

k≥1 TIME(nk)

– EXPTIME =
⋃

k≥1 TIME(2n
k
)

• NTIME(f(n)) = the class of all languages that are de-

cidable by NDTs within time O(f(n))

– NP =
⋃

k≥1NTIME(nk)

– NEXPTIME =
⋃

k≥1NTIME(2n
k
)

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

30

2.1. Definitions and basic properties

Space complexity classes

• SPACE(f(n)) = the class of all languages that are de-

cidable by DTMs within space O(f(n))

– L = SPACE(logn)

– PSPACE =
⋃

k≥1 SPACE(nk)

• NSPACE(f(n)) = the class of all languages that are de-

cidable by NDTs within space O(f(n))

– NL = NSPACE(logn)

– NPSPACE =
⋃

k≥1NSPACE(nk)

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

31

2.1. Definitions and basic properties

Directly from definitions it follows:

1. TIME(f(n)) ⊆ NTIME(f(n));

2. SPACE(f(n)) ⊆ NSPACE(f(n));

Proposition 3 NTIME(f(n)) ⊆ SPACE(f(n)).

Proof Let M be a NTM that works within time f(n). Con-

struct a DTM M ′ which simulates each computation tree of

M in a DFS manner (it uses two extra tapes, one to simulate

computations of M , and one to enumerate all choices for any

configuration of M). As M ′ makes O(f(n)) moves, M will

scan O(f(n)) tape cells on each work tape. 2

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

32

2.1. Definitions and basic properties

Proposition 4 If f(n) ≥ n for any n, then

NTIME(f(n)) ⊆ TIME(2O(f(n))).

Proof From Theorem 1. 2

Remark 7 O(2f(n)) = 2O(f(n)) but 2O(f(n)) 6= O(2f(n)). There-

fore, Proposition 4 should be read as follows:

for any L ∈ NTIME(f(n)) there exists a constant c

such that L ∈ TIME(2cf(n)).

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

33

2.1. Definitions and basic properties

Theorem 4 If f(n) ≥ logn for any n, then

NSPACE(f(n)) ⊆ TIME(2O(f(n))).

Proof Let M be an off-line NTM working in space g(n) =

cf(n) for some constant c. A configuration of M is given by

the current state, by the work tape, and by the positions of

the two tape heads (the input is not part of any configura-

tion!).

There are |Q|(n+ 2)cf(n)|Γ|cf(n) pairwise distinct configura-

tions on words of length n. Moreover, by the hypothesis we

get

|Q|(n+ 2)cf(n)|Γ|cf(n) ≤ 2df(n) = 2O(f(n)),

for some constant d.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

34

2.1. Definitions and basic properties

Construct a DTM M ′ which decides whether some final con-

figuration can be reach from the initial configuration in the

configuration graph of M . The configuration graph has at

most 2O(f(n)) and this problem can be generously solved in

quadratic time with respect to the number of nodes. 2

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

35

2.1. Definitions and basic properties

Theorem 5 (Savitch’s Theorem)

If f(n) ≥ logn for any n, then

NSPACE(f(n)) ⊆ SPACE(f2(n)).

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

36

2.1. Definitions and basic properties

Conclusions:

TIME(f(n)) ⊆ NTIME(f(n)) NTIME(f(n)) ⊆ TIME(2O(f(n))) f(n) ≥ n

SPACE(f(n)) ⊆ NSPACE(f(n)) NSPACE(f(n)) ⊆ SPACE(f2(n)) f(n) ≥ logn

TIME(f(n)) ⊆ SPACE(f(n)) NSPACE(f(n)) ⊆ TIME(2O(f(n))) f(n) ≥ logn

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

37

2.1. Definitions and basic properties

Corollary 1

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME ⊆ NEXPTIME.

Remark 8 We will prove later that at least one of the inclu-

sions in Corollary 1 is proper (most researchers believe that

all the inclusions are proper).

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

38

2.2. Closure under complementation

The complement of a decision problem is the decision prob-

lem resulting from reversing the yes and no answers.

Given a complexity class C, the complement class of C, de-

noted co− C, is the set of complements of every problem in

C. Notice that this is not the complement of the complexity

class itself as a set of problems.

A class is said to be closed under complementation if the

complement of any problem in the class is still in the class.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

39

2.2. Closure under complementation

Theorem 6 Deterministic complexity classes (SPACE(f(n)),

TIME(f(n)) are closed under complementation.

