COT5310: Formal Languages and Automata Theory

Lecture Notes #2: Decidability

Dr. Ferucio Laurențiu Ţiplea

Visiting Professor School of Computer Science University of Central Florida Orlando, FL 32816 E-mail: tiplea@cs.ucf.edu http://www.cs.ucf.edu/~tiplea

- 1. Introduction to decidability
- 2. Undecidability
- 3. Decidability

When a formalism is developed, the following questions are crucial:

- expressive power What can I say?
- decidable questions What can I prove?
- complexity questions How hard is to prove it?
- axiomatics How should I prove it?

What is an algorithmic problem? An algorithmic problem is a function $f : \mathcal{I} \rightarrow \mathcal{F}$, where \mathcal{I} and \mathcal{F} are two sets at most countable.

As we will only consider algorithmic problems, we will simply call them problems.

 \mathcal{I} is called the set of initial data or instances of f, and \mathcal{F} is the set of final data.

When $|\mathcal{F}| = 2$ ($\mathcal{F} = \{0, 1\}$ or $\mathcal{F} = \{\top, \bot\}$ or $\mathcal{F} = \{yes, no\}$ etc.), f is called a decision problem; otherwise, it is called a computational problem.

Example 1

- $f : \mathbb{N}^2 \to \mathbb{N}$ given by f(x, y) = x + y, is a computational problem (the "addition problem"). Each pair $(x, y) \in \mathbb{N}^2$ is an instance of this problem;
- f: N→{0,1} given by f(x) = 1 if and only if x is a prime, is a decision problem. Each x ∈ N is an instance of this problem.

Let $f : \mathcal{I} \to \mathcal{F}$ be a problem. As \mathcal{I} and \mathcal{F} are at most countable, they can be encoded as words over a given alphabet Σ . Therefore, we may assume that $\mathcal{I}, \mathcal{F} \subseteq \Sigma^*$.

Example 2 Examples of encodings:

- $A \subseteq \mathbf{N} \quad \rightsquigarrow \quad \{a^x | x \in A\}, \text{ over } \mathbf{\Sigma} = \{a\};$
- $A \subseteq \mathbb{N}^2 \quad \rightsquigarrow \quad \{a^x \# b^y | (x, y) \in A\}, \text{ over } \Sigma = \{a, b, \#\};$

Turing machines are a good model for the study of algorithms, since we can conceive of

- computations with arbitrarily large inputs on their tapes, using an
- arbitrarily large amount of intermediate storage during a computation, and taking an
- arbitrarily large amount of time.

Moreover, Turing machines are universal, in the sense that every known algorithm can be executed by some Turing machine.

Consider the following algorithm:

- $accept(A) = \{0, 1, 2, 3, 4\}$
- $reject(\mathcal{A}) = \{5\}$
- $loop(\mathcal{A}) = \{x \in \mathbb{N} | x > 5\}$

Let $f : \mathcal{I} \to \{0, 1\}$ be a decision problem, where $\mathcal{I} \subseteq \Sigma^*$. The language associated to f is the set $L_f = \{w \in \mathcal{I} | f(w) = 1\}$.

f is called decidable if its language is recursive.

f decidable \Leftrightarrow there exists an algorithm (Turing machine) that decides f (L_f)

f is called semi-decidable if its language is recursively enumerable.

f semi-decidable \Leftrightarrow there exists an algorithm (Turing machine) that semi-decides $f(L_f)$

f is called undecidable if it is not decidable.

A decision problem $f : \mathcal{I} \rightarrow \{0, 1\}$ is reducible to a decision problem $g : \mathcal{I}' \rightarrow \{0, 1\}$, abbreviated $f \prec g$, if there exists an algorithm (Turing machine) M such that:

- $(\forall x \in \mathcal{I})(M(x) \in \mathcal{I}');$
- $(\forall x \in \mathcal{I})(f(x) = 1 \iff g(M(x)) = 1).$

Proposition 1 Let f and g be decision problems.

- If $f \prec g$ and g is decidable, then f is decidable.
- If $f \prec g$ and f is undecidable, then g is undecidable.

