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1. Introduction to Computability

• Questions and problems

• Computation (What-) problems and decision problems

• Problems and algorithms

• Hilbert’s problems

• Hilbert’s program

• Algorithms and functions

• The theory of computation
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Questions and Problems

Questions:

• For what real number x is 2x2 + 36x + 25 = 0?

• What is the smallest prime number greater than 20?

• Is 257 a prime number?

A problem is a class of questions. Each question in the class

is an instance of the problem. Examples of problems:

• Find the real roots of the equation ax2+bx+c = 0, where

a, b, and c are real numbers. If we substitute a, b, and c
by real values, we get an instance of this problem;

• Does the equation ax2 + bx+ c = 0, where a, b, and c are

real numbers, have positive (real) roots? If we substitute

a, b, and c by real values, we get an instance of this

problem.
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Computation and Decision Problems

Most problems in mathematical sciences are of two kinds:

• computation (what-) problems - such a problem is to

obtain the value of a function for a given argument.

Example: What is the square root of a given pos-

itive integer x to nearest thousandth?

• decision problems (yes/no problems) - these are problems

whose answer is yes or no.

Example: Does a given vector satisfy a given set

of linear equations?

Decision problems could be considered computation problems

but it is worthwhile to make the distinction.
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Problems and Algorithms

An algorithm for a problem is an organized set of commands

for answering on demand any question that is an instance of

the problem.

A problem is solvable if there exists an algorithm for it. Oth-

erwise it is called unsolvable.

A solvable decision problem is also called decidable; an un-

solvable decision problem is also called undecidable.

An algorithm for a decision problem is usually called a decision

algorithm (procedure).
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Hilbert’s Problems

Hilbert’s problems are a set of (originally) unsolved problems

in mathematics proposed by Hilbert. Of the 23 total appear-

ing in the printed address, 10 were actually presented at the

Second International Congress in Paris on August 8, 1900.

In particular, the problems presented by Hilbert were 1, 2, 6,

7, 8, 13, 16, 19, 21, and 22 (Derbyshire 2004, p. 377). Fur-

thermore, the final list of 23 problems omitted one additional

problem on proof theory (Thiele 2001).

Hilbert’s problems were designed to serve as examples for the

kinds of problems whose solutions would lead to the further-

ing of disciplines in mathematics. As such, some were areas

for investigation and therefore not strictly “problems”.
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Hilbert’s Problems (cont’d)

The tenth problem in Hilbert’s list was that of finding a de-

cision procedure to tell whether a diophantine equation has

a solution. Such an equation is of the form

P (x1, . . . , xn) = 0,

where P is a polynomial in the integer unknowns x1, . . . , xn

with integer coefficients.

At the time Hilbert posed this problem, mathematicians did

not consider the possibility of proving it unsolvable. Never-

theless, when undecidability results began to appear in the

1930s and early 1940s, many researchers began to suspect

that the problem was unsolvable. Much work has been done,

but it was not until 1972 that the proof of the undecidability

of Hilbert’s tenth problem was completed by Y. Matiyacevic.
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Hilbert’s Program

In the early 1920s, David Hilbert put forward a new proposal

for the foundation of classical mathematics which has come

to be known as Hilbert’s Program. It calls for a formalization

of all of mathematics in axiomatic form, together with a proof

that this axiomatization of mathematics is consistent. The

consistency proof itself was to be carried out using only what

Hilbert called “finitary” methods. Although Hilbert proposed

his program in this form only in 1921, various facets of it are

rooted in foundational work of his going back until around

1900.

In September 1930, Kurt Gödel announced his first incom-

pleteness theorem at a conference in Königsberg, showing

that Hilbert’s program is not realizable.
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Algoritms and Functions

Every algorithm computes a function:

input (x) → algorithm → output (y)

f(x) = y

A function computable by some algorithm is called a com-

putable function.

The theory of computation is concerned with the following

main question: What functions are computable? Equiva-

lently, What problems are solvable?
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The Theory of Computation

• The theory of computation originated in the 1930s, in

the work of the logicians Church, Gödel, Kleene, Post,

and Turing;

• The theory of computation provides models of computa-

tion together with their basic properties;

• The concept of computation is related to that of an al-

gorithm;

• Computation: numerical or non-numerical.
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2. Basic Models of Computation

2.1. Recursive functions

2.2. Turing machines

2.3. Properties of recursive functions
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2.1. Recursive Functions

2.1.1. Notation and terminology

2.1.2. Primitive recursive functions

2.1.2.1. Definitions and examples

2.1.2.2. Algebraic properties

2.1.2.3. Primitive recursive enumerations

2.1.2.4. The Ackermann-Peter function

2.1.3. Recursive functions

2.1.3.1. Definitions and examples

2.1.3.2. The Ackermann-Peter function is recursive

2.1.3.3. Limits of Algorithmic Computability

2.1.3.4. Recursive Sets. Rice’s Theorem
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A Bit of History

Recursive functions emerge from logic, and so are very useful

for formalizing algorithms of which we have intuitively natural

descriptions.

A bit of history:

• Richard Dedekind, in 1888, and Giuseppe Peano, in 1889,

were the first who used inductive definitions to define

addition, multiplication, and exponentiation on natural

numbers;

• Thoralf Skolem, in 1923, and Kurt Gödel, in 1931, de-

veloped the theory of recursive functions.
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2.1.1. Notation and Terminology

• f : A ; B means that f is a partial function from A into

B. That is, f might not be defined for some input values

a ∈ A. We will write f(a) = ⊥ or f(a)↑ whenever f is not

defined in a (⊥ means undefined);

• When a function f : A ; B is defined for all a ∈ A, we

say that f is a total function and also write f : A→B;

• Let gi : A ; Bi, 1 ≤ i ≤ n, and h : B1 × · · · × Bn ;

C. Then, applying function composition to the functions

h, g1, . . . , gn yields the function f : A ; C given by

f(a) = h(g1(a), . . . , gn(a)),

for all a ∈ A. We usually write f = h ◦ (g1, . . . , gn).

f is undefined for all values a for which gi(a)↑ for some i,

or h(g1(a), . . . , gn(a))↑.
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2.1.1. Notation and Terminology

The theory of recursive functions is primarily concerned with

arithmetic functions, i.e., functions from N
n into N, for some

n ≥ 1.

We adopt the following notation:

• AF (n) = {f |f : Nn
; N}, n ≥ 1;

• AF =
⋃

n≥1 AF (n);

• TAF (n) = {f |f : Nn→N}, n ≥ 1;

• TAF =
⋃

n≥1 TAF (n);

• S : N→N, S(x) = x + 1 for all x ∈ N (the successor

function).
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2.1.2. Primitive Recursive Functions

2.1.2.1. Definitions and examples

2.1.2.2. Algebraic properties

2.1.2.3. Primitive recursive enumerations

2.1.2.4. The Ackermann-Peter function
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2.1.2.1. Definitions and Examples

Let g ∈ AF (n) and h ∈ AF (n+2), where n ≥ 0. We say that a

function f ∈ AF (n+1) is obtained from g and h by primitive

recursion if the following hold true:

• f(x1, . . . , xn,0) = g(x1, . . . , xn);

• f(x1, . . . , xn, y + 1) = h(x1, . . . , xn, y, f(x1, . . . , xn, y)),

for all x1, . . . , xn, y ∈ N.

Remark: For n = 0 the primitive recursion scheme is:

• f(0) = a, where a ∈ N;

• f(y + 1) = h(y, f(y)),

for all y ∈ N.
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2.1.2.1. Definitions and Examples

Remark: If f is obtained by primitive recursion from the

total functions g and h, then f ia a total function.

Proof By mathematical induction on y. 2
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2.1.2.1. Definitions and Examples

In order to define the class of primitive recursive functions

we need some functions on which to get started. These will

be:

• the successor function S : N→N;

• the constant 0 function C
(1)
0 : N→N given by

C
(1)
0 (x) = 0,

for all x ∈ N;

• the projection function P
(n)
i : Nn→N given by

P
(n)
i (x1, . . . , xn) = xi,

for all x1, . . . , xn ∈ N, n ≥ 1, and 1 ≤ i ≤ n.

The functions S, C
(1)
0 and P

(n)
i are called initial functions.
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2.1.2.1. Definitions and Examples

The class of primitive recursive functions is the smallest class

PRF of arithmetic functions which satisfies:

• includes all the initial functions;

• it is closed under composition (i.e., f ◦ (g1, . . . , gn) ∈ PRF

whenever f, g1, . . . , gn ∈ PRF and the composition is de-

fined);

• it is closed under primitive recursion (i.e., f ∈ PRF when-

ever f is obtained from g and h by primitive recursion and

g, h ∈ PRF ).

Remark: PRF contains only total functions.

Proof By structural induction. 2
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2.1.2.1. Definitions and Examples

Let m ∈ N and n ≥ 1. The constant m function C
(n)
m : Nn→N

is defined by

C
(n)
m (x1, . . . , xn) = m,

for all x1, . . . , xn ∈ N.

Proposition 1 C
(n)
m is a primitive recursive function, for all

m, n ∈ N.