Proof Add a last step reversing the answer. 2

The argument in the proof of Theorem 6 cannot be ap-

plied directly to nondeterministic complexity classes because

if there exist both computation paths which accept and paths

which reject, and all the paths reverse their answer, there will

still be paths which accept and paths which reject. Conse-

quently, the machine accepts in both cases.

One of the most surprising complexity results shown to date

is that NSPACE is closed under complementation.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

40

2.2. Closure under complementation

Theorem 7 (Immerman-Szelepcsényi)
NSPACE(f(n)) = co−NSPACE(f(n), for any f(n) ≥ logn.

Proof Claim 1: Given a graph G and a node x, the
number of nodes reachable from x can be computed by an
NTM within space logn.

Claim 2. Let M be an off-line NTM that works within space
O(f(n)). Then, there exists an off-line NTM M ′ such that,
for any input of length n, M ′ can decide within space O(f(n))
if M rejects the input. 2

This theorem was proved independently by Neil Immerman
(the general case) and Robert Szelepcsényi (for the particular
case of context-sensitive languages - we will see later that
L1 = NSPACE(n)).

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

41

2.2. Closure under complementation

Neil Immerman tells a story about Robert Szelepcsényi:

Szelepcsényi’s result that Context Sensitive Langua-

ges are closed under complementation was announced

in an issue of EATCS (in the same issue, two other ar-

ticles mentioned Immerman’s own proof that NSPACE

is closed under complementation, an effectively equiv-

alent result). Szelepcsnyi was an undergrad at the

time, and his adviser gave him the famous problem

as a challenge, probably not really expecting him to

actually solve it. He did solve it, perhaps because he

was never told that it was an old open problem that

others had failed to solve it.

From: “Computational Complexity” at http://weblog.fortnow.com/

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

42

2.3. P and NP

P =
⋃

k≥1 TIME(nk)

The class P plays a central role in the complexity theory

because:

• P is invariant for all models of computations that are

polynomially equivalent to the single-tape DTMs;

• P “corresponds” to the class of problems that are realis-

tically solvable on a computer.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

43

2.3. P and NP

We will give examples of problems in P (NP etc.) by using a

high-level description of the algorithms which avoids tedious

details of tapes and head motions. To do that we need to

follow certain conventions:

• algorithms perform in stages;

• a stage is analogous to a step of a Turing machine (though

of course, implementing a stage of an algorithm on a TM

will require many TM steps);

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

44

2.3. P and NP

Graph Reachability Problem (GRP)

Instance: A graph G = (V,E) and two nodes x and y;

Question: Is there a path from x to y?

Given a graph G = (V,E) and two nodes x and y, define the

following sequence of sets:

• V0 = {x};
• Vi+1 = V •i , for any i ≥ 0.

Properties:

1. there exists i and j such that j < i and Vi = Vj;

2. y is reachable from x iff there exists k such that y ∈ Vk.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

45

2.3. P and NP

Algorithm A1

input: graph G = (V,E) and x, y ∈ V ;

output: “yes”, if y is reachable from x, and “no”, otherwise;

begin

mark x;

S := {x};
repeat

choose a ∈ S;

S := S − {a};
mark all unmarked immediate successors of a and add

them to S;

until y is get marked or there is no unmarked immediate

successor of a;

if y is marked then“yes” else“no”;

end.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

46

2.3. P and NP

How is the element a chosen among all elements in S? The

choice affects the style of search:

• if S is implemented as a queue, then the resulting search

is breadth-first (BFS);

• if S is implemented as a stack, then the resulting search

is depth-first (DFS).

Complexity:

• time complexity: GRP ∈ TIME(n2);

• space complexity: GRP ∈ SPACE(n).

As a conclusion, GRP ∈ P .

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

47

2.3. P and NP

NP =
⋃

k≥1NTIME(nk)

NP is an important complexity class because it contains many

problems of practical interest.

All the problems in this class rely on brute-force search tech-

niques that can be completed non-deterministically in poly-

nomial time (attempts to avoid brute-force search in these

problems have not been successful so far).