- 2.1. The halting problem
- 2.2. Rice's theorem revised
- 2.3. Post correspondence problem
- 2.4. Domino problems
- 2.5. Hilbert's 10th problem and consequences
- 2.6. The word problem for finitely presented monoids
- 2.7. Valid and invalid computations
- 2.8. Greibach's theorem and applications

- 2.1.1. The halting problem and its undecidability
- 2.1.2. Stack machines. Counter machines
- 2.1.3. Applications to Petri nets
- 2.1.4. Applications to security protocols

(21.1. The Halting Problem and its Undecidability

The halting problem for a given algorithmic formalism is the problem of whether or not a given procedure of the formalism when executed with a given input eventually terminates.

The Halting Problem

Instance: algorithm \mathcal{A} (Turing machine M) and input x; Question: does \mathcal{A} (M) halt on x?

Theorem 1 The halting problem for Turing machines is undecidable.

2.1.1. The Halting Problem and its Undecidability

Proof Assume that there exists an algorithm \mathcal{A} that decides the halting problem. Denote by $\langle \mathcal{B} \rangle$ an arbitrary but fixed encoding of an algorithm \mathcal{B} . Let \mathcal{D} be the following algorithm:

It is easy to see that $\mathcal{D}(\langle \mathcal{D} \rangle)\uparrow \Leftrightarrow \mathcal{D}(\langle \mathcal{D} \rangle)\downarrow$, which is a contradiction.

There are several variants on the halting problem.

The Empty-input Halting ProblemInstance:algorithm \mathcal{A} (Turing machine M);Question:does \mathcal{A} (M) halt on the empty-input?

Corollary 1 The empty-input halting problem for Turing machines is undecidable.

Proof We exhibit a reduction from the halting problem:

$$(\mathcal{A}, x) \quad \rightsquigarrow \quad \mathcal{A}'$$

where \mathcal{A}' , on the empty-input, generates x and then simulates \mathcal{A} on x.

2.1.1. The Halting Problem and its Undecidability

Given an algorithm \mathcal{A} and an input x for it, define the algorithm \mathcal{A}' as follows:

```
\begin{array}{l} \underline{ \text{Algorithm }\mathcal{A}'} \\ \hline \text{input: none;} \\ \text{output: } z = \mathcal{A}(x); \\ \text{begin} \\ z := \mathcal{A}(x); \\ \text{end.} \end{array}
```

Clearly, $\mathcal{A}(x) \downarrow$ iff $\mathcal{A}' \downarrow$.

The Uniform Halting Problem

Instance:algorithm \mathcal{A} (Turing machine M);Question:does \mathcal{A} (M) halt on all inputs?

Corollary 2 The uniform halting problem for Turing machines is undecidable.

Proof We exhibit a reduction from the halting problem:

$$(\mathcal{A}, x) \quad \rightsquigarrow \quad \mathcal{A}'$$

where \mathcal{A}' , on an arbitrary input y, erases y, generates x, and then simulates \mathcal{A} on x.

2.1.1. The Halting Problem and its Undecidability

Given an algorithm \mathcal{A} and an input x for it, define the algorithm \mathcal{A}' as follows:

```
\begin{array}{l} \underline{\text{Algorithm }\mathcal{A}'}\\ \hline \text{input: }y\text{;}\\ \text{output: }z=\mathcal{A}(x)\text{;}\\ \text{begin}\\ z \mathrel{\mathop:}= \mathcal{A}(x)\text{;}\\ \text{end.} \end{array}
```

Clearly, $\mathcal{A}(x) \downarrow$ iff $(\forall y) (\mathcal{A}'(y) \downarrow$.

A *k*-stack machine, abbreviated k-SM, is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, Z, F)$, where:

- Q is a non-empty finite set of states
- $q_0 \in Q$ is the initial state
- $F \subseteq Q$ is the final set of states
- $\boldsymbol{\Sigma}$ is the input alphabet
- Γ is the stack alphabet
- $Z \in \Gamma \Sigma$ is the bottom-of-stack marker
- δ: Q×(Σ∪{λ})×(Γ)^k → Q×(Γ*)^k is the transition function satisfying the property that the bottom-of-stack marker Z "cannot be erased" and it "cannot appear elsewhere on the stacks".

input tape - read-only

\$ - endmarker

Z - bottom-of-stack marker

Stack machine

Computation relation:

$$(q, u | av, Zu_1X_1, \ldots, Zu_kX_k) \vdash (q', ua | v, \gamma_1, \ldots, \gamma_k)$$

iff

$$\delta(q, a, X_1, \dots, X_k) = (q', \gamma_1, \dots, \gamma_k)$$

where $u, v \in \Sigma^*$, $a \in \Sigma \cup \{\lambda\}$, $u_1 X_1, \dots, u_k X_k \in \Gamma^*$.

