
Formal Languages and
Automata Theory

COT 5310 – Fall 2007
Notes

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 2

Who, What, Where and When
• Instructor: Charles Hughes;

Harris Engineering 439C; 823-2762;
ceh@cs.ucf.edu

• Web Page: http://www.cs.ucf.edu/courses/cot5310/

• Meetings: MW 7:30PM-8:45PM, HEC-103;
29 periods, each 75 minutes long.
Office Hours: MW 5:00PM-6:15PM

• GTA: Greg Tener
Office Hours: TR 6:30PM-7:30PM

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 3

Text Material
• This and other material linked from web site.

I will occasionally use Dr. Tiplea’s notes from
Fall 2005, as well as mine.

• References:
– Davis, Sigal and Weyuker, Computability,

Complexity and Languages 2nd Ed., Academic
Press (Morgan Kaufmann), 1994.

– Hopcroft, Motwani and Ullman, Introduction to
Automata Theory, Languages and Computation
2nd Ed., Addison-Wesley, 2001.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 4

Expectations
• Prerequisites: COP 4020 (Covers parsing and some

semantic models); COT 4210 (covers regular and
context free languages)

• Assignments: Seven (7) or so. At least one (the review
on prerequisite formal languages and automata) will be
extensive.

• Exams: Two (2) midterms and a final.
• Material: I will draw heavily from Davis, Chapters 2-4,

parts of 5, 6-8 and 11. Some material will also come
from Hopcroft. Class notes and in-class discussions are,
however, comprehensive and cover models and
undecidable problems that are not addressed in either of
these texts.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 5

Goals of Course
• Provide characterizations (computational models) of

the class of effective procedures / algorithms.
• Study the boundaries between complete (or so it

seems) and incomplete models of computation.
• Study the properties of classes of solvable and

unsolvable problems.
• Solve or prove unsolvable open problems.
• Determine reducibility and equivalence relations

among unsolvable problems.
• Apply results to various other areas of CS.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 6

Expected Outcomes
• By the time this course ends, I expect you to have a

solid understanding of models of computation, the
limits that are imposed by the very nature of
computation, and the ubiquity of unsolvable
problems throughout CS.

• I also hope that you come away with stronger formal
proof skills and a better appreciation of the
importance of discrete mathematics to all aspects of
CS.

• I do not expect to turn you into recursive function
theorists. That's a long journey, of which this course
represents only the first few steps.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 7

Being Prepared
• Prerequisites are COT 4210 and COP 4020.
• While I understand that some of you may not have the same

material in your background as covered here, I do expect you
to become familiar with the material in these courses.

• I will not spend time on the basics of formal languages,
automata theory, or parsing.

• I will, however, approach the course material starting with
computation theory, rather than the applications of theory to
formal languages. You will have about six weeks to get on top
of these topics before they become critical to your
understanding of COT 5310.

• Use this time wisely to review or learn the prerequisite topics.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 8

Keeping Up
• I expect you to visit the course web site regularly

(preferably daily) to see if changes have been made
or material has been added.

• Attendance is preferred, although I do not take role.
• I do, however, ask lots of questions in class and give

lots of hints about the kinds of questions I will ask
on exams. It would be a shame to miss the hints, or
to fail to impress me with your insightful in-class
answers.

• You are responsible for all material covered in class,
whether in the text or not.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 9

Rules to Abide By
• Do Your Own Work

– When you turn in an assignment, you are implicitly telling me
that these are the fruits of your labor. Do not copy anyone else's
homework or let anyone else copy yours. In contrast, working
together to understand lecture material and problems not posed
as assignments is encouraged.

• Late Assignments
– I will accept no late assignments, except under very unusual

conditions, and those exceptions must be arranged with me or
GTA in advance unless associated with some tragic event.

• Exams
– No communication during exams, except with me or a

designated proctor, will be tolerated. A single offense will lead to
termination of your participation in the class, and the assignment
of a failing grade.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 10

Grading
• Grading of Assignments

– My GTA and I will grade harder than our actual
expectations run. Consequently, a grade of 90% or
above will translate into a perfect grade. In general, I
will award everyone 10% over the grade they are
assigned on the returned papers.