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

48

2.3. P and NP

Boolean formulas over a finite set X of boolean variables are

defined by:

• x is a boolean formula, for every x ∈ X;

• if ϕ1 and ϕ2 are boolean formulas, then ¬ϕ1, (ϕ1 ∨ ϕ2),

and (ϕ1 ∧ ϕ2) are boolean formulas.

A truth assignment for X is any function γ : X→{0,1}. A

truth assignment γ satisfies a boolean formula ϕ, denoted

γ ⊢ ϕ, if ϕ evaluates to the truth value true (1) when each

variable x in ϕ is replaced by γ(x).

A boolean formula ϕ is valid if it is satisfied by all assignments.

It is clear that ϕ is unsatisfiable iff ¬ϕ is valid.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

49

2.3. P and NP

A boolean formula ϕ is in conjunctive normal form (CNF) if

ϕ = c1 ∧ · · · ∧ ck,
where, for any i, ci is of the form

ci = li1 ∨ · · · ∨ limi

and each lij is either a variable or the negation of some

variable. ci are called clauses and lij are called literals. If

lij = x ∈ X, then it is a positive literal; otherwise, it is a nega-

tive literal. If mi ≤ s for any i, then ϕ is called in s-conjunctive

normal form (s-CNF).

Theorem 8 Every boolean formula is equivalent to one in

CNF.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

50

2.3. P and NP

Satisfiability Problem (SAT)

Instance: A boolean formula ϕ over a set X = {x1, . . . , xn}
of boolean variables;

Question: Is there a truth assignment for X that satisfies ϕ?

Algorithm A2

input: boolean formula ϕ over X = {x1, . . . , xn};
output: “yes” if ϕ is satisfiable, and “no”, otherwise;

begin

choose non-deterministically a truth assignment for X;

if ϕ evaluates to the truth value true under the assignment

then“yes” else“no”;

end.

Therefore, SAT ∈ NP .

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

51

2.4. L and NL

L = SPACE(logn)

A palindrome over an alphabet Σ is any word w ∈ Σ∗ such

that w = xx̃, for some word x (x̃ is the mirror image of x).

Palindrome Problem (PAL)

Instance: An alphabet Σ and a word w ∈ Σ∗;
Question: Is w a palindrome?

Theorem 9 PAL ∈ L.

Proof Construct an off-line DTM with 2 work tapes which

counts in binary and checks the i-th input symbol from left

to right against the i-th input symbol from right to left. If

input has length n, the machine scans O(logn) cells on each

work tape. 2

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

52

2.4. L and NL

NL = NSPACE(logn)

Theorem 10 GRP ∈ NL.

Proof Given a GRP instance (G = (V,E), x, y), construct

an off-line DTM with 2 work tapes as follows:

• nodes are written in binary;

• write x on the first work tape;

• choose non-deterministically a node z, write it on the sec-

ond work tape, and check whether (x, z) ∈ E. If (x, z) 6∈ E
then halt and reject. If z = y then halt and accept; oth-

erwise, replace x by z and repeat the procedure, unless

the machine has gone on for n steps and rejects, where

n is the number of nodes.

2

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

53

2.4. L and NL

2-Satisfiability Problem (2SAT)

Instance: A 2-CNF boolean formula ϕ over a set

X = {x1, . . . , xn} of boolean variables;

Question: Is there a truth assignment for X that satisfies ϕ?

Given an instance ϕ of 2SAT , define a graph G(ϕ) as follows:

• the nodes of G are the variables of ϕ and their negations;

• there is an arc (α, β) iff there is a clause (¬α ∨ β) (or

(β ∨¬α)) (intuitively, these edges capture the logical im-

plications).

G(ϕ) has an interesting property: if (α, β) is an edge, then

so is (¬β,¬α).

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

54

2.4. L and NL

Theorem 11 Let ϕ be an instance of 2SAT . ϕ is unsatis-

fiable iff there exists a variable x such that there are paths

from x to ¬x and from ¬x to x.

Corollary 2 2SAT is in NL.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

55

2.5. PSPACE and NPSPACE

NPSPACE = PSPACE =
⋃

k≥1 SPACE(nk)

Quantified boolean formulas (QBF) are defined as boolean

formulas but with the difference that “∀x” and “∃x” may

precede any (sub-)formula. For instance,

(∀x)(∃y)((x ∨ y) ∧ (∀z)(x ∨ z))
is a QBF.