Theorem 2 A language is accepted by a Turing machine iff it is accepted by a 2-stack machine.

Corollary 3 The halting problem for 2-stack machines is undecidable.

A k-counter machine, abbreviated k-CM, is a k-SM $M = (Q, \Sigma, \Gamma, \delta, q_0, Z, F)$ such that $|\Gamma| = 2$.

Theorem 3 A language is accepted by a Turing machine iff it is accepted by a 2-CM.

Corollary 4 The halting problem for 2-counter machines is undecidable.

A "simplified' version of counter machines:

$$M = (Q, q_0, q_f, C, x_0, I),$$

where:

- Q is a non-empty finite set of states;
- $q_0 \in Q$ is the initial state, and $q_f \in Q$ is the final state;
- C is a finite set of counters, each of which being able to hold a natural number;
- $x_0 : C \rightarrow N$ is the initial content of counters;
- I is a finite set of instructions. For each state there is at most an instruction that can be executed at that state; for q_f there is no instruction. Each instruction is of the one of the following forms:

- increment instruction I(q, c, q')q: begin c := c + 1;go to q'end - test instruction I(q, c, q', q'')q: begin if c = 0 then go to q'else begin c := c - 1;go to q''end end

A configuration is a pair (q, x), where $q \in Q$ and $x : C \rightarrow N$. A configuration (q, x) is called initial if $q = q_0$ and $x = x_0$. A configuration (q, x) is called final if $q = q_f$.

Computation:

$$(q,x) \vdash (q',x')$$

iff one of the following holds:

- there exists I(q, c, q') such that x'(c) = x(c)+1 and x'(c') = x(c'), for all $c' \in C \{c\}$;
- there exists $I(q, c, q_1, q_2)$ such that
 - if x(c) = 0, then $q' = q_1$ and x' = x;
 - if $x(c) \neq 0$, then $q' = q_2$, x'(c) = x(c) 1, and x'(c') = x(c), for all $c' \in C \{c\}$.

Petri nets, abbreviated PN, have been introduced by Carl Adam Petri in 1962 as models of distributed systems, where concurrency and communication play an important role.

A PN is a system $\Sigma = (S, T, F, W)$, where:

- S is a finite non-empty set of places;
- *T* is a finite non-empty set of transitions;
- $S \cap T = \emptyset;$
- $F \subseteq S \times T \cup T \times S$ is the flow relation;
- $W : S \times T \cup T \times S \rightarrow \mathbb{N}$ is the weight function satisfying W(x,y) = 0 iff $(x,y) \notin F$.

Configurations in Petri net theory are called markings, and they are defined as functions $M : S \rightarrow \mathbf{N}$.

Because S is a finite set, markings are usually represented as S-dimensional vectors.

Computation (firing) rule:

• A transition t is enabled at M, denoted $M[t\rangle$, if

 $W(s,t) \ge M(s),$

for all $s \in S$;

• If t is enabled at M then t may fire yielding a new marking M' given by

$$M'(s) = M(s) - W(s,t) + W(t,s),$$

for all $s \in S$. We denote this by $M[t\rangle M'$.

Graphical representation:

Example 3 Vending machine:

 $(1,0,0,0,2,1)[t_1\rangle(0,1,1,0,2,1)[t_3\rangle(0,1,0,1,2,1)[t_4\rangle(1,1,0,0,3,0)$

- UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

A pair $\gamma = (\Sigma, M_0)$, where Σ is a Petri net and M_0 is a marking of Σ is called a marked Petri net.

A marking M is reachable in γ if there exists a sequence of transitions $w \in T^*$ such that $M_0[w\rangle M$.

A marking M is coverable in γ if there exists a reachable marking M' in γ such that $M' \ge M$ (the inequality on vectors is componentwise understood).

 γ is bounded if there exists $n \in \mathbb{N}$ such that $M(s) \leq n$, for any $s \in S$ and reachable marking M.

A transition t of γ is live if for any reachable marking M there exists M' reachable from M such that $M'[t\rangle$. If all transitions are live, the γ is called live.