Proof Case 1. m = 0 and n = 1: from definitions;

Case 2. m > 0 and n = 1: C
(1)
m (x) = S(· · ·S

︸ ︷︷ ︸

m times

(C
(1)
0 (x)) · · ·)

Case 3. m > 0 and n > 1: (prove it!) 2

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

21



2.1.2.1. Definitions and Examples

Example 1 The following functions are primitive recursive:

1. the addition, multiplication, and exponentiation functions;

2. the factorial function;

3. the predecessor function Pd : N→N defined by

Pd(x) =

{

x − 1, if x > 0
0, otherwise,

for all x ∈ N;

4. the arithmetic (recursive) difference function −· defined by

x−· y =

{

x − y, if x ≥ y
0, otherwise,

for all x, y ∈ N;

5. the absolute difference function |x − y|;
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2.1.2.1. Definitions and Examples

6. the sign functions sg and s̄g given by

sg(x) =

{

0, if x = 0
1, otherwise

s̄g(x) =

{

0, if x 6= 0
1, otherwise

for all x ∈ N;

7. the comparison functions ls (less than), gr (greater than),

eq (is equal to);

8. the function [
√

];

9. the function E given by E(x) = x−·[√x]2, for all x ∈ N;

10. the maximum and minimum functions max and min given

by:

max(x, y) =

{

x, if x ≥ y
y, otherwise

min(x, y) =

{

x, if x ≤ y
y, otherwise

for all x, y ∈ N.
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2.1.2.1. Definitions and Examples

Remark: As we can see, many of the functions normally

studied in number theory, and approximations to real-valued

functions, are primitive recursive.

Remark: sg, s̄g, ls, gr, and eq are primitive recursive predi-

cates.

We will dnote by PRP the class of primitive recursive predi-

cates.
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2.1.2.1. Definitions and Examples

Primitive recursive functions and programs:

• We want to compute z = C
(1)
0 (x). The corresponding

program is:

input: x;

output: z = C(1)
0 (x);

begin
z := 0;

end.

• We want to compute z = S(x). The corresponding pro-
gram is:

input: x;
output: z = S(x);
begin

z := x + 1;
end.
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2.1.2.1. Definitions and Examples

• We want to compute z = Pi(n)(x1, . . . , xn). The corre-
sponding program is:

input: x = (x1, . . . , xn);
output: z = Pi(n)(x1, . . . , xn);
begin

z := x[i];
end.

• We want to compute z = (h ◦ (g1, . . . , gn))(x). The cor-
responding program is:

input: x;
output: z = (h ◦ (g1, . . . , gn))(x);
begin
for i := 1 to n do yi := gi(x);
z := h(y1, . . . , yn);

end.
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2.1.2.1. Definitions and Examples

• We want to compute z = f(x, y), where f is obtained
from g and h by primitive recursion. The corresponding
program is:

input: g, h, and x, y ∈ N;
output: z = f(x, y);
begin

z := g(0);
for i := 1 to y do z := h(x, i − 1, z);

end.
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2.1.2.2. Algebraic Properties

A few basic algebraic properties of primitive recursive func-

tions are in order.

Proposition 2 If f(x1, . . . , xn) is primitive recursive and ϕ

is a permutation of the set {1, . . . , n}, then the function

g(x1, . . . , xn) given by

g(x1, . . . , xn) = f(xϕ(1), . . . , xϕ(n)),

for all x1, . . . , xn ∈ N, is primitive recursive.

Proposition 3 If f(x1, . . . , xn) is primitive recursive, then the

function g(x1, . . . , xn, y1, . . . , ym) given by

g(x1, . . . , xn, y1, . . . , ym) = f(x1, . . . , xn),

for all x1, . . . , xn, y1, . . . , ym ∈ N, is primitive recursive.
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2.1.2.2. Algebraic Properties

Proposition 4 If f(x1, . . . , xn) is primitive recursive and i1, . . . ,

ik ∈ {1, . . . , n}, then the function g(x1, . . . , xn) given by

g(x1, . . . , xn) = f(y1, . . . , yn),

where

yi =

{

xi1, if i ∈ {i1, . . . , ik}
xi, otherwise

for all i and x1, . . . , xn ∈ N, is primitive recursive.

We say that the function f ∈ AF (n) is 0 almost everywhere if

f(x1, . . . , xn) 6= 0, for finitely many inputs (x1, . . . , xn) ∈ Nn.

Proposition 5 Every arithmetic function which is 0 almost

everywhere, is primitive recursive.
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2.1.2.2. Algebraic Properties

A function f ∈ AF (n+1) is obtained from g ∈ AF (n+1) by

bounded summation if

f(x1, . . . , xn, y) =
y

∑

i=0

g(x1, . . . , xn, i),

for all x1, . . . , xn, y ∈ N.

Proposition 6 PRF is closed under bounded summation.
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2.1.2.2. Algebraic Properties

A function f ∈ AF (n) is obtained from g ∈ AF (n+1) and

u, v ∈ AF (n) by primitive recursive summation if

f(x1, . . . , xn) =
v(x1,...,xn)∑

i=u(x1,...,xn)

g(x1, . . . , xn, i),

for all x1, . . . , xn ∈ N.

Proposition 7 PRF is closed under primitive recursive sum-

mation.
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2.1.2.2. Algebraic Properties

A function f ∈ AF (n+1) is obtained from g ∈ AF (n+1) by

bounded product if

f(x1, . . . , xn, y) =
y

∏

i=0

g(x1, . . . , xn, i),

for all x1, . . . , xn, y ∈ N.

Proposition 8 PRF is closed under bounded product.
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2.1.2.2. Algebraic Properties

A function f ∈ AF (n) is obtained from g ∈ AF (n+1) and

u, v ∈ AF (n) by primitive recursive product if

f(x1, . . . , xn) =
v(x1,...,xn)∏

i=u(x1,...,xn)

g(x1, . . . , xn, i),

for all x1, . . . , xn ∈ N.

Proposition 9 PRF is closed under primitive recursive prod-

uct.
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2.1.2.2. Algebraic Properties

A function f ∈ AF (n+1) is obtained from g ∈ AF (n+1) by

bounded minimization if

• f(x1, . . . , xn, z) = the least y ≤ z for which

g(x1, . . . , xn, y) = 0, if such an y exists;

• f(x1, . . . , xn, z) = z + 1, otherwise,

for all x1, . . . , xn, z ∈ N.

If f is obtained from g by bounded minimization then we

write

f(x1, . . . , xn, z) = µ(y ≤ z)[g(x1, . . . , xn, y) = 0]

Proposition 10 PRF is closed under bounded minimization.
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2.1.2.2. Algebraic Properties

A function f ∈ AF (n) is obtained from g ∈ AF (n+1) and

u ∈ AF (n) by primitive recursive minimization if

• f(x1, . . . , xn) = the least y ≤ u(x1, . . . , xn) for which

g(x1, . . . , xn, y) = 0, if such an y exists;

• f(x1, . . . , xn) = z + 1, otherwise,

for all x1, . . . , xn ∈ N.

If f is obtained from g by primitive recursive minimization

then we write

f(x1, . . . , xn) = µ(y ≤ u(x1, . . . , xn))[g(x1, . . . , xn, y) = 0]

Proposition 11 PRF is closed under primitive recursive min-

imization.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

35



2.1.2.2. Algebraic Properties

A predicate f ∈ AP (n+1) is obtained from g ∈ AP (n+1) by

bounded existential quantification if

• f(x1, . . . , xn, y) = 1, if there exists 0 ≤ i ≤ y such that

g(x1, . . . , xn, i) = 1;

• f(x1, . . . , xn, y) = 0, otherwise,

for all x1, . . . , xn, y ∈ N.

If f is obtained from g by bounded existential quantification

then we write

f(x1, . . . , xn, y) = ∃y
i=0g(x1, . . . , xn, i)

Proposition 12 PRP is closed under bounded existential quan-

tification.
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2.1.2.2. Algebraic Properties

A predicate f ∈ AP (n) is obtained from g ∈ AP (n+1) and

u, v ∈ AF (n) by primitive recursive existential quantification if

• f(x1, . . . , xn) = 1, if there exists u(x1, . . . , xn) ≤ i ≤ v(x1, . . . , xn)

such that g(x1, . . . , xn, i) = 1;

• f(x1, . . . , xn) = 0, otherwise,

for all x1, . . . , xn ∈ N.

If f is obtained from g by bounded existential quantification

then we write

f(x1, . . . , xn) = ∃v(x1,...,xn)
i=u(x1,...,xn)

g(x1, . . . , xn, i)

Proposition 13 PRP is closed under primitive recursive ex-

istential quantification.
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2.1.2.2. Algebraic Properties

A predicate f ∈ AP (n+1) is obtained from g ∈ AP (n+1) by

bounded universal quantification if

• f(x1, . . . , xn, y) = 1, if g(x1, . . . , xn, i) = 1 for all 0 ≤ i ≤ y;

• f(x1, . . . , xn, y) = 0, otherwise,

for all x1, . . . , xn ∈ N.

If f is obtained from g by bounded universal quantification

then we write

f(x1, . . . , xn, y) = ∀y
i=0g(x1, . . . , xn, i)

Proposition 14 PRP is closed under bounded universal quan-

tification.
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2.1.2.2. Algebraic Properties

A predicate f ∈ AP (n) is obtained from g ∈ AP (n+1) and

u, v ∈ AF (n) by primitive recursive universal quantification if

• f(x1, . . . , xn) = 1, if g(x1, . . . , xn, i) = 1 for all u(x1, . . . , xn) ≤
i ≤ v(x1, . . . , xn);

• f(x1, . . . , xn) = 0, otherwise,

for all x1, . . . , xn, y ∈ N.

If f is obtained from g by primitive recursive universal quan-

tification then we write

f(x1, . . . , xn) = ∀v(x1,...,xn)
i=u(x1,...,xn)

g(x1, . . . , xn, i)

Proposition 15 PRP is closed under primitive recursive uni-

versal quantification.
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2.1.2.2. Algebraic Properties

Proposition 16 PRP is closed under ¬, ∨, and ∧.