• Exam Weights
– The weights of exams will be adjusted to your

personal benefits, as I weigh exams you do well in
more than those in which you do less well.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 11

Important Dates

• Exam#1 – Mon., October 1
• Withdraw Deadline – Fri., October 12
• Exam#2 – Wed., November 7
• Final – Wed., Dec. 5, 7:00PM – 9:50PM
• Holidays

– Labor Day – September 3
– Veterans Day – November 12

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 12

Evaluation (tentative)
• Mid Terms – 100 points each
• Final Exam – 150 points
• Assignments – 100 points
• Bonus – best exam weighed +50 points
• Total Available: 500
• Grading will be A >= 90%, B+ >= 87%,

B >= 80%, C+ >= 77%, C >= 70%,
D >= 50%, F < 50%

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 13

What You Should Know

• Proof Techniques
• Regular Sets
• Context Free Languages

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 14

Regular Sets # 1
• Regular expressions: Definition and associated

languages.
• Finite state automata. Associating FSAs with REs.
• Associating REs with FSAs. Proof using Rijk sets.
• Moore and Mealy models: Automata with output.

Basic equivalence.
• Non-determinism: Its use. Conversion to

deterministic FSAs. Formal proof of equivalence.
• Lambda moves: Lambda closure of a state.

Equivalence to non-determinism.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 15

Regular Sets # 2
• Regular equations: REs and FSAs.
• Myhill-Nerode Theorem: Right invariant

equivalence relations. Specific relation for a
language L. Proof and applications.

• Minimization: Why it's unique. Process of
minimization. Analysis of cost of different
approaches.

• Regular (right linear) grammars, regular
languages and their equivalence to FSA
languages.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 16

Regular Sets # 3
• Pumping Lemmas: Proof and applications.
• Closure properties: Union, concat, *,

complement, reversal, intersection, set
difference, substitution, homomorphism and
inverse homomorphism, INIT, LAST, MID,
EXTERIOR, quotient (with regular set, with
arbitrary set).

• Algorithms for reachable states and states
that can reach a point.

• Decision properties: Emptiness, finiteness,
equivalence.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 17

Context Free # 1
• Leftmost versus rightmost derivations.
• Parse trees, A-trees. Definition of a parse tree and

proof that A =>* X iff there exists an A-tree with X as
its yield.

• Ambiguity and leftmost (rightmost) derivations.
• Pushdown automata; various notions of acceptance

and their equivalences
• Push down languages and their equivalence to

CFLs.
• Parsing Techniques: LL (top down) and LR (bottom

up) parsers

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 18

Context Free # 2
• Reduced grammars.
• Keep non-terminal A iff A =>* w for some

terminal string w.
• Keep symbol X iff S =>* WXY for some

strings W and Y.
• Lamba rule removal.
• Chain (unit) rule removal.
• Chomsky Normal Form.
• Left recursion removal.
• Greibach Normal Form.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 19

Context Free # 3

• Pumping Lemmas for CFLs.
• Closure of CFLs: Union, concat, *,

reversal, substitution, homomorphism
and inverse homomorphism, INIT,
LAST, MID, EXTERIOR, quotient with
regular.

• Decision algorithms: Empty, finite,
infinite; CKY for membership.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 20

Assignment # 1

Assignment #1
Take Home Review
This is a review of COT 4210 material.
It serves as a wake up call if you are
not familiar with the material and as a
gauge for me.

Due: October 15

Computability
The study of what can/cannot
be done via purely mechanical

means

History

The Quest for Mechanizing
Mathematics

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 23

Hilbert, Russell and Whitehead

• Late 1800’s to early 1900’s
• Axiomatic schemes

– Axioms plus sound rules of inference
– Much of focus on number theory

• First Order Predicate Calculus
– ∀x∃y [y > x]

• Second Order (Peano’s Axiom)
– ∀P [[P(0) && ∀x[P(x) ⇒P(x+1)]] ⇒ ∀xP(x)]

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 24

Hilbert
• In 1900 declared there were 23 really

important problems in mathematics.
• Belief was that the solutions of these would

help address math’s complexity.
• Hilbert’s Tenth asks for an algorithm to find

the integral zeros of polynomial equations
with integral coefficients. This is now known
to be impossible (In 1972, Matiyacevic
showed undecidable; Martin Davis et al.
contributed key ideas to showing this).

