
COT5310: Formal Languages and

Automata Theory

Lecture Notes #2: Decidability

Dr. Ferucio Laurenţiu Ţiplea

Visiting Professor

School of Computer Science

University of Central Florida

Orlando, FL 32816

E-mail: tiplea@cs.ucf.edu

http://www.cs.ucf.edu/~tiplea

Decidability

1. Introduction to decidability

2. Undecidability

3. Decidability

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

1

1. Introduction to decidability

When a formalism is developed, the following questions are

crucial:

• expressive power – What can I say?

• decidable questions – What can I prove?

• complexity questions – How hard is to prove it?

• axiomatics – How should I prove it?

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

2

1. Introduction to decidability

What is an algorithmic problem? An algorithmic problem is

a function f : I→F, where I and F are two sets at most

countable.

As we will only consider algorithmic problems, we will simply

call them problems.

I is called the set of initial data or instances of f , and F is

the set of final data.

When |F| = 2 (F = {0,1} or F = {⊤,⊥} or F = {yes, no}

etc.), f is called a decision problem; otherwise, it is called a

computational problem.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

3

1. Introduction to decidability

Example 1

• f : N
2→N given by f(x, y) = x + y, is a computational

problem (the “addition problem”). Each pair (x, y) ∈ N2

is an instance of this problem;

• f : N→{0,1} given by f(x) = 1 if and only if x is a prime,

is a decision problem. Each x ∈ N is an instance of this

problem.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

4

1. Introduction to decidability

Let f : I→F be a problem. As I and F are at most count-

able, they can be encoded as words over a given alphabet Σ.

Therefore, we may assume that I,F ⊆ Σ∗.

Example 2 Examples of encodings:

• A ⊆ N ; {ax|x ∈ A}, over Σ = {a};

• A ⊆ N2
; {ax#by|(x, y) ∈ A}, over Σ = {a, b,#};

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

5

1. Introduction to decidability

Turing machines are a good model for the study of algo-

rithms, since we can conceive of

• computations with arbitrarily large inputs on their tapes,

using an

• arbitrarily large amount of intermediate storage during a

computation, and taking an

• arbitrarily large amount of time.

Moreover, Turing machines are universal, in the sense that

every known algorithm can be executed by some Turing ma-

chine.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

6

1. Introduction to decidability

Consider the following algorithm:

Algorithm A

input: x ∈ N;

output: “yes”, if x < 5, and “no”, if x = 5;

begin

i := x;

while i > 5 do i := i + 1;

if i < 5 then “yes” else if i = 5 then “‘no”;

end.

• accept(A) = {0,1,2,3,4}

• reject(A) = {5}

• loop(A) = {x ∈ N|x > 5}

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

7

1. Introduction to decidability

Let f : I→{0,1} be a decision problem, where I ⊆ Σ∗. The

language associated to f is the set Lf = {w ∈ I|f(w) = 1}.

f is called decidable if its language is recursive.

f decidable ⇔ there exists an algorithm (Turing ma-

chine) that decides f (Lf)

f is called semi-decidable if its language is recursively enu-

merable.

f semi-decidable ⇔ there exists an algorithm (Turing

machine) that semi-decides f (Lf)

f is called undecidable if it is not decidable.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

8

1. Introduction to decidability

A decision problem f : I→{0,1} is reducible to a decision

problem g : I′→{0,1}, abbreviated f ≺ g, if there exists an

algorithm (Turing machine) M such that:

• (∀x ∈ I)(M(x) ∈ I′);

• (∀x ∈ I)(f(x) = 1 ⇔ g(M(x)) = 1).

Proposition 1 Let f and g be decision problems.

• If f ≺ g and g is decidable, then f is decidable.