In the formula (Qx)ϕ, where Q ∈ {∀,∃}, ϕ is called the scope

of the quantifier Q. A QBF is closed or fully quantified if

each variable appears within the scope of some quantifier.

If all quantifiers of a formula appear at the beginning of the

formula, then the formula is called in prenex normal form

(PNF). Any QBF may be put into an equivalent PNF.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

56

2.5. PSPACE and NPSPACE

Quantified Satisfiability Problem (QSAT)

Instance: A closed QBF ϕ in PNF;

Question: Is ϕ true?

(the problem is also known as QBF; we use QSAT to em-

phasize that it is yet another version of SAT).

The main difference between SAT and QSAT:

• SAT asks to decide if there exists a truth value;

• QSAT asks to decide if there exists a set of truth value.

For example, the QBF ϕ = (∀x)(∃y)((x ∨ y) ∧ (x ∨ ¬y))
is true if there exists two truth assignment, one of them

having 0 substituted for x and the other one having 1

substituted for x.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

57

2.5. PSPACE and NPSPACE

SAT can be viewed as a particular case of QSAT:

• to each SAT instance ϕ associate the QBF instance

(∃x1) · · · (∃xn)ϕ.

Theorem 12 QSAT ∈ PSPACE.

Proof Consider the algorithm A which, on input ϕ, performs

as follows:

1. if ϕ does not contain quantifiers (i.e., it is an expression

with only constants), evaluate it and accept (reject) if it

is true (false);

2. if ϕ = (∃x)ψ then recursively call A on ψ, fisrt with 0

substituted for x, and then with 1 substituted for x. If

either result is accept, then accept; otherwise, reject;

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

58

2.5. PSPACE and NPSPACE

3. if ϕ = (∀x)ψ then recursively call A on ψ, first with 0

substituted for x, and then with 1 substituted for x. If

both results are accept, then accept; otherwise, reject.

The depth of the recursion is at most the number of vari-

ables. At each level we need only store the value of one

variable. Therefore, the total space used is O(n), where n is

the number of variable. Therefore, A runs in linear space. 2

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

59

2.5. PSPACE and NPSPACE

A game is a competition in which opposing parties attempts

to achieve some goal according to some given rules.

Formula game: closed QBF in PNF

(∃x1)(∀x2)(∃x3) · · · (Qxn)ϕ,
where Q = ∃ if n is odd, and Q = ∀, otherwise.

Any closed QBF in PNF can be viewed as a formula game

(to ensure strict alternation we may insert to the prefix ap-

propriately quantified “dummy” variables that do not appear

in ϕ).

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

60

2.5. PSPACE and NPSPACE

Let

(∃x1)(∀x2)(∃x3) · · · (Qxn)ϕ,
be a formula game. We associate a game to it as follows:

1. two players A and B take turns selecting values of the

variables x1, . . . , xn;

2. player A (B) selects values for the variables that are bound

to ∀ (∃) quantifiers;

3. the order of play is the same as that of the quantifiers at

the beginning of the formula;

4. if the formula is evaluated to the truth value true, then

B wins; otherwise, A wins.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

61

2.5. PSPACE and NPSPACE

Example 4 Let

ϕ = (∃x1)(∀x2)(∃x3)((x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (¬x2 ∨ ¬x3))

• If B picks x1 = 1, A picks x2 = 0, and B picks x3 = 1,

then B wins;

• B can always win if he/she selects x1 = 1 and x3 = ¬x2,
where x2 is A’s choice. We say in this case that B has a

winning strategy.

If we replace the third clause of ϕ by (x2∨¬x3), then A has a

winning strategy (x2 = 0 A’s choice makes the formula false,

no matter what B selects).

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

62

2.5. PSPACE and NPSPACE

Formula Game Problem (GAME)

Instance: A formula game ϕ;

Question: Does player B have a winning strategy in the game

associated with ϕ?

Corollary 3 GAME ∈ PSPACE.

See http://www.ics.uci.edu/˜eppstein/cgt/ for details on com-

putational complexity of games such as GO, chess etc.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

63

2.5. PSPACE and NPSPACE

Let G = (V, T, S, P) be a grammar.

1. G is context-sensitive if each rule is of the form:

• αAγ→αβγ, where A ∈ V , α, γ ∈ (V ∪ T)∗, and β ∈
(V ∪ T)+, or

• S→λ, and if this rule occurs then S does not appear

on the right hand side of any rule in P .