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 25

Hilbert’s Belief

• All mathematics could be developed
within a formal system that allowed the
mechanical creation and checking of
proofs.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 26

Gödel
• In 1931 he showed that any first order theory

that embeds elementary arithmetic is either
incomplete or inconsistent.

• He did this by showing that such a first order
theory cannot reason about itself. That is,
there is a first order expressible proposition
that cannot be either proved or disproved, or
the theory is inconsistent (some proposition
and its complement are both provable).

• Gödel also developed the general notion of
recursive functions but made no claims
about their strength.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 27

Turing (Post, Church, Kleene)
• In 1936, each presented a formalism for

computability.
– Turing and Post devised abstract machines and claimed

these represented all mechanically computable functions.
– Church developed the notion of lambda-computability from

recursive functions (as previously defined by Gödel and
Kleene) and claimed completeness for this model.

• Kleene demonstrated the computational equivalence
of recursively defined functions to Post-Turing
machines.

• Church’s notation was the lambda calculus, which
later gave birth to Lisp.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 28

More on Emil Post
• In the late 1930’s and the 1940’s, Post devised

symbol manipulation systems in the form of
rewriting rules (precursors to Chomsky’s
grammars). He showed their equivalence to Turing
machines.

• In the 1920’s, starting with notation developed by
Frege and others in 1880s, Post devised the truth
table form we all use now for Boolean expressions
(propositional logic). This was a part of his PhD
thesis in which he showed the axiomatic
completeness of the propositional calculus.

• Later (1940s), Post showed the complexity
(undecidability) of determining what is derivable
from an arbitrary set of propositional axioms.

Basic Definitions
The Preliminaries

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 30

Effective Procedure
• A process whose execution is clearly specified to

the smallest detail
• Such procedures have, among other properties, the

following:
– Processes must be finitely describable and the language used to

describe them must be over a finite alphabet.
– The current state of the machine model must be finitely

presentable.
– Given the current state, the choice of actions (steps) to move to

the next state must be easily determinable from the procedure’s
description.

– Each action (step) of the process must be capable of being
carried out in a finite amount of time.

– The semantics associated with each step must be clear and
unambiguous.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 31

Algorithm

• An effective procedure that halts on all
input

• The key term here is “halts on all input”
• By contrast, an effective procedure

may halt on all, none or some of its
input.

• The domain of an algorithm is its entire
domain of possible inputs.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 32

Sets, Problems & Predicates
• Set -- A collection of atoms from some

universe U. Ø denotes the empty set.
• (Decision) Problem -- A set of

questions, each of which has answer
“yes” or “no”.

• Predicate -- A mapping from some
universe U into the Boolean set {true,
false}. A predicate need not be defined
for all values in U.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 33

How They relate
• Let S be an arbitrary subset of some universe U. The

predicate χS over U may be defined by:
χS(x) = true if and only if x ∈ S
χS is called the characteristic function of S.

• Let K be some arbitrary predicate defined over some
universe U. The problem PK associated with K is the
problem to decide of an arbitrary member x of U,
whether or not K(x) is true.

• Let P be an arbitrary decision problem and let U
denote the set of questions in P (usually just the set
over which a single variable part of the questions
ranges). The set SP associated with P is

{ x | x ∈ U and x has answer “yes” in P }

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 34

Categorizing Problems (Sets) # 1

• Recursively enumerable -- A set S is
recursively enumerable (re) if S is empty (S =
Ø) or there exists an algorithm F, over the
natural numbers ℵ, whose range is exactly S.
A problem is said to be re if the set
associated with it is re.

• Semi-Decidable -- A problem is said to be
semi-decidable if there is an effective
procedure F which, when applied to a
question q in P, produces the answer “yes” if
and only if q has answer “yes”. F need not
halt if q has answer “no”.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 35

Categorizing Problems (Sets) # 2

• Solvable or Decidable -- A problem P is said
to be solvable (decidable) if there exists an
algorithm F which, when applied to a
question q in P, produces the correct answer
(“yes” or “no”).