• If f ≺ g and f is undecidable, then g is undecidable.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

9

2. Undecidability

2.1. The halting problem

2.2. Rice’s theorem revised

2.3. Post correspondence problem

2.4. Domino problems

2.5. Hilbert’s 10th problem and consequences

2.6. The word problem for finitely presented monoids

2.7. Valid and invalid computations

2.8. Greibach’s theorem and applications

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

10

2.1. The Halting Problem

2.1.1. The halting problem and its undecidability

2.1.2. Stack machines. Counter machines

2.1.3. Applications to Petri nets

2.1.4. Applications to security protocols

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

11

2.1.1. The Halting Problem and its Undecidability

The halting problem for a given algorithmic formalism is the

problem of whether or not a given procedure of the formalism

when executed with a given input eventually terminates.

The Halting Problem

Instance: algorithm A (Turing machine M) and input x;

Question: does A (M) halt on x?

Theorem 1 The halting problem for Turing machines is un-

decidable.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

12

2.1.1. The Halting Problem and its Undecidability

Proof Assume that there exists an algorithm A that decides

the halting problem. Denote by 〈B〉 an arbitrary but fixed

encoding of an algorithm B. Let D be the following algorithm:

Algorithm D

input: algorithm B;

output: 0 if B(〈B〉)↑;

begin

y := A(B, 〈B〉);

if y = 0 then 0 else loop forever

end.

It is easy to see that D(〈D〉)↑ ⇔ D(〈D〉)↓, which is a con-

tradiction. 2

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

13

2.1.1. The Halting Problem and its Undecidability

There are several variants on the halting problem.

The Empty-input Halting Problem

Instance: algorithm A (Turing machine M);

Question: does A (M) halt on the empty-input?

Corollary 1 The empty-input halting problem for Turing ma-

chines is undecidable.

Proof We exhibit a reduction from the halting problem:

(A, x) ; A′

where A′, on the empty-input, generates x and then simulates

A on x.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

14

2.1.1. The Halting Problem and its Undecidability

Given an algorithm A and an input x for it, define the algo-

rithm A′ as follows:

Algorithm A′

input: none;

output: z = A(x);

begin

z := A(x);

end.

Clearly, A(x)↓ iff A′↓. 2

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

15

2.1.1. The Halting Problem and its Undecidability

The Uniform Halting Problem

Instance: algorithm A (Turing machine M);

Question: does A (M) halt on all inputs?

Corollary 2 The uniform halting problem for Turing ma-

chines is undecidable.

Proof We exhibit a reduction from the halting problem:

(A, x) ; A′

where A′, on an arbitrary input y, erases y, generates x, and

then simulates A on x.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

16

2.1.1. The Halting Problem and its Undecidability

Given an algorithm A and an input x for it, define the algo-

rithm A′ as follows:

Algorithm A′

input: y;

output: z = A(x);

begin

z := A(x);

end.

Clearly, A(x)↓ iff (∀y)(A′(y)↓. 2

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

17

2.1.2. Multistack Machines. Counter Machines

A k-stack machine, abbreviated k-SM, is a 7-tuple (Q,Σ,Γ, δ, q0, Z, F),

where:

• Q is a non-empty finite set of states

• q0 ∈ Q is the initial state

• F ⊆ Q is the final set of states

• Σ is the input alphabet

• Γ is the stack alphabet

• Z ∈ Γ − Σ is the bottom-of-stack marker

• δ : Q×(Σ∪{λ})×(Γ)k
; Q×(Γ∗)k is the transition function

satisfying the property that the bottom-of-stack marker

Z “cannot be erased” and it “cannot appear elsewhere

on the stacks”.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

18

2.1.2. Multistack Machines. Counter Machines

z z

a ab cd

stacks

input tape - read-only

q

$

$ - endmarker

Z - bottom-of-stack marker

Stack machine

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

19

2.1.2. Multistack Machines. Counter Machines

Computation relation:

(q, u|av, Zu1X1, . . . , ZukXk) ⊢ (q′, ua|v, γ1, . . . , γk)

iff

δ(q, a, X1, . . . , Xk) = (q′, γ1, . . . , γk)

where u, v ∈ Σ∗, a ∈ Σ ∪ {λ}, u1X1, . . . , ukXk ∈ Γ∗.