The properties established so far allow us to prove the prim-

itive recursiveness of the following important functions:

Example 2 The following functions are primitive recursive:

1. (integer division) quo : N2→N given by

• quo(x, y) = the largest z such that z · y ≤ x, if y 6= 0;

• quo(x, y) = 0, otherwise,

for all x, y ∈ N;
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2.1.2.2. Algebraic Properties

2. (remainder) rm : N2→N given by

rm(x, y) = x−· y · quo(x, y),

for all x, y ∈ N;

3. (division test) div : N2→N given by

div(x, y) =

{

1, if xy > 0 and x|y
0, otherwise,

for all x, y ∈ N;

4. (number of divisors) ndiv : N→N given by

ndiv(x) = number of divisors of x,

for all x ∈ N;
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2.1.2.2. Algebraic Properties

5. (primality test) pr : N→N given by

pr(x) =

{

1, if x is prime
0, otherwise,

for all x ∈ N;

6. (nth prime number) pn : N→N given by

pn(n) = the nth prime number,

for all n ∈ N (2 is the 0th prime number).
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2.1.2.3. Primitive Recursive Enumerations

Primitive recursive enumerations are primitive recursive en-

codings of tuples of natural numbers. We will study:

• Cantor’s enumeration – used to encode fixed length se-

quences of natural numbers;

• Gödel’s numbering – used to encode arbitrary length se-

quences of natural numbers.
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2.1.2.3. Primitive Recursive Enumerations

Cantor’s enumeration

Cantor’s enumeration, also called Cantor’s diagonal method,

is a clever technique used to show that the set N2 can be

put into a bijective correspondence with N.

The technique is quite general and applies in many circum-

stances.
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2.1.2.3. Primitive Recursive Enumerations
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2.1.2.3. Primitive Recursive Enumerations

Cantor’s enumeration is the function J : N2→N given by:

J(x, y) =
(x + y)(x + y + 1)

2
+ x,

for all (x, y) ∈ N2.

Lemma 1 Cantor’s enumeration is a primitive recursive bi-

jection.

Proof

• J is bijective (prove it!);

• J is primitive recursive because it is a composition of

primitive recursive functions.

2
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2.1.2.3. Primitive Recursive Enumerations

The inverse of J is the function J−1 : N→N2 given by:

J−1(z) =

(

z −· k(k + 1)

2
,
k(k + 3)

2
−· z

)

,

where

k =

⌊

⌊
√

8z + 1⌋−·1
2

⌋

for all z ∈ N.

Let K, L : N→N be the functions given by

K(z) = z −· k(k + 1)

2
and L(z) =

k(k + 3)

2
−· z,

for all z ∈ N.
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2.1.2.3. Primitive Recursive Enumerations

The functions J, K, and L satisfy:

J−1(z) = (K(z), L(z)),

for all z ∈ N.

Lemma 2 The functions K and L are primitive recursive.

Proof K and L are compositions of primitive recursive

functions. 2

The functions K and L are called the inverses of J.
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2.1.2.3. Primitive Recursive Enumerations

Cantor’s enumeration can be generalized as follows:

• J(2) = J;

• J(n)(x1, . . . , xn) = J(2)(J(n−1)(x1, . . . , xn−1), xn),

for all n > 2 and x1, . . . , xn ∈ N.

If we denote by I
(n)
1 , . . . , I

(n)
n the inverses of J(n), then:

• I
(2)
1 = K and I

(2)
2 = L;

• I
(n)
1 = I

(n−1)
1 ◦ I

(2)
1 ,

· · ·
I
(n)
n−1 = I

(n−1)
n−1 ◦ I

(2)
1 ,

I
(n)
n = I

(2)
2 ,

for all n > 2.
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2.1.2.3. Primitive Recursive Enumerations

The functions J(n), I
(n)
1 , . . . , I

(n)
n satisfy:

(J(n))−1(z) = (I
(n)
1 (z), . . . , I

(n)
n (z)),

for all z ∈ N.

Lemma 3 The functions J(n), I
(n)
1 , . . . , I

(n)
n are primitive re-

cursive.

Proof J(n), I
(n)
1 , . . . , I

(n)
n are compositions of primitive re-

cursive functions. 2
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2.1.2.3. Primitive Recursive Enumerations

Application: closure under simultaneous recursion

Two functions f1, f2 ∈ AF (n+1) are obtained from g1, g2 ∈
AF (n) and h1, h2 ∈ AF (n+3) by simultaneous recursion if the

following hold true:

• f1(x1, . . . , xn,0) = g1(x1, . . . , xn),

• f2(x1, . . . , xn,0) = g2(x1, . . . , xn),

• f1(x1, . . . , xn, y + 1) = h1(x1, . . . , xn, y, f1(x1, . . . , xn, y),

f2(x1, . . . , xn, y)),

• f2(x1, . . . , xn, y + 1) = h2(x1, . . . , xn, y, f1(x1, . . . , xn, y),

f2(x1, . . . , xn, y)),

for all x1, . . . , xn, y ∈ N.
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2.1.2.3. Primitive Recursive Enumerations

Proposition 17 PRF is closed under simultaneous recursion.

Proof Hint: Use Cantor’s enumeration

• assume that f1 and f2 are functions obtained by simulta-

neous recursion over primitive recursive functions;

• define

t(x1, . . . , xn, y) = J(2)(f1(x1, . . . , xn, y), f2(x1, . . . , xn, y));

• show that t is primitive recursive;

• obtain f1 = K(t) and f2 = L(t) and conclude the lemma.

2
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2.1.2.3. Primitive Recursive Enumerations

Gödel’s numbering

The Gödel number of a sequence of natural numbers (x0, . . . , xk−1),

denoted by 〈x0, . . . , xk−1〉, is

pn(0)x0 · · · pn(k − 1)xk−1

By convention, the Gödel number of the empty sequence,

denoted by 〈〉, is 0.

Example 3

1. 〈3,1,2,1〉 = 23 · 31 · 52 · 71 = 4200;

2. 〈3,1,2,1,0〉 = 〈3,1,2,1,0,0〉 = 4200.
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2.1.2.3. Primitive Recursive Enumerations

Remark:

1. Gödel numbers get quite large even when the terms of

the sequences are small. For instance:

〈1,1,1,1,1,1,1,1,1〉 = 223,092,870

2. We do not have to compute Gödel numbers !

3. Distinct sequences might have the same Gödel number

(for instance, (1) and (1,0));

4. Every natural number is the Gödel number of some se-

quence (this is a consequence of the fundamental theorem

of arithmetic). Therefore, the Gödel numbering induces

a surjective function from the set of all sequences into

the set N.
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2.1.2.3. Primitive Recursive Enumerations

The following two primitive recursive functions are important

in order to deal with Gödel numbers:

Example 4 The following two functions are primitive recur-

sive:

1. exp : N2→N given by

exp(i, z) =

{

the greatest x s.t. pn(i)x|z, if z > 0
0, otherwise

2. long : N→N given by

long(z) =

{

the greatest i s.t. exp(i, z) > 0, if z > 1
0, otherwise
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2.1.2.3. Primitive Recursive Enumerations

Example 5

1. exp(i,0) = 0;

2. exp(i,1) = 0 because pn(i)0 = 1|1 and pn(i)1 6 |1;

3. exp(0,15) = 0 because pn(0) = 2 6 |15;

4. long(0) = 0 = long(1);

5. long(2) = 0 because 2 = pn(0)1;

6. long(15) = 2 because 15 = pn(0)0 · pn(1)1 · pn(2)1;

7. if z > 1 then

z = 〈exp(0, z), . . . , exp(long(z), z)〉
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2.1.2.3. Primitive Recursive Enumerations

Application: closure under hereditary recursion

A functions f ∈ AF (n+1) is obtained from g ∈ AF (n) and

h ∈ AF (n+2) by hereditary recursion if the following hold

true:

• f(x1, . . . , xn,0) = g(x1, . . . , xn),

• f(x1, . . . , xn, y + 1) = h(x1, . . . , xn, y,

〈f(x1, . . . , xn,0), . . . , f(x1, . . . , xn, y)〉),

for all x1, . . . , xn, y ∈ N.
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2.1.2.3. Primitive Recursive Enumerations

Proposition 18 PRF is closed under hereditary recursion.

Proof Hint: Use simultaneous recursion

• assume that f is obtained by hereditary recursion over

primitive recursive functions;

• define

t(x1, . . . , xn, y) = 〈f(x1, . . . , xn,0), . . . , f(x1, . . . , xn, y)〉;

• show that t and f can be defined by simultaneous recur-

sion, and conclude the proposition.

2
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2.1.2.4. The Ackermann-Peter Function

The Ackermann-Peter function is a simple example of a to-

tal function which is computable but not primitive recursive,

providing a counterexample to the belief in the early 1900s

that every computable function was also primitive recursive.

History – In 1928, Wilhelm Ackermann, a mathematician

studying the foundations of computation, originally consid-

ered the following sequence of operations:
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2.1.2.4. The Ackermann-Peter Function

S(x) = x + 1 ϕ0

{

+(x,0) = x
+(x, y + 1) = S(+(x, y))

ϕ1

{

·(x,0) = 0
·(x, y + 1) = +(x, ·(x, y))

ϕ2

{

xˆ0 = 1
xˆ(y + 1) = ·(x, xˆy)

ϕ3

{

ϕ4(x,0) = 1
ϕ4(x, y + 1) = ϕ3(x, ϕ4(x, y))
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2.1.2.4. The Ackermann-Peter Function

In general:
{

ϕi+1(x,0) = 1
ϕi+1(x, y + 1) = ϕi(x, ϕi+1(x, y))

for all i ≥ 3 (ϕ0 = S, ϕ1 = +, ϕ2 = ·, and ϕ3 = ˆ).