• Solved -- A problem P is said to solved if P is
solvable and we have produced its solution.

• Unsolved, Unsolvable (Undecidable), Non-re,
Not Semi-Decidable -- Complements of …

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 36

Immediate Implications
• P enumerable iff P semi-decidable.
• P solvable iff both SP and (U — SP) are

re (semi-decidable).
• P solved implies P solvable implies P

semi-decidable (re).
• P non-re implies P unsolvable implies P

unsolved.
• P finite implies P solvable.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 37

Goals of Computability (Again)
• Provide precise characterizations (computational

models) of the class of effective procedures /
algorithms.

• Study the boundaries between complete and
incomplete models of computation.

• Study the properties of classes of solvable and
unsolvable problems.

• Solve or prove unsolvable open problems.
• Determine reducibility and equivalence relations

among unsolvable problems.
• Our added goal is apply these techniques and

results across Computer Science.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 38

Existence of Undecidables
• A counting argument

– The number of mappings from ℵ to ℵ is at least as
great as the number of subsets of ℵ. But the number
of subsets of ℵ is uncountably infinite (ℵ1). However,
the number of programs in any model of computation
is countably infinite (ℵ0). This latter statement is a
consequence of the fact that the descriptions must be
finite and they must be written in a language with a
finite alphabet. In fact, not only is the number of
programs countable, it is also effectively enumerable;
moreover, its membership is decidable.

• A diagonalization argument
– Will be shown in class

The Need for Divergence

For vs While Loops

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 40

Bounded Iteration
• Any programming language that limits

iteration to control structures in which we
can pre-compute a bound on the number of
repetitions is an incomplete language.

• In other words, the possibility of divergence
is essential to a complete model of effective
computation.

• I will prove this in class, along with showing
you Cantor’s proof that there are more reals
in [0,1) than there are natural numbers.

Hilbert’s Tenth

Diophantine Equations are
Semi-decidable

One Variable Diophantine
Equations are Solvable

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 42

Hilbert’s 10th is Semi-Decidable

• Consider over one variable: P(x) = 0
• Can semi-decide by plugging in

0, 1, -1, 2, -2, 3, -3, …
• This terminates and says “yes” if P(x)

evaluates to 0, eventually.
Unfortunately, it never terminates if
there is no x such that P(x) =0.

• Can easily extend to P(x1,x2,..,xk) = 0.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 43

P(x) = 0 is Decidable

• cn xn + cn-1 xn-1 +… + c1 x + c0 = 0
• xn = -(cn-1 xn-1 + … + c1 x + c0)/cn

• |xn| ≤ cmax(|xn-1| + … + |x| + 1|)/|cn|
• |xn| ≤ cmax(n |xn-1|)/|cn|, since |x|≥1
• |x| ≤ n×cmax/|cn|

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 44

P(x) = 0 is Decidable
• Can bound the search to values of x in range

[± n * (cmax / cn)], where
n = highest order exponent in polynomial
cmax = largest absolute value coefficient
cn = coefficient of highest order term

• Once we have a search bound and we are
dealing with a countable set, we have an
algorithm to decide if there is an x.

• Cannot find bound when more than one
variable, so cannot extend to P(x1,x2,..,xk) = 0.

Models of Computation

S-Programs
Register Machines

Factor Replacement Systems
Recursive Functions

Turing Machines

S-Programs

1st Model
A Familiar Feeling Number

Manipulation Language

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 47

S-Program Concept
• An S-program consists of a finite

length program, each of whose
instructions is chosen from a small
repertoire of simple commands.

• The instructions are optionally labeled
with symbolic tags used in branching
commands. Termination occurs as a
result of an attempt to branch to a non-
existent label.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 48

S Program Basic parts
• Computation is limited to non-negative values.

These are stored in a set of variables.
• The inputs for an n-ary function are in variables X1,

X2, … , Xn; output is in Y; and Z1, Z2, … are available
for storing intermediate results.