Theorem 2 A language is accepted by a Turing machine iff

it is accepted by a 2-stack machine.

Corollary 3 The halting problem for 2-stack machines is un-

decidable.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

20

2.1.2. Multistack Machines. Counter Machines

A k-counter machine, abbreviated k-CM, is a k-SM M =

(Q,Σ,Γ, δ, q0, Z, F) such that |Γ| = 2.

Theorem 3 A language is accepted by a Turing machine iff

it is accepted by a 2-CM.

Corollary 4 The halting problem for 2-counter machines is

undecidable.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

21

2.1.2. Multistack Machines. Counter Machines

A ”simplified’ version of counter machines:

M = (Q, q0, qf , C, x0, I),

where:

• Q is a non-empty finite set of states;

• q0 ∈ Q is the initial state, and qf ∈ Q is the final state;

• C is a finite set of counters, each of which being able to

hold a natural number;

• x0 : C→N is the initial content of counters;

• I is a finite set of instructions. For each state there is at

most an instruction that can be executed at that state;

for qf there is no instruction. Each instruction is of the

one of the following forms:

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

22

2.1.2. Multistack Machines. Counter Machines

– increment instruction I(q, c, q′)

q : begin

c := c + 1;

go to q′

end

– test instruction I(q, c, q′, q′′)

q : begin

if c = 0 then go to q′

else begin

c := c − 1;

go to q′′

end

end

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

23

2.1.2. Multistack Machines. Counter Machines

A configuration is a pair (q, x), where q ∈ Q and x : C→N . A
configuration (q, x) is called initial if q = q0 and x = x0. A
configuration (q, x) is called final if q = qf .

Computation:

(q, x) ⊢ (q′, x′)

iff one of the following holds:

• there exists I(q, c, q′) such that x′(c) = x(c)+1 and x′(c′) =
x(c′), for all c′ ∈ C − {c};

• there exists I(q, c, q1, q2) such that

– if x(c) = 0, then q′ = q1 and x′ = x;

– if x(c) 6= 0, then q′ = q2, x′(c) = x(c)− 1, and x′(c′) =
x(c), for all c′ ∈ C − {c}.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

24

2.1.3. Applications to Petri Nets

Petri nets, abbreviated PN, have been introduced by Carl

Adam Petri in 1962 as models of distributed systems, where

concurrency and communication play an important role.

A PN is a system Σ = (S, T, F, W), where:

• S is a finite non-empty set of places;

• T is a finite non-empty set of transitions;

• S ∩ T = ∅;

• F ⊆ S × T ∪ T × S is the flow relation;

• W : S × T ∪ T × S→N is the weight function satisfying

W (x, y) = 0 iff (x, y) 6∈ F .

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

25

2.1.3. Applications to Petri Nets

Configurations in Petri net theory are called markings, and

they are defined as functions M : S→N.

Because S is a finite set, markings are usually represented as

S-dimensional vectors.

Computation (firing) rule:

• A transition t is enabled at M , denoted M [t〉, if

W (s, t) ≥ M(s),

for all s ∈ S;

• If t is enabled at M then t may fire yielding a new marking

M ′ given by

M ′(s) = M(s) − W (s, t) + W (t, s),

for all s ∈ S. We denote this by M [t〉M ′.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

26

2.1.3. Applications to Petri Nets

Graphical representation:

Example 3 Vending machine:

j

j

j

j

j

j
*

��*
--

HHj

HHY ��� HHY
�

t5

s6

s5 s4 t3

t1s1

s2

s3
t2

t4

s1 = ready

s2 = counter

s3 = inserted

s4 = accepted

s5 = warm

s6 = cold

t1 = insert

t2 = reject

t3 = accept

t4 = dispense

t5 = brew

q q

q q

�
})j

=

(1,0,0,0,2,1)[t1〉(0,1,1,0,2,1)[t3〉(0,1,0,1,2,1)[t4〉(1,1,0,0,3,0)

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

27

2.1.3. Applications to Petri Nets

A pair γ = (Σ, M0), where Σ is a Petri net and M0 is a
marking of Σ is called a marked Petri net.