A few values of ϕ4 are in order:

• ϕ4(x,1) = x,

• ϕ4(x,2) = xx,

• ϕ4(x,3) = xxx
,

• and so on.
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2.1.2.4. The Ackermann-Peter Function

In 1928, W. Ackermann considered the function

f(i, x, y) = ϕi(x, y),

for all i, x, y ∈ N, and proved that:

• f is a recursive function;

• h(x) = f(x, x, x) grows faster than any primitive recursive

function. Therefore, it is not primitive recursive.
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2.1.2.4. The Ackermann-Peter Function

In 1935, Rosza Peter, defined a similar function of only two

variables. Nowadays, it is called the Ackermann-Peter func-

tion.

The Ackerman-Peter function is the function A : N × N→N

given by:

(R1) A(0, y) = y + 1

(R2) A(x + 1,0) = A(x,1)

(R3) A(x + 1, y + 1) = A(x, A(x + 1, y))

for all x, y ∈ N.
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2.1.2.4. The Ackermann-Peter Function

Example of computation:

A(2,1)
(R3), x→1, y→0

= A(1, A(2,0))
A(1, A(2,0))

(R2), x→1
= A(1, A(1,1))

A(1, A(1,1))
(R3), x→0, y→0

= A(1, A(0, A(1,0)))
A(1, A(0, A(1,0)))

(R2), x→0
= A(1, A(0, A(0,1)))

A(1, A(0, A(0,1)))
(R1), y→1

= A(1, A(0,2))
A(1, A(0,2))

(R1), y→2
= A(1,3)
· · ·
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2.1.2.4. The Ackermann-Peter Function

Conclusions:

• each element of this computation is a term

• each computation step is based on applying one of the

equations (R1), (R2) or (R3)

• each equation is used in one direction only (“from left to

right”)

• each equation is based on a substitution (“x→1, y→0”)

which matches the left hand side of the equation to some

subterm of the current term

• the immediate successor of a term t is obtained by re-

placing a subterm of t by an instance of the right hand

side of some equation
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2.1.2.4. The Ackermann-Peter Function

Do the equations R1 − R3 define a function?

Lemma 4 For any x, y ∈ N there exists an unique z ∈ N such

that z = A(x, y).

Proof by mathematical induction on x, followed by math-

ematical induction on y. 2

Therefore, the equations R1 − R3 do define a function.
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2.1.2.4. The Ackermann-Peter Function

The Ackermann-Peter function can be calculated by a simple

algorithm based directly on the definition:

Function A(x, y)
begin
if x = 0 then return y + 1
else if x > 0 and y = 0 then return A(x − 1,1)
else return A(x − 1, A(x, y − 1))

end.

At each step either y decreases, or y increases and x de-

creases. Each time that y reaches zero, x must decrease, so

x must eventually reach zero as well. Note, however, that

when x decreases there is no upper bound on how much y

can increase – and it will often increase greatly.
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2.1.2.4. The Ackermann-Peter Function

x/y 0 1 2 3 4 y
0 1 2 3 4 5 y + 1

1 2 3 4 5 6 y + 2

2 3 3 7 9 11 2y + 3

3 5 13 29 61 125 2y+3 − 3

4 13 65533 265533 − 3 A(3,265533 − 3) A(3, A(4,3)) 22
...
2

︸ ︷︷ ︸

y+3 twos

−3

One surprising aspect of the Ackermann-Peter function is

that the only arithmetic operations it ever uses are addition

and subtraction of 1. Its properties come solely from the

power of unlimited recursion. This also implies that its run-

ning time is at least proportional to its output, and so is also

extremely huge. In actuality, for most cases the running time

is far larger than the output.
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2.1.2.4. The Ackermann-Peter Function

Some astonishing facts about the Ackermann-Peter function:

1. A(4,2) is greater than the number of particles in the

universe raised to the power 200;

2. A(5,2) cannot be written as a decimal expansion in the

physical universe;

3. Beyond row 4 and column 1, the values can no longer

be feasibly written with any standard notation other than

the Ackermann-Peter function itself – writing them as

decimal expansions, or even as references to rows with

lower x, is not possible;

4. Despite the inconceivably large values occurring in this

early section of the table, some even larger numbers have

been defined, such as Graham’s number. This number

is constructed with a technique similar to applying the

Ackermann-Peter function to itself recursively.
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2.1.2.4. The Ackermann-Peter Function

The Ackermann-Peter function enjoy many interesting and

important properties.

Proposition 19 The following properties hold true:

1. A(x, y) > y;

2. A(x, y + 1) > A(x, y);

3. A(x + 1, y) ≥ A(x, y + 1);

4. A(x, y) > x;

5. A(x + 1, y) > A(x, y);

6. A(x + 2, y) > A(x,2y),

for all x, y ∈ N.
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2.1.2.4. The Ackermann-Peter Function

The following theorem is crucial in order to prove that the

Ackermann-Peter function is not primitive recursive.

Theorem 1 For any n ≥ 1 and any primitive recursive func-

tion f ∈ PRF (n), there exists k ∈ N, which depends on f and

A, such that

f(x1, . . . , xn) < A(k, ||(x1, . . . , xn)||),
for all (x1, . . . , xn) ∈ Nn, where

||(x1, . . . , xn)|| = max{x1, . . . , xn}.

This theorem shows that the Ackermann-Peter function grows

faster than any primitive recursive function.
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2.1.2.4. The Ackermann-Peter Function

Now we are able to prove the main result regarding the

Ackermann-Peter function.

Corollary 1 The Ackermann-Peter function is not primitive

recursive. Moreover, the function f(x) = A(x, x) is not prim-

itive recursive too.

Proof If we assume that A(x, y) is primitive recursive, then

f(x) = A(x, x)

is a primitive recursive function. By Theorem 1, there exists

k such that f(x) < A(k, x), for any x. Therefore,

A(x, x) < A(k, x)

for any x, which is a contradiction. 2
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2.1.2.4. The Ackermann-Peter Function

Since the function f(x) = A(x, x) considered above grows

very rapidly, its inverse function, f−1, grows very slowly. In

fact, it is less than 5 for any conceivable input size x, since

A(4,4) has a number of digits that cannot itself be written

in binary in the physical universe. For all practical purposes,

f−1(x) can be regarded as being a constant.

This inverse appears in the time complexity of some algo-

rithms, such as the disjoint-set data structure and Chazelle’s

algorithm for minimum spanning trees.
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2.1.2.4. The Ackermann-Peter Function

A two-parameter variation of the inverse Ackermann-Peter

function can be defined as follows:

α(x, y) = min{i ≥ 1|A(i, ⌊x/y⌋) ≥ log2 y}
This function arises in more precise analysis of the algorithms

mentioned above, and gives a more refined time bound. In

the disjoint-set data structure, x represents the number of

operations while y represents the number of elements; in the

minimum spanning tree algorithm, x represents the number

of edges while y represents the number of vertices.
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2.1.2.4. The Ackermann-Peter Function

The Ackermann-Peter function, due to its definition in terms

of extremely deep recursion, can be used as a benchmark of

a compiler’s ability to optimize recursion. For example, a

compiler which, in analyzing the computation of A(3,30), is

able to save intermediate values like the A(3, y) and A(2, y) in

that calculation rather than recomputing them, can speed up

computation of A(3,30) by a factor of hundreds of thousands.

Also, if A(2, y) is computed directly rather than as a recursive

expansion of the form A(1, A(1, A(1, ...A(1,0)...))), this will

save significant amounts of time.

Computing A(1, y) takes linear time in y. Computing A(2, y)

requires quadratic time, since it expands to O(y) nested calls

to A(1, i) for various i. Computing A(3, y) requires time pro-

portionate to 4y+1.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

75



2.1.3. Recursive Functions

Recursive functions:

• Definitions and examples

• The Ackermann-Peter function is recursive

• Reducibility

• Recursively enumerable sets. Rice’s theorem
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2.1.3.1. Definitions and Examples

Let f : N→N be the function given by

f(x) =

{

⌊x/3⌋, if 3|x
↑, otherwise,

for all x ∈ N.

f is not primitive recursive but it is effectively computable:

Function f(x)
input: x ∈ N;
output: “x/3”, if 3|x, and “undefined”, otherwise;
begin
if 3|x then return x/3 else return “undefined”

end.
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2.1.3.1. Definitions and Examples

Remarks:

1. The function f , defined as above, is an effectively com-

putable partial function, but it is not primitive recursive;

2. The Ackermann-Peter function is an effectively computable

total function, but it is not primitive recursive.

Conclusion: The class of primitive recursive functions needs

to be extended!
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2.1.3.1. Definitions and Examples

The function f given above can be defined by

f(x) =

{

the least y s.t. g(x, y) = 0, if such an y exists
↑, otherwise,

for all x ∈ N, where g(x, y) = |x − 3y|.

A function f ∈ AF (n) is obtained from g ∈ AF (n+1) by mini-

mization if

• f(x1, . . . , xn) = the least y for which g(x1, . . . , xn, y) = 0,

if such an y exists;

• f(x1, . . . , xn) = ↑, otherwise,

for all x1, . . . , xn ∈ N.
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2.1.3.1. Definitions and Examples

If f is obtained from g by minimization then we write

f(x1, . . . , xn) = µ(y)[g(x1, . . . , xn, y) = 0]

The class of recursive functions is the smallest class RF of

arithmetic functions which satisfies:

• includes all the initial functions;

• it is closed under composition;

• it is closed under primitive recursion;

• it is closed under minimization.

Remark: RF includes PRF and contains partial functions

too.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

80



2.1.3.1. Definitions and Examples

Example 6

1. The function given by f(x) = µ(y)[|x − 3y| = 0], for all

x ∈ N, is a recursive function (but not primitive recursive);

2. The function given by

Ω(n)(x1, . . . , xn) = ↑,
for all x1, . . . , xn ∈ N, is a recursive function (but not prim-

itive recursive), for all n ≥ 1. It is the totally undefined

function.