2. G is length-increasing or monotonic if each rule is of the

form:

• α→β with α ∈ (V ∪ T)∗V (V ∪ T)∗, β ∈ (V ∪ T)+, and

|α| ≤ |β|, or

• S→λ, and if this rule occurs then S does not appear

on the right hand side of any rule in P .

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

64

2.5. PSPACE and NPSPACE

It is known that context-sensitive grammars and monotonic

grammars are equivalent.

A linear bounded automaton (LBA) is a non-deterministic

Turing machine which works within space O(n).

Theorem 13 A language L is context-sensitive iff there ex-

ists an LBA which accepts L.

If L1 denotes the class of context-sensitive languages, then

L1 = NSPACE(n).

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

65

2.6. EXPTIME and NEXPTIME

EXPTIME =
⋃

k≥1 TIME(2n
k
)

Unary logic programs:

• Let Σ be a set consisting of one constant symbol ⊥ and

finitely many unary function symbols;

• Let Pred be a finite set of unary predicate symbols, and

x be a variable;

• A unary logic program over Σ, Pred, and x is a finite set

of clauses of the form

p0(t0)←p1(t1), . . . , pn(tn)
or

p0(t0)←true,

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

66

2.6. EXPTIME and NEXPTIME

where p0, . . . , pn ∈ Pred, and t0, . . . , tn are terms over Σ ∪
{x} with t0 being flat, that is, t0 ∈ {⊥, x, f(x)|f ∈ Σ−{⊥}}.
Moreover, all clauses with p0(⊥) in the head have only

true in the body.

An atom is a construct of the form p(t), where p ∈ Pred and

t is a term. If t is a ground term, that is, it does not contain

x, then p(t) is called a ground atom.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

67

2.6. EXPTIME and NEXPTIME

A proof tree for a ground atom p(t) under a unary logic

program LP is any tree that satisfies:

• its nodes are labeled by ground atoms;

• the root is labeled by p(t);

• each intermediate node which is labeled by some B has

children labeled by B1, . . . , Bn, where B←B1, . . . , Bn is a

ground instance of a clause in LP (i.e., the variable x is

substituted by ground terms over Σ);

• all the leaves are labeled by true.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

68

2.6. EXPTIME and NEXPTIME

Membership Problem for Unary Logic Programs (ULP)

Instance: A logic program LP and a ground atom p(t);

Question: Is there a proof tree for p(t) under LP?

Theorem 14 ULP ∈ EXPTIME.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

69

2.6. EXPTIME and NEXPTIME

Let P be a protocol, T ⊆ T0 a finite set, and k ≥ 1.

• A run of P is called a (T, k)-run if all terms in the run are

built up upon T and all messages communicated in the

course of the run have length at most k.

• When for P only (T, k)-runs are considered we will say

that it is a protocol under (T, k)-runs or a (T, k)-bounded

protocol, and denote this by (P, T, k).
• The (initial) secrecy problem for such protocols is for-

mulated with respect to (T, k)-runs only, by taking into

consideration the set T instead of T0.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

70

2.6. EXPTIME and NEXPTIME

Let P = (S, C, w) be a (T, k)-bounded protocol. Then:

1. the number of messages communicated in the course of

any (T, k)-run is bounded by

k3|T |
k+1
2 = 23 log k+k+1

2 log |T |;

2. the number of instantiations (substitutions) of a given

role u of P with messages of length at most k over T is

bounded by

(23 log k+k+1
2 log |T |)|u|(

k+1
2 +2)

(u has exactly |u| actions, and each action has at most
k+1
2 + 2 elements that can be substituted);

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

71

2.6. EXPTIME and NEXPTIME

3. the number of (T, k)-events (i.e., events that can occur

in all (T, k)-runs) is bounded by

number of (T, k)-events ≤

≤ ∑

u∈role(P) |u| · 2(3 log k+k+1
2 log |T |)|u|(k+1

2 +2)

≤ ∑

u∈role(P) |u| · 2(3 log k+k+1
2 log |T |)|w|(k+1

2 +2)

= |w| · 2(3 log k+k+1
2 log |T |)|w|(k+1

2 +2)

= 2log |w|+(3 log k+k+1
2 log |T |)|w|(k+1

2 +2)

where role(P) is the set of all roles of P.