A marking M is reachable in γ if there exists a sequence of
transitions w ∈ T ∗ such that M0[w〉M .

A marking M is coverable in γ if there exists a reachable
marking M ′ in γ such that M ′ ≥ M (the inequality on vectors
is componentwise understood).

γ is bounded if there exists n ∈ N such that M(s) ≤ n, for
any s ∈ S and reachable marking M .

A transition t of γ is live if for any reachable marking M there
exists M ′ reachable from M such that M ′[t〉. If all transitions
are live, the γ is called live.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

28

2.1.3. Applications to Petri Nets

Basic decision problems in Petri net theory: reachability, cov-

erability, boundedness, and liveness.

All these problems are decidable for Petri nets (details will be

provided in a separate section). However, they are undecid-

able for almost all Petri net extensions. For instance, we will

prove that they are undecidable for inhibitor Petri nets (see

InhibitorPetriNets.pdf).

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

29

2.1.4. Applications to Security Protocols

see SecurityProtocols.pdf

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

30

2.3. Post’s Correspondence Problem

2.3.1. Post’s correspondence problem

2.3.2. Applications to first-order logic

2.3.3. Applications to formal language theory

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

31

2.3.1. Post’s Correspondence Problem

• Emil Post. A Variant of a Recursively Unsolvable Prob-

lem, Bulletin of the AMS 52, 1946, 264–268

(see Post1946.pdf).

Post’s Correspondence Problem (PCP)

Instance: list of pairs of words L = {(u1, v1), . . . , (un, vn)}

Question: Is there any list of numbers i1, . . . , ik s.t.

ui1 · · ·uik
= vi1 · · · vik

?

Any list of numbers i1, . . . , ik such that

ui1 · · ·uik
= vi1 · · · vik

is called a solution of L.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

32

2.3.1. Post’s Correspondence Problem

Example 4 The list 1,2,1,3 is a solution to the PCP instance

L = {(a2, a2b), (b2, ba), (ab2, b)}

Example 5 The PCP instance

L = {(a2b, a2), (a, ba2)}

has no solution.

Example 6 The list 1,3,2,3 is a solution to the PCP instance

L = {(1,101), (10,00), (011,11)}

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

33

2.3.1. Post’s Correspondence Problem

Proposition 2 The PCP instance

L = {(ak1, al1), . . . , (akn, aln)

has solutions if and only if

1. there exists i such that ki = li, or

2. there exist i and j such that ki > li and kj < lj.

Corollary 5 PCP over one-letter alphabets is decidable.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

34

2.3.1. Post’s Correspondence Problem

Proposition 3 Any PCP instance over an alphabet Σ with

|Σ| ≥ 2 is equivalent to a PCP instance over an alphabet ∆

with |∆| = 2.

Proof Assume Σ = {a1, . . . , an} and n > 2. Let ∆ = {a, b},

where a 6= b.

Encode ai by baib, for any i. 2

Define:

• PCP1 – PCP instances over one-letter alphabets

• PCP2 – PCP instances over two-letter alphabets

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

35

2.3.1. Post’s Correspondence Problem

Theorem 4 PCP is undecidable.

Proof Show that the halting problem for Post machines,

which are equivalent to Turing machines, can be reduced to

PCP. 2

Corollary 6 PCP2 is undecidable.

Summary:

• PCP1 is decidable

• PCP2 is undecidable

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

36

2.3.1. Post’s Correspondence Problem

Other variations:

• PCP (n) – PCP instances of length n

(L = {(u1, v1), . . . , (un, vn)})

• PCP1(n)

• PCP2(n)

PCP1(n) is decidable, for all n.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

37

2.3.1. Post’s Correspondence Problem

Theorem 5 (Ehrenfeucht, Karhumaki, Rozenberg, 1982)

PCP(2) is decidable.