Basic decision problems in Petri net theory: reachability, coverability, boundedness, and liveness.

All these problems are decidable for Petri nets (details will be provided in a separate section). However, they are undecidable for almost all Petri net extensions. For instance, we will prove that they are undecidable for inhibitor Petri nets (see InhibitorPetriNets.pdf).

See SecurityProtocols.pdf

- 2.3.1. Post's correspondence problem
- 2.3.2. Applications to first-order logic
- 2.3.3. Applications to formal language theory

• Emil Post. A Variant of a Recursively Unsolvable Problem, Bulletin of the AMS 52, 1946, 264–268 (see Post1946.pdf).

Post's Correspondence Problem (PCP)Instance:list of pairs of words $L = \{(u_1, v_1), \dots, (u_n, v_n)\}$ Question:Is there any list of numbers i_1, \dots, i_k s.t.

$$u_{i_1}\cdots u_{i_k}=v_{i_1}\cdots v_{i_k}?$$

Any list of numbers i_1, \ldots, i_k such that

$$u_{i_1}\cdots u_{i_k}=v_{i_1}\cdots v_{i_k}$$

is called a solution of L.

Example 4 The list 1,2,1,3 is a solution to the PCP instance $L = \{(a^2, a^2b), (b^2, ba), (ab^2, b)\}$

Example 5 The PCP instance

$$L = \{(a^2b, a^2), (a, ba^2)\}$$

has no solution.

Example 6 The list 1,3,2,3 is a solution to the PCP instance

$$L = \{(1, 101), (10, 00), (011, 11)\}$$

Proposition 2 The PCP instance

$$L = \{(a^{k_1}, a^{l_1}), \dots, (a^{k_n}, a^{l_n})\}$$

has solutions if and only if

- 1. there exists *i* such that $k_i = l_i$, or
- 2. there exist *i* and *j* such that $k_i > l_i$ and $k_j < l_j$.

Corollary 5 PCP over one-letter alphabets is decidable.

Proposition 3 Any PCP instance over an alphabet Σ with $|\Sigma| \ge 2$ is equivalent to a PCP instance over an alphabet Δ with $|\Delta| = 2$.

Proof Assume $\Sigma = \{a_1, \ldots, a_n\}$ and n > 2. Let $\Delta = \{a, b\}$, where $a \neq b$.

Encode a_i by $ba^i b$, for any *i*.

Define:

- $PCP_1 PCP$ instances over one-letter alphabets
- *PCP*₂ PCP instances over two-letter alphabets

Theorem 4 PCP is undecidable.

Proof Show that the halting problem for Post machines, which are equivalent to Turing machines, can be reduced to PCP.

Corollary 6 *PCP*₂ is undecidable.

Summary:

- PCP_1 is decidable
- *PCP*₂ is undecidable

Other variations:

• PCP(n) - PCP instances of length n

$$(L = \{(u_1, v_1), \dots, (u_n, v_n)\})$$

- *PCP*₁(*n*)
- *PCP*₂(*n*)

 $PCP_1(n)$ is decidable, for all n.

Theorem 5 (Ehrenfeucht, Karhumaki, Rozenberg, 1982) PCP(2) is decidable.

For a simpler proof than the original one see HaHH2000.pdf.

Theorem 6 Matiyasevich, Senizergues, 1996) PCP(7) is undecidable.

Proof See MaSe1996.pdf.

Open problems: PCP(3),...,PCP(6)

Validity problem for first-order logic (VPFOL)

Instance: First-order formula ϕ Question: Is ϕ valid?

Satisfiability problem for first-order logic (SPFOL)

Instance: First-order formula ϕ

Question: Is ϕ satisfiable?

These two decision problems are equivalent because

 ϕ is valid $\,\,\Leftrightarrow\,\,\neg\phi$ is not satisfiable

Theorem 7 VPFOL is undecidable.