• Y and all Z-variables start with the value zero.
• Labels are chosen from A1, B1, C1, D1, E1, A2, B2,

C2, D2, E2, …
• Simple names X, Z, A, B, C, D and E are often used in

place of X1, Z1, A1, B1, C1, D1 and E1, respectively.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 49

Primitive S Commands

• The primitive commands are (the labels
are optional):

[A] V ← V + 1
[B] V ← V – 1
[C] V ← V
[D] IF V ≠ 0 GOTO L

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 50

Useful Macros # 1

GOTO A
Z ← Z+1
IF Z ≠ 0 GOTO A

IF V = 0 GOTO A
IF V ≠ 0 GOTO E
GOTO A

[E]…

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 51

Useful Macros # 2
V ← 0

[A] IF V = 0 GOTO E
V ← V-1
GOTO A

[E] …
V ← k+1 // assume we have macro for V ← k

V ← k
V ← V+1

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 52

Useful Macros # 3
V ← U

[A] IF U = 0 GOTO B
U ← U-1
Z ← Z+1
GOTO A

[B] V ← 0
[C] IF Z = 0 GOTO E

Z ← Z-1
U ← U+1
V ← V+1
GOTO C

[E] …

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 53

Addition by S Program
Compute V + U (args are X1, X2)

Z1 ← X1
Z2 ← X2

[A] IF Z2 = 0 GOTO B
Z1 ← Z1+1
Z2 ← Z2-1
GOTO A

[B] Y ← Z1
Z1 ← 0

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 54

Subtraction
Compute V – U, if V≥U; ↑, otherwise (args are X1, X2)

Z1 ← X1
Z2 ← X2

[A] IF Z2 = 0 GOTO B
IF Z1 = 0 GOTO A
Z1 ← Z1-1
Z2 ← Z2-1
GOTO A

[B] Y ← Z1
Z1 ← 0

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 55

Limited Subtraction
Compute V – U, if V≥U; 0, otherwise (args are X1, X2)

Z1 ← X1
Z2 ← X2

[A] IF Z1 = 0 GOTO B
IF Z2 = 0 GOTO C
Z1 ← Z1-1
Z2 ← Z2-1
GOTO A

[B] Z2 ← 0
[C] Y ← Z1

Z1 ← 0

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 56

Alternative Version
Compute V – U, if V≥U; 0, otherwise (args are X1, X2)

Z1 ← X1
Z2 ← X2

[A] IF Z2 = 0 GOTO C
Z1 ← Z1-1
Z2 ← Z2-1
GOTO A

[C] Y ← Z1
Z1 ← 0

Register Machines

2nd Model
Feels Like Assembly Language

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 58

Register Machine Concepts
• A register machine consists of a finite length

program, each of whose instructions is chosen from
a small repertoire of simple commands.

• The instructions are labeled from 1 to m, where there
are m instructions. Termination occurs as a result of
an attempt to execute the m+1-st instruction.

• The storage medium of a register machine is a finite
set of registers, each capable of storing an arbitrary
natural number.

• Any given register machine has a finite,
predetermined number of registers, independent of
its input.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 59

Computing by Register Machines

• A register machine partially computing some
n-ary function F typically starts with its
argument values in the first n registers and
ends with the result in the n+1-st register.

• We extend this slightly to allow the
computation to start with values in its k+1-st
through k+n-th register, with the result
appearing in the k+n+1-th register, for any k,
such that there are at least k+n+1 registers.

• Sometimes, we use the notation of finishing
with the results in the first register, and the
arguments appearing in 2 to n+1.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 60

Register Instructions
• Each instruction of a register machine is of

one of two forms:

INCr[i] -- increment r and jump to i.

DECr[p, z] –
if register r > 0, decrement r and jump to p

else jump to z

• Note, I will not use subscripts if obvious.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 61

Addition by RM
Addition (r3 ← r1 + r2)
1. DEC3[1,2] : Zero result (r3) and work (r4) registers
2. DEC4[2,3]
3. DEC1[4,6] : Add r1 to r3, saving original r1 in r4
4. INC3[5]
5. INC4[3]
6. DEC4[7,8] : Restore r1
7. INC1[6]
8. DEC2[9,11] : Add r2 to r3, saving original r2 in r4
9. INC3[10]
10. INC4[8]
11.DEC4[12,13] : Restore r2
12. INC2[11]
13. : Halt by branching here