For a simpler proof than the original one see HaHH2000.pdf.

Theorem 6 Matiyasevich, Senizergues, 1996)

PCP(7) is undecidable.

Proof See MaSe1996.pdf. 2

Open problems: PCP(3),...,PCP(6)

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

38

2.3.2. Applications of PCP to First-order Logic

Validity problem for first-order logic (VPFOL)

Instance: First-order formula φ

Question: Is φ valid?

Satisfiability problem for first-order logic (SPFOL)

Instance: First-order formula φ

Question: Is φ satisfiable?

These two decision problems are equivalent because

φ is valid ⇔ ¬φ is not satisfiable

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

39

2.3.2. Applications of PCP to First-order Logic

Theorem 7 VPFOL is undecidable.

Proof Reduce PCP2 to VPFOL. Given a PCP2 instance

L = {(u1, v1), . . . , (un, vn)}

over Σ = {0,1}, define a formula φ such that

L has solutions ⇔ φ is valid

φ is defined as follows:

• let a be a constant. It will interpreted by λ in some

interpretation I;

• let f0 and f1 be function symbols. They will be inter-

preted by I(f0)(x) = x0 and I(f1)(x) = x1. We will

simply write fb1···bk
(x) instead of fbk

(· · · fb1
(x) · · ·);

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

40

2.3.2. Applications of PCP to First-order Logic

• let P be a predicate symbol. It will be interpreted by

I(P)(x, y) ⇔ x, y ∈ Σ∗ ∧ x = ui1 · · ·uik
∧ y = vi1 · · · vik

,

for some i1, . . . , ik

• let φ1 be the formula φ1 = ∧k
i=1P (fui(a), fvi(a))

• let φ2 be the formula φ2 = (∀u, v)(P (u, v) ⇒ ∧k
i=1P (fui(u), fvi(u))

• let φ3 be the formula φ3 = (∃x)(P (x, x))

• let φ be the formula φ = (φ1 ∧ φ2 ⇒ φ3)

Then,

L has solutions ⇔ φ is valid

which concludes the proof. 2

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

41

2.3.3. Applications of PCP to Formal Language Theory

Intersection problem for CFL (IPCFL)

Instance: context-free grammars G1 and G2

Question: Is L(G1) ∩ L(G2) 6= ∅?

Theorem 8 IPCFL is undecidable.

Proof Reduce PCP to IPCFL. Given a PCP instance

L = {(u1, v1), . . . , (un, vn)}

over Σ, define two CF-grammars G1 and G2 such that

L has solutions ⇔ L(G1) ∩ L(G2) 6= ∅

The grammars are:

• G1 : S→iSui|iui, for all i

• G2 : S→iSvi|ivi, for all i

2

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

42

2.3.3. Applications of PCP to Formal Language Theory

Equivalence problem for CFG (EPCFG)

Instance: context-free grammars G1 and G2

Question: Is L(G1) = L(G2)?

Theorem 9 EPCFG is undecidable.

Proof Reduce ¬PCP to EPCFG. Given a PCP instance

L = {(u1, v1), . . . , (un, vn)}

over Σ, define two CF-grammars G1 and G2 such that

L has no solution ⇔ L(G1) = L(G2)

Define two grammars G1 and G2 such that

• G1 generates L(G1) = {1, . . . , n}∗#Σ∗, where # is a new

symbol;

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

43

2.3.3. Applications of PCP to Formal Language Theory

• G2 generates L(G2) = (L(G1) − A) ∪ (L(G1) − B), where

– A = {i1 · · · ik#uik
· · ·ui1|i1, . . . , ik ∈ {1, . . . , n}}

– B = {i1 · · · ik#vik
· · · vi1|i1, . . . , ik ∈ {1, . . . , n}}

It is easy to see that two context-free grammars G1 and G2

as above exist, and L has no solution iff L(G1) = L(G2). 2

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

44

2.3.3. Applications of PCP to Formal Language Theory

Ambiguity problem for CFG (APCFG)
Instance: context-free grammar G

Question: Is G ambiguous?