Proof Reduce PCP_2 to VPFOL. Given a PCP_2 instance

 $L = \{(u_1, v_1), \dots, (u_n, v_n)\}$

over $\Sigma = \{0, 1\}$, define a formula ϕ such that

L has solutions $\Leftrightarrow \phi$ is valid

 ϕ is defined as follows:

- let a be a constant. It will interpreted by λ in some interpretation \mathcal{I} ;
- let f_0 and f_1 be function symbols. They will be interpreted by $\mathcal{I}(f_0)(x) = x0$ and $\mathcal{I}(f_1)(x) = x1$. We will simply write $f_{b_1 \cdots b_k}(x)$ instead of $f_{b_k}(\cdots f_{b_1}(x) \cdots)$;

.3.2. Applications of PCP to First-order Logic

- let P be a predicate symbol. It will be interpreted by $\mathcal{I}(P)(x,y) \iff x, y \in \Sigma^* \land x = u_{i_1} \cdots u_{i_k} \land y = v_{i_1} \cdots v_{i_k},$ for some i_1, \ldots, i_k
- let ϕ_1 be the formula $\phi_1 = \wedge_{i=1}^k P(f_{u_i}(a), f_{v_i}(a))$
- let ϕ_2 be the formula $\phi_2 = (\forall u, v)(P(u, v) \Rightarrow \wedge_{i=1}^k P(f_{u_i}(u), f_{v_i}(u)))$
- let ϕ_3 be the formula $\phi_3 = (\exists x)(P(x,x))$
- let ϕ be the formula $\phi = (\phi_1 \land \phi_2 \Rightarrow \phi_3)$

Then,

L has solutions
$$\Leftrightarrow \phi$$
 is valid

which concludes the proof.

Intersection problem for CFL (IPCFL) Instance: context-free grammars G_1 and G_2 Question: Is $L(G_1) \cap L(G_2) \neq \emptyset$?

Theorem 8 IPCFL is undecidable.

Proof Reduce PCP to IPCFL. Given a PCP instance

 $L = \{(u_1, v_1), \dots, (u_n, v_n)\}$

over Σ , define two CF-grammars G_1 and G_2 such that

L has solutions \Leftrightarrow $L(G_1) \cap L(G_2) \neq \emptyset$

The grammars are:

- G_1 : $S \rightarrow iSu_i | iu_i$, for all i
- G_2 : $S \rightarrow iSv_i | iv_i$, for all i

Equivalence problem for CFG (EPCFG) Instance: context-free grammars G_1 and G_2 Question: Is $L(G_1) = L(G_2)$?

Theorem 9 EPCFG is undecidable.

Proof Reduce \neg PCP to EPCFG. Given a PCP instance

 $L = \{(u_1, v_1), \dots, (u_n, v_n)\}$

over Σ , define two CF-grammars G_1 and G_2 such that

L has no solution $\Leftrightarrow L(G_1) = L(G_2)$

Define two grammars G_1 and G_2 such that

• G_1 generates $L(G_1) = \{1, \ldots, n\}^* \# \Sigma^*$, where # is a new symbol;

2.3.3. Applications of PCP to Formal Language Theory

• G_2 generates $L(G_2) = (L(G_1) - A) \cup (L(G_1) - B)$, where $-A = \{i_1 \cdots i_k \# u_{i_k} \cdots u_{i_1} | i_1, \dots, i_k \in \{1, \dots, n\}\}$ $-B = \{i_1 \cdots i_k \# v_{i_k} \cdots v_{i_1} | i_1, \dots, i_k \in \{1, \dots, n\}\}$

It is easy to see that two context-free grammars G_1 and G_2 as above exist, and L has no solution iff $L(G_1) = L(G_2)$. \Box

Ambiguity problem for CFG (APCFG) Instance: context-free grammar G Question: Is G ambiguous?

Theorem 10 APCFG is undecidable.

Proof Reduce PCP to APCFG. Given a PCP instance

 $L = \{(u_1, v_1), \dots, (u_n, v_n)\}$

over $\boldsymbol{\Sigma},$ define a CFG $\boldsymbol{\mathit{G}}$ such that

L has solutions $\Leftrightarrow G$ is ambiguous

Define G by

• $S \rightarrow S_1 | S_2$, $S_1 \rightarrow u_i S_1 i | u_i i$, $S_2 \rightarrow v_i S_2 i | v_i i$,

for all i.

2.67 The word problem for finitely presented monoids

A semi-group (S, \cdot) is called finitely presented if there exists a finite set A of generators for S and a finite set E of equations over A (i.e., pairs of words over A) such that any valid equation in S can be obtained by derivation from E. That is, if t = t' is valid in S, then $t \stackrel{*}{\Rightarrow}_E t'$.