Define the size of P by:

size(P) = |w|+ k+ 1

2
log |T |.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

72

2.6. EXPTIME and NEXPTIME

Algorithm A1
input: bounded protocol (P, T, k) without freshness check;
output: “leaky protocol” if P has some leaky (T, k)-run w.r.t. initial secrets,

and “non-leaky protocol”, otherwise;
begin
let E′ be the set of all (T, k)-events;
ξ := λ; s := s0;
repeat
E := E′;
E′ := ∅;
bool := 0;
while E 6= ∅ do
begin
choose e ∈ E;
E := E − {e};
if (s, ξ)[e〉(s′, ξe) then

begin
s := s′; ξ := ξe; bool := 1;

end
else E′ := E′ ∪ {e};

end
until bool = 0;
if (

⋃

A∈Ho SecretA) ∩ analz(sI) 6= ∅ then “leaky protocol” else “non-leaky protocol”
end.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

73

2.6. EXPTIME and NEXPTIME

Theorem 15 The initial secrecy problem for bounded pro-

tocols without freshness check is in EXPTIME.

Proof The algorithm A1 performs in exponential time with

respect to the size of the protocol. 2

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

74

2.6. EXPTIME and NEXPTIME

NEXPTIME =
⋃

k≥1NTIME(2n
k
)

Theorem 16 If P = NP then EXPTIME = NEXPTIME.

Proof Let L ∈ NEXPTIME and M an NTM which accepts

L and works within time 2n
k
. Define the language:

L′ = {xB2|x|
k−|x||x ∈ L},

where B is a new symbol (the blank symbol). Show that:

• L′ ∈ NP ;

• By the hypothesis (P = NP), L′ ∈ P ;

• L ∈ EXPTIME.

2

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

75

2.6. EXPTIME and NEXPTIME

A grammar G = (V, T, S, P) is called growing if there exists a

function f : (V ∪ T)∗→N such that f(α) < f(β), for any rule

α→β ∈ P . f is called a weight function for G.

A weight function f of G is minimal if

∑

a∈V ∪T
f(a) ≤

∑

a∈V ∪T
f ′(a)

for any weight function f ′ of G.

Proposition 5 For every growing grammar G there exists a

minimal weight function f such that f(a) ≤ 2poly(|V |+|T |), for

some polynomial poly and any a ∈ V ∪ T .

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

76

2.6. EXPTIME and NEXPTIME

Variable Membership Problem for Growing Grammars (VMGG)

Instance: A growing grammar G and a string w;

Question: Is w derivable in G?

Theorem 17 VMGG ∈ NEXPTIME.

See also VariableMembershipProblem.pdf.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

77

2.7. Beyond NEXPTIME

There is no reason to stop at NEXPTIME ...

• EXPSPACE =
⋃

k≥1 SPACE(2n
k
)

• NEXPSPACE =
⋃

k≥1NSPACE(2n
k
)

• 2− EXPTIME =
⋃

k≥1 TIME(22n
k

)

• 2−NEXPTIME =
⋃

k≥1NTIME(22n
k

)

• 3− EXPTIME =
⋃

k≥1 TIME(222n
k

)

• 3−NEXPTIME =
⋃

k≥1NTIME(222n
k

)

• and so on.

Languages in the class
⋃

n≥0 0 − EXPTIME are called ele-

mentary.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

78

3. Reduction and Completeness

Reducibility:

• tool for exploring the relationship between problems;

• formalizes the concept of the most difficult problem in a

complexity class;

• creates a semi-lattice structure which is one of the most

important sources of intuition about complexity classes.

Two basic reductions:

• Karp (polynomial time many-one);

• log-space.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

79

3. Reduction and Completeness

A is polynomially time many-one reducible or Karp reducible

to B, denoted A ≤m B, if there exists a function f : Σ∗→Σ∗

computable in deterministic polynomial time and such that

x ∈ A iff f(x) ∈ B, for any x.

Proposition 6

1. ≤m is a pre-order;

2. A ≤m B iff Ā ≤m B̄;

3. P , NP , PSPACE, EXPTIME, and NEXPTIME are

closed under m-reducibility.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

80

3. Reduction and Completeness

Given A,B ⊆ Σ∗, we say that A is s-space reducible to B,

denoted A ≤s B, if there exists a function f : Σ∗→Σ∗ such

that:

1. f(x) is computable in space s(|x|);
2. x ∈ A iff f(x) ∈ B, for any x ∈ Σ∗;
3. there exists a positive integer c such that s(|f(x)|) ≤

cs(|x|), for any x ∈ Σ∗.