Theorem 10 APCFG is undecidable.

Proof Reduce PCP to APCFG. Given a PCP instance

L = {(u1, v1), . . . , (un, vn)}

over Σ, define a CFG G such that

L has solutions ⇔ G is ambiguous

Define G by

• S→S1|S2, S1→uiS1i|uii, S2→viS2i|vii,

for all i. 2

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

45

2.6. The word problem for finitely presented monoids

A semi-group (S, ·) is called finitely presented if there exists

a finite set A of generators for S and a finite set E of equa-

tions over A (i.e., pairs of words over A) such that any valid

equation in S can be obtained by derivation from E. That

is, if t = t′ is valid in S, then t
∗
⇒E t′.

Example 7 Let S be a semi-group generated by A = {a1, a2, a3}

under the equations

• a2a1 = a1a2

• a3a2 = a2a2a3

• a3a1 = a1.

Then, a1a2a2 = a1a2 is valid in S.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

46

2.6. The word problem for finitely presented monoids

Word Problem for Semi-groups (WPSG)

Instance: finite semi-group presentation (A, E) and

equation t = t′

Question: Does t = t′ hold true in the semi-group

presented by (A, E)?

This problem was shown to be undecidable in:

• Emil Post. Recursive Unsolvability of a Problem of Thue,

Journal of Symbolic Logic 12, 1947, 1–11.

The problem can be reduced to the reachability problem for

Thue systems.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

47

2.6. The word problem for finitely presented monoids

• Axel Thue. Probleme über Veranderungen von Zeichen-

reihen nach gegeben regeln, Skr. Vid. Kristiania, I Mat.

Naturv. Klasse 10, 1914.

A Thue system over an alphabet Σ is any set of unordered

pairs of words over Σ. Each pair {t, t′} is usually written as

t = t′.

A semi-Thue system over an alphabet Σ is any set of ordered

pairs of words over Σ. Each pair (t, t′) is usually written as

t→t′.

Reachability Problem for Semi-Thue Systems (RPSTS)

Instance: semi-Thue system R and words t and t′

Question: Does t
∗
⇒R t′?

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

48

2.6. The word problem for finitely presented monoids

Theorem 11 The reachability problem for (semi-)Thue sys-

tems is undecidable.

Proof Reduce the halting problem for Turing machines to

this problem. 2

Corollary 7 The word problem for finitely presented semi-

groups (monoids) is undecidable.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

49

2.6. The word problem for finitely presented monoids

Term rewriting systems and related problems:

TermRewritingSystems.pdf

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

50

3. Decidability

Techniques for proving decidability:

• reducibility: if a problem A is reducible to a problem B

and B is decidable, then A is decidable;

• ad hoc techniques.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

51

3. Decidability

Coverability tree based techniques

General remarks:

• a coverability tree reduces the analysis of an infinite state

space to the analysis of a finite state space;

• cut off infinite branches and add extra information to the

leaf nodes;

• some properties of the original state space (reachability

tree) may be lost.

We illustrate the technique on vector addition systems.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

52

3. Decidability

A vector addition system (VAS) is a couple W = (W, v0),

where:

• W is a finite set of n-dimensional vectors with integer

components (W = {v1, . . . , vk} ⊆ Zn);

• v0 is an n-dimensional vector with positive integer com-

ponents (v0 ∈ Nn).

Example 8 W = (W, v0), where

W = {(−1,1,0,1), (0,−1,0,0), (1,0,0,−1), (0,0,−1,1)}

and v0 = (1,0,0,1), is a vector addition system.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

53

3. Decidability

Let W = (W, v0) be a VAS, x ∈ Zn, and v ∈ W .