Example 7 Let S be a semi-group generated by $A = \{a_1, a_2, a_3\}$ under the equations

- $a_2a_1 = a_1a_2$
- $a_3a_2 = a_2a_2a_3$
- $a_3a_1 = a_1$.

Then, $a_1a_2a_2 = a_1a_2$ is valid in S.

Word Problem for Semi-groups (WPSG)

Instance: finite semi-group presentation (A, E) and equation t = t'

Question: Does t = t' hold true in the semi-group presented by (A, E)?

This problem was shown to be undecidable in:

• Emil Post. *Recursive Unsolvability of a Problem of Thue*, Journal of Symbolic Logic 12, 1947, 1–11.

The problem can be reduced to the reachability problem for Thue systems.

• Axel Thue. Probleme über Veranderungen von Zeichenreihen nach gegeben regeln, Skr. Vid. Kristiania, I Mat. Naturv. Klasse 10, 1914.

A Thue system over an alphabet Σ is any set of unordered pairs of words over Σ . Each pair $\{t, t'\}$ is usually written as t = t'.

A semi-Thue system over an alphabet Σ is any set of ordered pairs of words over Σ . Each pair (t, t') is usually written as $t \rightarrow t'$.

Reachability Problem for Semi-Thue Systems (RPSTS) Instance: semi-Thue system R and words t and t'Question: Does $t \stackrel{*}{\Rightarrow}_{R} t'$?

Theorem 11 The reachability problem for (semi-)Thue systems is undecidable.

Proof Reduce the halting problem for Turing machines to this problem.

Corollary 7 The word problem for finitely presented semigroups (monoids) is undecidable.

Term rewriting systems and related problems:

TermRewritingSystems.pdf

Techniques for proving decidability:

- reducibility: if a problem A is reducible to a problem B and B is decidable, then A is decidable;
- ad hoc techniques.

Coverability tree based techniques

General remarks:

- a coverability tree reduces the analysis of an infinite state space to the analysis of a finite state space;
- cut off infinite branches and add extra information to the leaf nodes;
- some properties of the original state space (reachability tree) may be lost.

We illustrate the technique on vector addition systems.

A vector addition system (VAS) is a couple $W = (W, v_0)$, where:

- W is a finite set of n-dimensional vectors with integer components ($W = \{v_1, \ldots, v_k\} \subseteq \mathbb{Z}^n$);
- v_0 is an *n*-dimensional vector with positive integer components ($v_0 \in \mathbb{N}^n$).

Example 8 $W = (W, v_0)$, where

 $W = \{(-1, 1, 0, 1), (0, -1, 0, 0), (1, 0, 0, -1), (0, 0, -1, 1)\}$

and $v_0 = (1, 0, 0, 1)$, is a vector addition system.

Let $\mathcal{W} = (W, v_0)$ be a VAS, $x \in \mathbb{Z}^n$, and $v \in W$.

- v is enabled at x, denoted $x[v\rangle$ or $x \xrightarrow{v}$, if $x + v \ge 0$. W(x) stands for the set $\{v \in W | x[v\rangle\};$
- if v is enabled at x then v may be applied yielding a new vector x' given by x' = x + v. We denote this by $x[v\rangle x'$ or $x \xrightarrow{v} x'$;

•
$$\Rightarrow = \bigcup_{v \in W} \xrightarrow{v};$$

- \Rightarrow is the reflexive and transitive closure of \Rightarrow ;
- x is reachable in \mathcal{W} if $d \stackrel{+}{\Rightarrow} x$;
- $[v_0\rangle$ is the set of all reachable vectors in \mathcal{W} , called the reachability set of \mathcal{W} ;
- x is coverable in \mathcal{W} if $v_0 \stackrel{+}{\Rightarrow} x'$ and $x' \ge x$, for some x';
- v is dead in \mathcal{W} if $\neg(x[v\rangle))$, for any x reachable in \mathcal{W} .

Let $\mathcal{W} = (W, v_0)$ be a VAS. A labeled tree $\mathcal{R} = (V, E, l_1, l_2)$ is a reachability tree of \mathcal{W} if:

- 1. its root x_0 is labeled by v_0 , i.e., $l_1(x_0) = v_0$;
- 2. $\forall x \in V, |x^+| = |W(l_1(x))|;$
- 3. $\forall x \in V$ with $|x^+| > 0$ and $\forall v \in W(l_1(x))$ there exists $x' \in x^+$ such that:

(a)
$$l_1(x') = l_1(x) + v;$$

(b)
$$l_2(x, x') = v$$
.