An important case is when s is the log function, which will

be called the log-space reducibility.

Condition 3 above assures the transitivity of ≤s (it avoids a

space bounded machine write an output substantially larger

than allowed by its space bound). This condition holds for

the case s = log.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

81

3. Reduction and Completeness

Proposition 7

1. ≤s is a pre-order;

2. SPACE(s) and NSPACE(s) are closed under ≤s;
3. All complexity classes beyond L, and including L too, are

closed under log-space reducibility.

Proposition 8 A ≤log B implies A ≤m B.

≤log allows a more refined theory about the relationships be-

tween problems. For this reason, people use ≤log whenever

they can (which is almost always).

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

82

3. Reduction and Completeness

Let C be a class of languages and A a language.

1. A is m-hard for C if B ≤m A, for any B ∈ C;
2. A is m-complete for C if A is m-hard for C and A ∈ C.

log-space hardness and log-space completeness are defined

analogously.

Proposition 9 Let C be a complexity class.

1. If A is m-hard (log-space hard) for C and A ≤m B (A ≤log
B) then B is m-hard (log-space hard) for C.

2. If A is m-hard (log-space hard) for C then Ā is m-hard

(log-space hard) for co− C.
3. If A is m-complete (log-space complete) for C, B ∈ C,

and A ≤m B (A ≤log B) then B is m-complete (log-space

complete) for C.
UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

83

3. Reduction and Completeness

Unless otherwise specified, we will use m-hardness and m-

completeness for NP and classes beyond NP , and log-space

hardness and log-space completeness for P , NL, and L. For

this reason, we will simply say “A is complete for C” or “A is

C-complete”.

Corollary 4 Let C′ and C complexity classes such that C′ ⊆ C.
If A is complete for C and A ∈ C′, then C′ = C.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

84

3. Reduction and Completeness

Complete problems for L

Any problem in L is log-space complete for L. This results is

completely uninteresting because a reduction is meaningful

only within a class that is computationally stronger than the

reduction.

To categorize the languages in L we need weaker definitions

of reductions.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

85

3. Reduction and Completeness

Complete problems for NL

Theorem 18 GRP is NL-complete.

Proof Let A ∈ NL and M be an NTM which decides A

within space logn. The reachability graph of M on an in-

put of length n can be constructed in space logn. We can

assume that this graph has a single accepting configuration

(node). This graph, together with the initial and accepting

configurations, forms an instance of GRP . Moreover, x ∈ A
iff the accepting configuration in reachable from the initial

configuration in the reachability graph of M on x. 2

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

86

3. Reduction and Completeness

Theorem 19 2SAT is NL-complete.

Proof GRP ∈ co − NL = NL implies that GRP is NL-

complete.

Reduce then GRP to 2SAT . 2

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

87

3. Reduction and Completeness

Complete problems for P

A boolean circuit is a graph G = (V,E), where:

• V = {1, . . . , n}, for some n;

• (i, j) ∈ E implies i < j;

• there are no cycles;

• each node i in the graph, also called a gate, has asso-

ciated a sort s(i) ∈ {true, false,∨,∧,¬} ∪ {x1, x2, . . .} and

has a number of input and output edges corresponding

to its sort.

Gates with no incoming (outgoing) edges are called input

gates (output gates).

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

88

3. Reduction and Completeness

A boolean circuit is evaluated by assigning boolean values

to variables and evaluating the gates from input to output

nodes in a straightforward manner.

v

v v

v

v

v

¬ ¬ ¬

¬

x1 x2 x3

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

89

3. Reduction and Completeness

Given a boolean formula ϕ, there is a simple way to con-

struct a boolean circuit Gϕ such that, for any assignment γ,

γ satisfies ϕ iff Gϕ is evaluated to true under γ.

That is, SAT and CIRCUIT SAT are equivalent.

The circuit value problem (CIRCUIT VALUE)

Instance: A boolean circuit G and a truth assignment γ;

Question: Compute the value of G under γ.

Theorem 20 CIRCUIT V ALUE is P -complete.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

90

3. Reduction and Completeness

Complete problems for NP

Theorem 21 (Cook’s Theorem)

SAT is NP -complete.