Function Ω(x1, . . . , xn)
input: x1, . . . , xn ∈ N;
output: “undefined”;
begin
return “undefined”

end.
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2.1.3.1. Definitions and Examples

Remark: The class RF contains:

• recursive functions which are totally defined, called total

recursive functions;

• recursive functions which are partially defined, called par-

tial recursive functions.

PRFTRFRF
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2.1.3.2. The Ackermann-Peter Function is Recursive

Inner-most computation of the Ackermann-Peter function:

no. configuration code

0 A(x, y) c(x, y,0)
· · ·
m A(x1, A(x2, . . . , A(xk, y′) · · ·)) c(x, y, m)
· · ·
mf z c(x, y, mf)

Encoding the computation steps:

• c(x, y,0) = 223x+15y+1

• c(x, y, m) = pn(0)k+1pn(1)x1+1 · · · pn(k)xk+1pn(k+1)y′+1

• c(x, y, mf) = 213z+1

• c(x, y, k) = c(x, y, k − 1), if k > mf
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2.1.3.2. The Ackermann-Peter Function is Recursive

Lemma 5 The function c(x, y, m) is primitive recursive.

Proof (sketch)

Define the predicate G by:

G(α) = 1 ⇔ α is the code of some configuration

G is primitive recursive:

• G(α) = eq(exp(0, α), long(α)) · ∏long(α)
i=0 gr(exp(i, α),0)
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2.1.3.2. The Ackermann-Peter Function is Recursive

Define the predicate Ri(α), for i = 1,2,3, by:

Ri(α) = 1 ⇔ G(α) = 1 and (Ri) can be applied
to the configuration encoded by α

Ri is primitive recursive, for all i = 1,2,3:

• R1(α) = G(α) · eq(exp(long(α)−·1, α),1)

• R2(α) = G(α)·gr(exp(long(α)−·1, α),1)·eq(exp(long(α), α),1)

• R3(α) = G(α)·gr(exp(long(α)−·1, α),1)·gr(exp(long(α), α),1)

Define the predicate R4 by:

• R4(α) = G(α) · ¬(R1(α) + R2(α) + R3(α))

R4 is primitive recursive
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2.1.3.2. The Ackermann-Peter Function is Recursive

Define the function hi, i = 1,2,3,4, by

hi(α) = the new code obtained by applying Ri to α

The function hi is primitive recursive, for all i = 1,2,3,4:

• h1(α) = R1(α) ·
(α/(pn(0) · pn(long(α)−·1) · pn(long(α))exp(long(α),α))) ·
pn(long(α)−·1)exp(long(α),α)+1

• h2(α) = R2(α) · (α/pn(long(α)−·1)) · pn(long(α))

• h3(α) = R3(α) ·
(α/(pn(long(α)−·1) · pn(long(α))exp(long(α),α))) ·
pn(long(α))exp(long(α)−·1,α) ·
pn(long(α) + 1)exp(long(α),α)−·1 ·
pn(0)

• h4(α) = α
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2.1.3.2. The Ackermann-Peter Function is Recursive

The function c can be written as:

• c(x, y,0) = 223x+15y+1;

• c(x, y, m + 1) =
∑4

i=1 Ri(c(x, y, m)) · hi(c(x, y, m)),

for all x, y, m ∈ N.

Therefore, the function c is primitive recursive, and the proof

is completed. 2.
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2.1.3.2. The Ackermann-Peter Function is Recursive

Lemma 6 The function t : N2→N given by:

t(x, y) = the number of the final step in the
inner-most computation of A(x, y),

for all x, y ∈ N, is a total recursive function.

Proof

t(x, y) = µ(m)[exp(0, c(x, y, m)) = 1]

2
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2.1.3.2. The Ackermann-Peter Function is Recursive

Theorem 2 The Ackermann-Peter function is recursive.

Proof

A(x, y) = exp(1, c(x, y, t(x, y)))−·1
2

Remark: The function t(x, y) is not primitive recursive (oth-

erwise, A would be primitive recursive).
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2.1.3.2. The Ackermann-Peter Function is Recursive

Notation:

• AF – arithmetic functions;

• TAF – total arithmetic functions;

• PRF – primitive recursive functions;

• RF – recursive functions;

• TRF - total recursive functions.

Remark:

• AF is uncountable: |AF | = 2ℵ0

• PRF , TRF , and RF is countable:

|PRF | = |TRF | = |RF | = ℵ0
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2.1.3.2. The Ackermann-Peter Function is Recursive

Theorem 3 The following relationships between these classes

of functions hold:

PRF TRF

TAF

RF

AF

PRFTRFRF

AF

TAF
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2.1.3.2. The Ackermann-Peter Function is Recursive

Proof The following inclusions hold:

• PRF ⊂ TRF : the Ackermann-Peter function is a total

recursive function but not primitive recursive;

• TRF ⊂ RF : the totally undefined function is recursive

but it is not a total function;

• RF ⊂ AF : |RF | < |AF ;

• RF and TAF are incomparable : RF contains partial func-

tions, and |TAF | > |RF .

2
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2.1.3.3. Limits of Algorithmic Computability

Church’s Thesis: formulatd by the American logician Alonzo

Church in 1935, states that the recursive functions are the

only functions that can be mechanically calculated.

Originally, Alonzo Church (1932, 1936, 1941) and Stephen

Kleene (1935) introduced lambda-definable functions, and

Kurt Gödel (1934) and Jacques Herbrand (1932) introduced

recursive functions. These two formalisms describe the same

set of functions, as was shown in the case of functions of

positive integers by Church (1936) and Kleene (1936).

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

93



2.1.3.3. Limits of Algorithmic Computability

Terminology:

• decision problem

– solvable (computable)

∗ decidable = total recursive function

∗ semi-decidable = (partial) recursive function

– unsolvable (undecidable) = non-recursive function

• computation problem

– solvable (computable) = recursive function

– unsolvable (non-computable) = non-recursive function

How does a problem (function) that is not computable (re-

cursive) look like?
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2.1.3.3. Limits of Algorithmic Computability

The class of recursive functions is countable. Therefore, we

may enumerate all the n-ary recursive functions:

f
(n)
0 , f

(n)
1 , . . .

(the arity will be omitted when it is clear from the context).

Assumption (Wagner-Strong axiom): There exists a recur-

sive function u(n+1) such that

u(n+1)(i, x1, . . . , xn) = f
(n)
i (x1, . . . , xn),

for all i, x1, . . . , xn ∈ N. u is called an universal function (later

we will prove that such a function exists but, for the time

being we accept it as an axiom).

An universal function compresses an infinite sequence of func-

tions (as the (original) Ackermann function does).
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2.1.3.3. Limits of Algorithmic Computability

Denote by d : N4→N the function given by:

d(x, y, u, v) = if x = y then u else v,

for all x, y, u, v ∈ N.

d is primitive recursive (prove it!)

Let diag : N→N be the predicate given by:

diag(x) =

{

1, fx(x)↓
0, otherwise,

for all x ∈ N.

This predicate describes, in a functional way, a particular

halting test.
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2.1.3.3. Limits of Algorithmic Computability

Theorem 4 diag is not recursive.

Proof (sketch)

• assume, by contradiction, that diag is recursive;

• define g(x) = u(d(diag(x),0, i, j), x), for some i and j;

• g is recursive and, therefore, there exists k such that g =

fk;

• derive a contradiction.

2
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2.1.3.3. Limits of Algorithmic Computability

Once some function f has been shown to be non-recursive,

we can use that function to give other examples of non-

recursive functions by way of the reducibility method.

A function f is recursively reducible (or r-reducible) to g if

there exists a recursive function h such that g ◦ h = f . The

function h is called a reducibility function.

If f is recursively reducible to g by means of h then we will

write f ≺h g or even f ≺ g.

Remark: If f ≺h g and f is not recursive, then g is not

recursive.
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2.1.3.3. Limits of Algorithmic Computability

Let halt(n+1) : N(n+1)→N be the predicate given by:

halt(n+1)(i, x1, . . . , xn) =

{

1, fi(x1, . . . , xn)↓
0, otherwise,

for all i, x1, . . . , xn ∈ N.

Corollary 2 halt(2) is not recursive.

Proof Hint: use reducibility. 2
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2.1.3.3. Limits of Algorithmic Computability

Assumption (Wagner-Strong axiom): For any m ≥ 0 and

n > 0 there exists a total recursive function s
(m+1)
m,n such that

f
(m+n)
i (x1, . . . , xm, y1, . . . , yn) = f

(n)

s
(m+1)
m,n (i,x1,...,xm)

(y1, . . . , yn),

for all i, x1, . . . , xm, y1, . . . , yn ∈ N. sm,n is called an s-m-n

function (later we will prove that such a function exists but,

for the time being we accept it as an axiom).

An s-m-n function reduces by m the number of arguments of

(m + n)-ary functions.
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2.1.3.3. Limits of Algorithmic Computability

Let t : N→N be the predicate given by:

t(x) =

{

1, if fx is total
0, otherwise,

for all x ∈ N.

Corollary 3 t is not recursive.

Proof Hint: use reducibility and the s-m-n property. 2

This predicate describes, in a functional way, a totality test.
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2.1.3.4. Recursive Sets. Rice’s Theorem

An arithmetic predicate f : Nn→N can be regarded as a sub-

set of N:

Af = {x ∈ N
n|f(x) = 1}

The characteristic function of a subset A ⊆ Nn is the function

χA : Nn→N given by χA(x) = 1 iff x ∈ A, for all x ∈ Nn.