Any two reachability trees of \mathcal{W} are isomorphic. Therefore, we may talk about the reachability tree of \mathcal{W} , denoted $\mathcal{R}(\mathcal{W})$.

Proposition 4 Let $W = (W, v_0)$ be a VAS. Then,

- 1. $\mathcal{R}(\mathcal{W})$ is finitely branched;
- 2. x in $\mathcal{R}(\mathcal{W})$ is a leaf node iff no vector in W is enabled at $l_1(x)$;
- 3. $[v_0\rangle = \{l_1(x) | x \in V\}.$

 $\mathcal{R}(\mathcal{W})$ may be infinite even if $[v_0\rangle$ is finite !

We will derive a finite structure from $\mathcal{R}(\mathcal{W})$.

Let $\omega \notin \mathbb{Z}$ and $\mathbb{Z}_{\omega} = \mathbb{Z} \cup \{\omega\}$. Extend + and < to \mathbb{Z}_{ω} by:

- $n + \omega = \omega + n = \omega$, for any $n \in \mathbb{Z}$;
- $n < \omega$, for any $n \in \mathbb{Z}$.

The notation $x[v\rangle$ etc. is usually extended to vectors over \mathbf{Z}_{ω} .

Let $\mathcal{W} = (W, v_0)$ be a VAS. A labelled tree $\mathcal{T} = (V, E, l_1, l_2)$ is a coverability tree of \mathcal{W} if:

1. its root x_0 is labelled by v_0 , i.e., $l_1(x_0) = v_0$; 2. $\forall x \in V$,

$$|x^+| = \begin{cases} 0, & W(l_1(x)) = \emptyset \text{ or} \\ (\exists x' \in d_T(x_0, x))(x \neq x' \land l_1(x) = l_1(x')) \\ |W(l_1(x))|, \text{ otherwise} \end{cases}$$

- 3. $\forall x \in V$ with $|x^+| > 0$ and $\forall v \in W(l_1(x))$ there exists $x' \in x^+$ such that:
 - (a) $l_1(x')(i) = \omega$ if $(\exists x'' \in d_T(x_0, x))(l_1(x'') \le l_1(x) + v \land l_1(x'')(i) < (l_1(x) + v)(i))$, and $l_1(x')(i) = (l_1(x) + v)(i)$, otherwise (for any *i*);

(b) $l_2(x, x') = v$.

Any two coverability trees of \mathcal{W} are isomorphic. Therefore, we may talk about the coverability tree of \mathcal{W} , denoted $\mathcal{T}(\mathcal{W})$.

Proposition 5 Let $W = (W, v_0)$ be a VAS and $T(W) = (V, E, l_1, l_2)$ its coverability tree. Then:

- 1. $\mathcal{T}(\mathcal{W})$ is finitely branched;
- 2. x in $\mathcal{T}(\mathcal{W})$ is a leaf node iff $W(l_1(x)) = \emptyset$ or there exists $x' \in d_{\mathcal{T}}(x_0, x)$ such that $x \neq x'$ and $l_1(x) = l_1(x')$;
- 3. let $x_{i_0}, x_{i_1}, \ldots, x_{i_m}$ be pairwise distinct nodes such that $x_{i_j} \in d_{\mathcal{T}(\gamma)}(x_0, x_{i_{j+1}})$, for any $0 \le j \le m 1$. (a) if $l_1(x_{i_0}) = l_1(x_{i_1}) = \cdots = l_1(x_{i_m})$, then $m \le 1$; (b) if $l_1(x_{i_0}) < l_1(x_{i_1}) < \cdots < l_1(x_{i_m})$, then $m \le n$; 4. $\mathcal{T}(\gamma)$ is finite.

Theorem 12 Let $\mathcal{W} = (W, v_0)$ be a VAS and $\mathcal{T}(\mathcal{W}) = (V, E, l_1, l_2)$ its coverability tree. Then, a vector x is coverable in \mathcal{W} iff it is coverable in $\mathcal{T}(\mathcal{W})$.

Corollary 8 Coverability, deadness and finiteness problems are decidable for VASs.