CIRCUIT SAT is NP -complete too.

See SixBasicNP-completeProblems.pdf.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

91

3. Reduction and Completeness

Complete problems for PSPACE

Theorem 22 QSAT is PSPACE-complete.

The containment problem for FA (CP)

Instance: Two finite automata A1 and A2;

Question: Does L(A1) ⊆ L(A2) hold?

Theorem 23 CP is PSPACE-complete.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

92

3. Reduction and Completeness

Complete problems for EXPTIME

Theorem 24 ULP is EXPTIME-complete.

Theorem 25 The initial secrecy problem for bounded pro-

tocols without freshness check is EXPTIME-complete.

Proof Reduce ULP to the initial secrecy problem. 2

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

93

4. Hierarchies of complexity classes

Space and time constructible functions:

• A function f(n) is said to be time constructible if there

exists an f(n) time-bounded DTM that for each n has an

input of length n on which it makes exactly f(n) moves.

• A function f(n) is said to be fully time constructible if

there exists a DTM that makes exactly f(n) moves on

each input of length n.

In a similar way one can define space constructibility and fully

space constructibility.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

94

4. Hierarchies of complexity classes

Space and time constructible functions:

• A function f(n) is said to be time constructible if there

exists a f(n) time-bounded DTM that for each n has an

input of length n on which it makes exactly f(n) moves.

• A function f(n) is said to be fully time constructible if

there exists a DTM that makes exactly f(n) moves on

each input of length n.

In a similar way one can define space constructibility and fully

space constructibility.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

95

4. Hierarchies of complexity classes

Theorem 26 (Hartmanis, Lewis, Sterns)

Let f1(n) and f2(n) be two functions such that:

• f1(n) ≥ logn;

• f2(n) is fully space constructible;

• inf(f1(n)/f2(n)) = 0.

Then, there exists a language L such that

L ∈ SPACE(f2(n))− SPACE(f1(n)).

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

96

4. Hierarchies of complexity classes

Corollary 5 Under the hypothesis of Theorem 26 and the

supplementary assumption that f1(n) ≤ f2(n), we obtain

SPACE(f1(n)) ⊂ SPACE(f2(n)).

Corollary 6 For any k ≥ 1,

SPACE(nk) ⊂ SPACE(nk+1).

Corollary 7 NL ⊂ PSPACE.

Proof Use Savitch’s Theorem. 2

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

97

4. Hierarchies of complexity classes

Corollary 8 PSPACE ⊂ EXPSPACE.

Corollary 9 There are problems in PSPACE requiring an ar-

bitrarily large exponent to solve. Therefore, PSPACE does

not collapse to SPACE(nk), for some constant k.

Corollary 10 L 6= SPACE(log2 n). Therefore, L 6= NL or

NL 6= SPACE(log2 n).

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

98

4. Hierarchies of complexity classes

Theorem 27 Let f1(n) and f2(n) be two functions such

that:

• f2(n) is fully time constructible;

• inf(f1(n) log f1(n)/f2(n)) = 0.

Then, there exists a language L such that

L ∈ TIME(f2(n))− TIME(f1(n)).

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

99

4. Hierarchies of complexity classes

Corollary 11 Under the hypothesis of Theorem 27 and the

supplementary assumption that f1(n) ≤ f2(n), we obtain

TIME(f1(n)) ⊂ TIME(f2(n)).

Corollary 12 TIME(2n) ⊂ TIME(n22n).

Theorem 27 cannot be applied to

f1(n) = 2n and f2(n) = n2n

.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

100

4. Hierarchies of complexity classes

Lemma 1 (Translation lemma)

Let f1(n), f2(n), and g(n) be three functions such that:

• f1, f2, and g are fully space constructible;

• f2(n) ≥ n and g(n) ≥ n.

For any K ∈ {SPACE, TIME,NSPACE,NTIME}, if

K(f1(n)) ⊆ K(f2(n)),

then

K(f1(g(n))) ⊆ K(f2(g(n))).

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

101

4. Hierarchies of complexity classes

Corollary 13 TIME(2n) ⊂ TIME(n2n).

Corollary 14 NSPACE(nr) ⊂ NSPACE(nr+ǫ), for any real

numbers r ≥ 1 and ǫ > 0.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

102