Given a predicate f , f = χAf
.
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2.1.3.4. Recursive Sets. Rice’s Theorem

A set A ⊆ Nn is called primitiv recursive if its characteristic

function χA is a primitive recursive function.

A set A ⊆ Nn is called recursive if its characteristic function

χA is a total recursive function.

Proposition 20

(1) ∅ and N are primitive recursive sets.

(2) If A, B ⊆ Nn are (primitive) recursive sets, then A ∪ B,

A ∩ B, and A − B are (primitive) recursive sets too.
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2.1.3.4. Recursive Sets. Rice’s Theorem

Example 7 Not every set A ⊆ Nn is recursive.

1. The set A = {x ∈ N|fx(x)↓} is not recursive because its

characteristic set is χA = diag;

2. The set B = {x ∈ N|fx total} is not recursive because its

characteristic set is χB = t.

The sets in the example above are referring to the class of

all unary recursive functions. There is a general result due to

Rice (1953).

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

104



2.1.3.4. Recursive Sets. Rice’s Theorem

Theorem 5 (Rice’s Theorem)

Let A ⊆ {f(1)
i |i ≥ 0} and Ind(A) = {i|fi ∈ A}. Then, Ind(A)

is recursive iff Ind(A) = ∅ or Ind(A) = N.

Proof ⇒ : (sketch)

• Assume that Ind(A) is recursive but Ind(A) 6= ∅ and

Ind(A 6= N;

• reduce diag to χInd(A) and get a contradiction.

⇐ : straightforward. 2

Rice’s theorem states that, no non-trivial property of unary

recursive functions is decidable.
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2.1.3.4. Recursive Sets. Rice’s Theorem

Corollary 4 The following sets are not recursive:

1. {i ∈ N|fi total};
2. {i ∈ N|dom(fi) = ∅};
3. {i ∈ N|dom(fi) infinite};
4. {i ∈ N|fi(x0) = y0}, where x0 and y0 are given;

5. {i ∈ N|fi = fm}, where m is given;

6. {i ∈ N|y0 ∈ cod(fi)}, where y0 is given.

Proof Use Rice’s Theorem. 2
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2.2. Turing Machines

2.2.1. Turing machines

2.2.2. Techniques for Turing machine construction

2.2.3. Recursive functions are Turing-computability

2.2.4. Turing-computable functions are recursive

2.2.5. The Church-Turing Thesis
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2.2.1. Turing Machines

A formal model for an effective procedure should possess

certain properties:

• it should be finitely describable;

• the procedure should consist of discrete steps, each of

which can be carried out mechanically.

In 1936, Alan Turing proposed such a model. His model,

called today Turing machine, has become the accepted for-

malization of an effective procedure.
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2.2.1. Turing Machines

The basic model has a finite control, an input tape that is
divided into cells, and a tape head that scans one cell of the
tape at a time.

a ab c B B

finite control

q

...

The tape has a leftmost cell but it is infinite to the right.
Each cell may hold exactly one of a finite number of tape
symbols. Initially, the n leftmost cells, for some n ≥ 0, hold
the input; the remaining infinity of cells each hold the blank,
which is a special tape symbol that is not an input symbol.
The finite control can be in one of a finite number of internal
states.
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2.2.1. Turing Machines

In one move, the machine, depending upon the symbol scanned

by the tape head and the state of the finite control, does the

followings:

• changes state,

• replaces the current symbol on the tape cell by a new

symbol, and

• moves its tape head one cell to the left or to the right.
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2.2.1. Turing Machines

A deterministic Turing machine, abbreviated DTM , is a 7-

tuple M = (Q,Σ,Γ, δ, q0, B, F ), where

• Q is a finite non-empty set of states;

• Σ is a finite non-empty set of input symbols, called the

input alphabet of M ;

• Γ is a finite non-empty set of tape symbols, called the

tape alphabet of M . It is assumed that Σ ⊆ Γ;

• δ : Q×Γ ; Q×Γ×{L, R} is the transition relation/function

of M ;

• q0 ∈ Q is the initial/start state;

• B ∈ Γ − Σ is the blank symbol;

• F ⊆ Q is the set of final states.
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2.2.1. Turing Machines

Let M = (Q,Σ,Γ, δ, q0, B, F ) be a DTM .

• A configuration (instantaneous description) of M is any

pair (q, u|av) ∈ Q × Γ∗{|}Γ+. Its meaning is:

– q denotes the current state;

– u consists of the symbols from the first cell up to, but

not including, the symbol under the tape head;

– the vertical bar “|” denotes the position of the tape

head;

– a is the symbol under the tape head;

– v is either the empty string, if all symbols from the

tape head, including a, are B, or the string of tape

symbols for which all the other symbols on the rest of

the tape are blank;
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2.2.1. Turing Machines

• A configuration (q, u|av) for which q = q0, u = λ, and

v = λ whenever a = B, is called an initial configuration;

• Config(M) stands for the set of all configurations of M ;

• C0(w) stands for (q0, |w), if w 6= λ, and (q0, |B), otherwise.

Example 8 The following pairs are configurations of some

Turing machine:

• (q, aaBa|aBBBaab)

• (q, |BaBBab)
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2.2.1. Turing Machines

Let M be a DTM . Define the transition relation of M ,

⊢M⊆ Config(M) × Config(M),

as follows:

(q, u|av) ⊢M (q′, u′|a′v′)
iff one of the following two properties holds:

• (move/step to the right)

δ(q, a) = (q′, ā, R), u′ = uā, and

if v = λ then a′ = B and v′ = λ else v = a′v′;

• (move/step to the left)

δ(q, a) = (q′, ā, L), u 6= λ, u = u′a′, v′ = āv.

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

114



2.2.1. Turing Machines

Let M be a DTM .

• (computation step/move/transition)

(q, u|av) ⊢M (q′, u′|a′v′)

• (computation)

(q0, u0|a0v0) ⊢M · · · ⊢M (qn, un|anvn),

where (q0, u0|a0v0) is an initial configuration.

• a configuration C is called a blocking configuration if

there is no configuration C′ such that C ⊢M C′;

• a configuration C′ is called reachable from C if C
∗

⊢M C′;
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2.2.1. Turing Machines

Remark: Let M be a DTM . Then:

1. In any configuration, the machine can perform at most

one move (because the machine is deterministic);

2. Blocking configurations are not necessarily final configu-

rations, and vice-versa;

3. A configuration (q, u|av) is a blocking configuration if ei-

ther δ(q, a)↑ or u = λ and δ(q, a) = (q′, ā, L).
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2.2.1. Turing Machines

Let M be a DTM and w and input for M .

• M halts on w if there exists a blocking or final config-

uration C such that (q0, |w)
∗
⊢ C. Two cases are to be

considered:

– M accepts w if C is a final configuration. Denote by

accept(M) the set of all w accepted by M ;

– M rejects w if C is a blocking configuration. Denote

by reject(M) the set of all w rejected by M ;

• M loops on w if it does not halt on w.

accept(M) ∪ reject(M) ∪ loop(M) = Σ∗

accept(M) is also called the language accepted by M , denoted

L(M).
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2.2.1. Turing Machines

Example 9 The following Turing machine accepts

L = {0n1n|n ≥ 1}.

0 1 X Y B
q0 (q1, X, R) (q3, Y, R)

q1 (q1,0, R) (q2, Y, L) (q1, Y, R)

q2 (q2,0, L) (q0, X, R) (q2, Y, L)

q3 (q3, Y, R) (q4, B, R)

q4

q4 is the only final state.
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2.2.1. Turing Machines

Turing machines may be viewed as computers of arithmetic

functions. The traditional approach is to represent integers

in unary. The integer x ≥ 0 is represented by 0x.

(x1, . . . , xk) ; 0x11 · · ·10xk

Example 10

• (1,2,1) ; 010010

• (2,0,0,3) ; 00111000

Remark:

• Three tape symbols are needed: 0, 1, and B;

• 0 and 1 may be replaced by any two distinct symbols a

and b.
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2.2.1. Turing Machines

Let M be a DTM and f : Nk→N. M computes f if, for any

x1, . . . , xk ∈ N, one of the following two properties holds true:

• if f(x1, . . . , xk)↓ then M halts on (q0, |0x11 · · ·10xk) with a

tape consisting of 0f(x1,...,xk);

• if f(x1, . . . , xk)↑ then M does not halt on (q0, |0x11 · · ·10xk).

An arithmetic function is Turing-computable if there exists a

Turing machine which computes it.

We denote by TCF the set of all Turing-computable func-

tions.
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2.2.1. Turing Machines

Remark:

• All natural numbers are Turing-computable;

• If the unary notation for natural numbers is adopted as

being

x ; 0x+1

then Turing machines with only two tape symbols are

sufficient to compute arithmetic functions (prove it!).
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2.2.1. Turing Machines

Example 11 The following Turing machine computes x−· y.
0 1 B

q0 (q1, B, R) (q5, B, R)

q1 (q1,0, R) (q2,1, R)

q2 (q3,1, L) (q2,1, R) (q4, B, L)

q3 (q3,0, L) (q3,1, L) (q0, B, R)

q4 (q4,0, L) (q4, B, L) (q6,0, R)

q5 (q5, B, R) (q5, B, R) (q6, B, R)

q6

The machine has no final state.
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2.2.2. Techniques for Turing Machine Construction

Storage in the finite control

The finite control can be used to hold a finite amount of

information. To do so, the state is written as a pair of

elements, one exercising control and the other one storing a

symbol.