• v is enabled at x, denoted x[v〉 or x
v
→, if x+ v ≥ 0. W (x)

stands for the set {v ∈ W |x[v〉};

• if v is enabled at x then v may be applied yielding a new

vector x′ given by x′ = x+ v. We denote this by x[v〉x′ or

x
v
→ x′;

• ⇒ =
⋃

v∈W
v
→;

•
+
⇒ is the reflexive and transitive closure of ⇒;

• x is reachable in W if d
+
⇒ x;

• [v0〉 is the set of all reachable vectors in W, called the

reachability set of W;

• x is coverable in W if v0
+
⇒ x′ and x′ ≥ x, for some x′;

• v is dead in W if ¬(x[v〉), for any x reachable in W.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

54

3. Decidability

Let W = (W, v0) be a VAS. A labeled tree R = (V, E, l1, l2) is

a reachability tree of W if:

1. its root x0 is labeled by v0, i.e., l1(x0) = v0;

2. ∀x ∈ V , |x+| = |W (l1(x))|;

3. ∀x ∈ V with |x+| > 0 and ∀v ∈ W (l1(x)) there exists

x′ ∈ x+ such that:

(a) l1(x
′) = l1(x) + v;

(b) l2(x, x′) = v.

Any two reachability trees of W are isomorphic. Therefore,

we may talk about the reachability tree of W, denoted R(W).

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

55

3. Decidability

Proposition 4 Let W = (W, v0) be a VAS. Then,

1. R(W) is finitely branched;

2. x in R(W) is a leaf node iff no vector in W is enabled at

l1(x);

3. [v0〉 = {l1(x)|x ∈ V }.

R(W) may be infinite even if [v0〉 is finite !

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

56

3. Decidability

We will derive a finite structure from R(W).

Let ω 6∈ Z and Zω = Z ∪ {ω}. Extend + and < to Zω by:

• n + ω = ω + n = ω, for any n ∈ Z;

• n < ω, for any n ∈ Z.

The notation x[v〉 etc. is usually extended to vectors over

Zω.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

57

3. Decidability

Let W = (W, v0) be a VAS. A labelled tree T = (V, E, l1, l2)

is a coverability tree of W if:

1. its root x0 is labelled by v0, i.e., l1(x0) = v0;

2. ∀x ∈ V ,

|x+| =











0, W (l1(x)) = ∅ or

(∃x′ ∈ dT (x0, x))(x 6= x′ ∧ l1(x) = l1(x
′))

|W (l1(x))|, otherwise

3. ∀x ∈ V with |x+| > 0 and ∀v ∈ W (l1(x)) there exists

x′ ∈ x+ such that:

(a) l1(x
′)(i) = ω if (∃x′′ ∈ dT (x0, x))(l1(x

′′) ≤ l1(x) + v ∧

l1(x
′′)(i) < (l1(x)+v)(i)), and l1(x

′)(i) = (l1(x)+v)(i),

otherwise (for any i);

(b) l2(x, x′) = v.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

58

3. Decidability

Any two coverability trees of W are isomorphic. Therefore,

we may talk about the coverability tree of W, denoted T (W).

Proposition 5 Let W = (W, v0) be a VAS and T (W) =

(V, E, l1, l2) its coverability tree. Then:

1. T (W) is finitely branched;

2. x in T (W) is a leaf node iff W (l1(x)) = ∅ or there exists

x′ ∈ dT (x0, x) such that x 6= x′ and l1(x) = l1(x
′);

3. let xi0, xi1, . . . , xim be pairwise distinct nodes such that

xij ∈ dT (γ)(x0, xij+1
), for any 0 ≤ j ≤ m − 1.

(a) if l1(xi0) = l1(xi1) = · · · = l1(xim), then m ≤ 1;

(b) if l1(xi0) < l1(xi1) < · · · < l1(xim), then m ≤ n;

4. T (γ) is finite.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

59

3. Decidability

Theorem 12 Let W = (W, v0) be a VAS and T (W) = (V, E, l1, l2)

its coverability tree. Then, a vector x is coverable in W iff it

is coverable in T (W).

Corollary 8 Coverability, deadness and finiteness problems

are decidable for VASs.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

60