Example 12 Design a Turing machine that looks at the first

input symbol, records it in its finite control, accepts if the first

symbol does not appear elsewhere on its input, and rejects,

otherwise.
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2.2.2. Techniques for Turing Machine Construction

Shifting over

A Turing machine can make space on its tape by shifting

blocks of symbols a finite number k of cells to the right. To

do so,

• the machine uses its finite control to store k symbols;

• initially, the state is (q, B, . . . , B);

• if the current state is (q, X1, . . . , Xk) and the symbol scanned

on the tape is X, the machine prints X1, and enters the

state (q, X2, . . . , Xk, X). This process is repeated until the

block in question is exhausted.

If space is available, it can push blocks of symbols left in a

similar manner.
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2.2.2. Techniques for Turing Machine Construction

Remark:

• If k is large, the number of states could became very large.

A different solution will be proposed after the “checking

off symbols” technique is discussed;

• by this technique, blocks of symbols can be surrounded

by two special symbols, $ and #, for instance. The block

in question is shifted one cell to the right by printing $

first and # at the end.
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2.2.2. Techniques for Turing Machine Construction

Multiple tracks

We can view the tape of the Turing machine as being divided

into k tracks, for any k ≥ 2. To do so, the tape symbols are

considered k-tuples, one component for each track.

Example 13 Design a Turing machine that takes a binary

input greater than 2 and determines whether it is a prime.
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2.2.2. Techniques for Turing Machine Construction

Checking off symbols

Turing machines can check off symbols on their tapes. To

do so, the tape is divided into 2 tracks, one holding the input

and the other one being used to check symbols.

Example 14 Design a Turing machine that accepts the lan-

guage

L = {wcw|w ∈ {a, b}∗},
where c 6∈ {a, b}.
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2.2.2. Techniques for Turing Machine Construction

Using this technique, a Turing machine can shift blocks of

symbols a finite number k of cells to the right, as follows:

• check (if it is necessarily) the first symbol of the block;

• repeatedly do

– store and erase the rightmost symbol of the block;

– move right k cells and print the symbol;

until the checked symbol is encounter (and shift it too).

If k is large, this solution might be more convenient than the

previous one.
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2.2.2. Techniques for Turing Machine Construction

Subroutines

As with programs, Turing machine can be designed in a “to-

down” manner, by using “subroutines”. The general idea

is to write part of a Turing machine program to serve as

a subroutine, with an initial state and several return states.

The call of this subroutine is effected by entering in its initial

state, and the return is effected by the move from a return

state.

Example 15 Design a Turing machine which computes the

multiplication function.
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2.2.3. Recursive Functions are Turing-computable

Lemma 7 Initial functions are Turing-computable.

Proof

• S(x) = x + 1

start off with 0x on the tape, skip over 0’s until the left-

most B is encountered, change B to 0, and halt;

• C
(n)
m (x1, . . . , xn) = m

start off with 0x11 · · ·10xn on the tape, change all 0s and

1s to B’s and, on encountering B, print m 0s;

• P
(n)
i (x1, . . . , xi, . . . , xn) = xi

start off with 0x11 · · ·10xi1 · · ·10xn on the tape, change

all 0s and 1s to B’s until the (i − 1)st 1 is encountered,

skip over 0’s until the leftmost 1 or B is encountered, and

erase the rest of the tape.

2
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2.2.3. Recursive Functions are Turing-computable

Lemma 8 Function composition of Turing-computable func-

tions is Turing-computable.

Proof Let g1, . . . , gm ∈ AF (n) and f ∈ AF (m) be Turing-

computable functions. Assume that Mi computes gi, 1 ≤ i ≤
m, and M0 computes f . Define M as follows:

• start off with 0x11 · · ·10xn;

• surround the input by $ and #,

$0x11 · · ·10xn#

• copy the input to the right of the first #,

$0x11 · · ·10xn#0x11 · · ·10xn
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2.2.3. Recursive Functions are Turing-computable

• call M1 on the second input’s copy

$0x11 · · ·10xn#0g1(x1,...,xn)

• repeat the cycle and call M2, . . . , Mm

$0x11 · · ·10xn#0g1(x1,...,xn)# · · ·#0gm(x1,...,xn)

• change all #’s, except for the first one, to 1’s

$0x11 · · ·10xn#0g1(x1,...,xn)1 · · ·10gm(x1,...,xn)

• call M0

$0x11 · · ·10xn#0f(g1(x1,...,xn),...,gm(x1,...,xn))

• erase the block $0x11 · · ·10xn# and halt.

2
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2.2.3. Recursive Functions are Turing-computable

Lemma 9 If f is obtained by primitive recursion over g and

h, and g and h are total Turing-computable functions, then

f is Turing-computable.

Proof Assume that M1 computes g and M2 computes h.

For the sake of simplicity we will consider that f is a 2-ary

function. Define M as follows:

• start off with 0x10y

• generates

$0x10y$0x10y−1$ · · ·$0x10$0x

• call M1 on the last block and compute f(x,0) = g(x)

$0x10y$0x10y−1$ · · ·$0x10$0f(x,0)
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2.2.3. Recursive Functions are Turing-computable

• replace the last block 0$ by 1

$0x10y$0x10y−1$ · · ·$0x110f(x,0)

• call M2 on the last block and compute f(x,1) = h(x,0, f(x,0))

$0x10y$0x10y−1$ · · ·$0f(x,1)

• repeat the cycle y − 1 times and get

$0f(x,y)

• erase the symbol $ and halt.

2
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2.2.3. Recursive Functions are Turing-computable

Lemma 10 If f is obtained by minimization over a total

Turing-computable function g, then f is Turing-computable.

Proof For the sake of simplicity we assume that f is a

unary function. Let M be a Turing machine which computes

g. Define M ′ as follows:

1. start off with 0x

2. generate $0x1$

3. copy the first block after the second $, $0x1$0x1, and

call M on the second block in order to compute g(x,0)

4. if g(x,0) = 0 then halt; otherwise, increment the second

argument, $0x10$, and go to step 3.

2
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2.2.3. Recursive Functions are Turing-computable

Theorem 6 Recursive functions are Turing-computable.

Proof The class of Turing-computable functions includes

the initial functions and it is closed under function composi-

tion, primitive recursion, and minimization. 2
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2.2.4. Turing-computable Functions are Recursive

Let M = (Q,Σ,Γ, δ, q1, B, F ) be a Turing machine. If it is

used to compute functions then we may assume that:

• Σ = {0,1};
• F = ∅;
• Q = {q1, . . . , qn}, n ≥ 1;

• Γ = {X1, . . . , Xm}, where X1 = 0, X2 = 1, X3 = B, and

m ≥ 3.

Therefore, M halts only if a blocking configuration is reached.
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2.2.4. Turing-computable Functions are Recursive

Configurations (q, u|av) of M are encoded as follows:

• (q, u|av) ; (i, |u|, G(uav)) ; J(3)(i, |u|, G(uav)) ∈ N;

• G(uav) is the Gödel number of the sequence uav, i.e.,

G(uav) = pn(0)i1 · · · pn(k − 1)ik

assuming uav = Xi1 · · ·Xik.

Example 16

• (q3, |010) ; (3,0,21 · 32 · 51) ; J(3)(3,0,90) = 4959

• (q2,100|B01) ; (2,3,22 · 31 · 51 · 73 · 111 · 132)

; J(3)(2,3,38258220) = J(2)(17,38258220)

= 12,441,388,261,154,451
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2.2.4. Turing-computable Functions are Recursive

Given a configuration C, denote by JG(C) its code (defined

as above).

Define cM : N2→N by

cM(x, n) =







JG(Cn), if there exists a computation
C0(x), . . . , Cn

JG(Cn0), if there exists a computation
C0(x), . . . , Cn0, Cn0 is a halting
configuration, and n > n0,

for all x, n ∈ N.

Lemma 11 The function cM is primitive recursive.
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2.2.4. Turing-computable Functions are Recursive

Define nrM : N→N by

nrM(x) =







n, if there exists a computation
C0(x), . . . , Cn, and Cn is a
halting configuration

↑, otherwise,

for all x ∈ N.

Lemma 12 The function nrM is recursive.

Proof nrM(x) = µ(y)[cM(x, y) = cM(x, y + 1)]. 2
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2.2.4. Turing-computable Functions are Recursive

Without loss of generality we may assume that any blocking

configuration of M is of the form (q, |0m), for some m ≥ 0

(assume 0m = B whenever m = 0).

Define decode : N→N by

decode(z) = (1−· eq(I(3)
3 (z), pn(0)3))

(µ(y ≤ z)[I
(3)
3 (z) =

∏y−1
i=0 pn(i)]),

for all z ∈ N.

Lemma 13 decode is primitive recursive.
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2.2.4. Turing-computable Functions are Recursive

Lemma 14 The unary function f : N→N computed by a

Turing machine M is given by

f(x) = decode(cM(x, nrM(x))),

for all x ∈ N.

Theorem 7 Any Turing-computable function is recursive.

Corollary 5 RF = TCF .
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2.3. Properties of Recursive Functions

2.3.1. Universal functions

2.3.2. The s-m-n theorem

2.3.3. Recursively enumerable sets

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

143



2.3.1. Universal Functions

Recall that, to compute functions, Turing machines can be

considered in the form M = (Q,Σ,Γ, δ, q1, B, F ), where:

• Q = {q1, . . . , qn}, n ≥ 1;

• Σ = {0,1};
• Γ = {0,1, B};
• F = ∅.

Moreover,

• denote 0 = X1, 1 = X2, B = X3, and

• denote L = D1, R = D2, and

• assume that for any state q there exists at least one tran-

sition δ(qi, Xj) = (qk, Xl, Dm) such that q = qi or q = qk.
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2.3.1. Universal Functions

Let M = (Q,Σ,Γ, δ, q1, B, F ) a Turing machine as given above.

We encode M as follows:

• encode each transition δ(qi, Xj) = (qk, Xl, Dm) by

0i10j10k10l10m

• assume that M has r transitions and their codes are

code1,. . . , coder;

• encode M by:

111code111code211 · · ·11coder−111coder111
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2.3.1. Universal Functions

Example 17 Let M = ({q1, q2, q3}, {0,1}, {0,1, B}, δ, q1, B, ∅),
where:

• δ(q1,1) = (q3,0, R),

• δ(q3,0) = (q1,1, R),

• δ(q3,1) = (q2,0, R), and

• δ(q3, B) = (q3,1, L).

The following binary sequence is a code of this machine:

111010010001010011000101010010011

00010010010100110001000100010010111
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2.3.1. Universal Functions

Remark:

1. Except for the totally undefined Turing machine or Turing

machines with exactly one transition, all the other Turing

machines have more than one code, but finitely many.

2. If we order lexicographically the transitions of Turing ma-

chines, then each Turing machine has exactly one code.

The lexicographic order is given by:

• order first by states, q1 < q2 < · · · < qn,

• order then by input symbols, 0 < 1 < B.

The unique code such obtained is denoted by 〈M〉.
3. Distinct Turing machines have distinct codes.
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2.3.1. Universal Functions

• The code of a Turing machine is a binary sequence. If

we order lexicographically these binary sequences, we get

the standard enumeration of Turing machines

M0, M1, . . .

• The standard enumeration of Turing machines induces a

standard enumeration of all n-ary recursive functions:

f
(n)
0 , f

(n)
1 , . . .

where f
(n)
i is the n-ary function computed by Mi;

• As there are infinitely many Turing machines computing

the same n-ary function, each function f
(n)
i appears in-

finitely many times in the standard enumeration of all

n-ary recursive functions.
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2.3.1. Universal Functions

Given Mi and x1, . . . , xn ∈ N, we denote by 〈M, x1, . . . , xn〉 the

binary string

〈Mi〉0x11 · · ·10xn

Theorem 8 There exists a Turing machine Mu that, on in-

put 〈Mi, x1, . . . , xn〉, computes f
(n)
i (x1, . . . , xn), for all i and

x1, . . . , xn.

Proof For the sake of simplicity we will consider only the

case n = 1.

We shall exhibit a 3-track Turing machine Mu:

• the first track holds the input 〈Mi, x〉;
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2.3.1. Universal Functions

• the second track is used to simulate the tape of Mi;

• the third track holds the current state of Mi, with qi

represented by 0i. Initially, it holds 01 (i.e., q1).

The behavior of Mu is as follows:

• mark the first cell so the head can find its way back;

• Mu checks the input to see that 〈Mi〉 is the code of some

Turing machine;

• copy 0x on the second track and initialize track 3 to hold

0 (q1);
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2.3.1. Universal Functions

• let 0i (qi) be the current content of track 3 and Xj be

the current symbol scanned on tracked 2.

– Mu scans the first track (from left to right) looking

for a substring which begins with 110i10j1;

– If no such string is found, Mu halts (in a blocking

configuration);

– If such a code is found, let it be 0i10j10k10l10m.

Then, it puts 0k on track 3, replaces Xj by Xl on

the second track, and moves in the direction pointed

by Dm;

• When M halts, Mu halts.

2
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2.3.1. Universal Functions

A Turing machine as the one in the proof above is called an

universal Turing machine.

Corollary 6 There exist n-ary universal functions, for any

n ≥ 2.

Proof Modify an arbitrary universal Turing machine Mu as

follows:

• start off with 0i10x11 . . .10xn on the tape;

• generate the code of Mi (use a new track if needed);

• call Mu on 〈Mi, x1, . . . , xn〉.

The machine such obtained computes an universal function

u(n+1), for all n ≥ 1. 2
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2.3.2. The s-m-n Theorem

Theorem 9 (s-m-n theorem)

For any recursive function f
(m+n)
i there exists a total recur-

sive function s
(m+1)
m,n such that:

f
(m+n)
i (x1, . . . , xm, y1, . . . , yn) = f

(n)

s
(m+1)
m,n (i,x1,...,xm)

(y1, . . . , yn),

for all x1, . . . , xm, y1, . . . , yn ∈ N.

Proof use Turing machines 2
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2.3.3. Recursively Enumerable Sets

A set A ⊆ N is called recursively enumerable, abbreviated

r.e., if A = ∅ or A is the range of an unary total recursive

function.

Remark: If A ⊆ N is a non-empty r.e. set and f is an unary

total recursive function such that A = cod(f), then we will

say that f enumerates A. Why?

• 0 ; f(0) ∈ A;

• 1 ; f(1) ∈ A;

• · · ·
• A = {f(x)|x ≥ 0}.
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2.3.3. Recursively Enumerable Sets

Remark: A ⊆ N is an r.e. set if A = ∅ or there exists a

Turing machine M such that:

• M halts on all inputs x ∈ N;

• for each input x, when M halts on x then the output

M(x) is in A;

• for any a ∈ A there exists x ∈ N such that a = M(x)

(the machine M enumerates A).

We may say that:

A is an r.e. set if A = ∅ or there exists an algorithm

A that enumerates all the elements of A.
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2.3.3. Recursively Enumerable Sets

Notation:

• PRS = the set of all primitive recursive sets A ⊆ N;

• RS = the set of all recursive sets A ⊆ N;

• RES = the set of all r.e. sets A ⊆ N;

Proposition 21

PRS ⊆ RS ⊆ RES
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2.3.3. Recursively Enumerable Sets

Theorem 10

1. A set is r.e. iff it is the range of an unary recursive

function.

2. A set is r.e. iff it is the domain of an unary recursive

function.

Remark: The above theorem can be used to show that

certain sets are/are not r.e.:

• use (1.) to show that a given set is r.e.;

• use (2.) to show that a given set is not r.e.
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2.3.3. Recursively Enumerable Sets

Example 18

1. The set A = {x|fx(x)↓} is r.e.

2. The set N − A, where A is the set from (1.), is not r.e.

3. The set B = {x|fx is total} is not r.e.

4. The set N − B, where B is the set from (3.), is not r.e.

Proposition 22 The set RES is closed under union and in-

tersection but not under complementation.

From this proposition follows that RS ⊂ RES. Moreover,

PRS ⊂ RS ⊂ RES

UCF-SCS/COT5310/Fall 2005/F.L. Tiplea

158



2.3.3. Recursively Enumerable Sets

Theorem 11 A set A is recursive iff A and N − A are r.e.

Proof ⇒ : straightforward.

⇐ : If A = ∅ or N − A = ∅, then A is recursive.

Assume that both A and N−A are non-empty. Let g1 and g2
be two total recursive functions such that A = cod(g1) and

N − A = cod(g2).

Let h(x) = µ(y)[g1(y) = x ∨ g2(y) = x]. h is recursive and

χA(x) =

{

1, g1(h(x)) = x
0, otherwise

Therefore, A is reursive. 2
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2.3.3. Recursively Enumerable Sets

Remark: Given a subset A ⊆ N, define the language of A

as being the set LA = {0x|x ∈ A} ⊆ {0,1}∗. Then:

A ⊆ N is recursive ⇔ χA is total recursive
⇔ (∃ a Turing machine M)

(M computes χA)
⇔ (∃ a Turing machine M ′)

(LA = accept(M ′) ∧ LA = reject(M ′))

The second equivalence is based on:

• Given M which computes χA, design M ′ which accepts

when M halts in a configuration (q, |0), and rejects when

M halts in a configuration (q, |B).
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2.3.3. Recursively Enumerable Sets

Remark:

A ⊆ N is r.e. ⇔ A = dom(f) for some recursive function
⇔ (∃ a Turing machine M)

(LA = {0x|M halts on 0x})
⇔ (∃ a Turing machine M ′)

(LA = accept(M ′))

The second equivalence is based on:

• Given M which computes f , design M ′ which accepts 0x

if and only if M halts on 0x.
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2.3.3. Recursively Enumerable Sets

Extension to languages

Let Σ be an alphabet and L ⊆ Σ∗.

We say that L is recursive if there exists a Turing machine
M such that L = accept(M) and L = reject(M).

We say that L is recursively enumerable, abbreviated r.e., if
there exists a Turing machine M such that L = accept(M).

Denote:

• RS(Σ) = the set of all recursive sets L ⊆ Σ∗;
• RES(Σ) = the set of all r.e. sets L ⊆ Σ∗;
• Lrec = the class of all recursive languages;

• Lre = the class of all r.e. languages.
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2.3.3. Recursively Enumerable Sets

Remark: The main difference between recursive and r.e. sets:

• If L is recursive ⇒ (∃M)(L = acccept(M)∧L = reject(M))

– given w ∈ Σ∗, if w ∈ L then M accepts w and, there-

fore, we know that w is a member of L;

– given w ∈ Σ∗, if w 6∈ L then M rejects w and, therefore,

we know that w is not a member of L;

• If L is r.e. ⇒ (∃M)(L = acccept(M))

– given w ∈ Σ∗, if w ∈ L then M accepts w and, there-

fore, we know that w is a member of L;

– given w ∈ Σ∗, if w 6∈ L then M either rejects w or

loops. In this case we might not know that w is not a

member of L.

Recursive sets = membership problem is decidable

r.e. sets = membership problem is semi-decidable
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2.3.3. Recursively Enumerable Sets

Theorem 12

1. RS(Σ) is closed under union, intersection, and comple-

mentation;

2. RES(Σ) is closed under union and intersection, but not

under complementation;

3. RS(Σ) ⊆ RES(Σ);

4. L ⊆ Σ∗ is recursive iff L and Σ∗ − L are r.e.

5. Lrec ⊂ Lre = L0 (L0 is the class of type 0 Chomsky

languages).
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