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 62

Limited Subtraction by RM
Subtraction (r3 ← r1 - r2, if r1≥r2; 0, otherwise)
1. DEC3[1,2] : Zero result (r3) and work (r4) registers
2. DEC4[2,3]
3. DEC1[4,6] : Add r1 to r3, saving original r1 in r4
4. INC3[5]
5. INC4[3]
6. DEC4[7,8] : Restore r1
7. INC1[6]
8. DEC2[9,11] : Subtract r2 from r3, saving original r2 in r4
9. DEC3[10,10] : Note that decrementing 0 does nothing
10. INC4[8]
11.DEC4[12,13] : Restore r2
12. INC2[11]
13. : Halt by branching here

Factor Replacement
Systems

3rd Model
Deceptively Simple

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 64

Factor Replacement Concepts
• A factor replacement system (FRS) consists of a

finite (ordered) sequence of fractions, and some
starting natural number x.

• A fraction a/b is applicable to some natural number
x, just in case x is divisible by b. We always chose
the first applicable fraction (a/b), multiplying it times
x to produce a new natural number x*a/b. The
process is then applied to this new number.

• Termination occurs when no fraction is applicable.
• A factor replacement system partially computing n-

ary function F typically starts with its argument
encoded as powers of the first n odd primes. Thus,
arguments x1,x2,…,xn are encoded as 3x15x2…pn

xn.
The result then appears as the power of the prime 2.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 65

Addition by FRS
Addition is 3x15x2 becomes 2x1+x2

or, in more details, 203x15x2 becomes 2x1+x2 3050

2 / 3
2 / 5

Note that these systems are sometimes presented as
rewriting rules of the form

bx → ax
meaning that a number that has a factored as bx can
have the factor b replaced by an a.
The previous rules would then be written

3x → 2x
5x → 2x

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 66

Limited Subtraction by FRS
Subtraction is 3x15x2 becomes 2max(0,x1-x2)

3⋅5x → x
3x → 2x
5x → x

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 67

Ordering of Rules
• The ordering of rules are immaterial for the

addition example, but are critical to the
workings of limited subtraction.

• In fact, if we ignore the order and just allow
any applicable rule to be used we get a form
of non-determinism that makes these
systems equivalent to Petri nets.

• The ordered kind are deterministic and are
equivalent to a Petri net in which the
transitions are prioritized.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 68

Why Deterministic?
To see why determinism makes a difference, consider

3⋅5x → x
3x → 2x
5x → x

Starting with 135 = 3351, deterministically we get
135 ⇒ 9 ⇒ 6 ⇒ 4 = 22

Non-deterministically we get a larger, less selective set.
135 ⇒ 9 ⇒ 6 ⇒ 4 = 22

135 ⇒ 90 ⇒ 60 ⇒ 40 ⇒ 8 = 23

135 ⇒ 45 ⇒ 3 ⇒ 2 = 21

135 ⇒ 45 ⇒ 15 ⇒ 1 = 20

135 ⇒ 45 ⇒ 15 ⇒ 5 ⇒ 1 = 20

135 ⇒ 45 ⇒ 15 ⇒ 3 ⇒ 2 = 21

135 ⇒ 45 ⇒ 9 ⇒ 6 ⇒ 4 = 22

135 ⇒ 90 ⇒ 60 ⇒ 40 ⇒ 8 = 23

…
This computes 2z where 0 ≤ z≤x1. Think about it.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 69

More on Determinism

In general, we might get an infinite set
using non-determinism, whereas
determinism might produce a finite set.
To see this consider a system

2x → x
2x → 4x

starting with the number 2.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 70

Systems Related to FRS
• Petri Nets:

– Unordered
– Ordered
– Negated Arcs

• Vector Addition Systems:
– Unordered
– Ordered

• Factors with Residues:
– a x + c → b x + d

• Finitely Presented Abelian Semi-Groups

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 71

Petri Net Operation
• Finite number of places, each of which can hold zero of more

markers.
• Finite number of transitions, each of which has a finite number

of input and output arcs, starting and ending, respectively, at
places.

• A transition is enabled if all the nodes on its input arcs have at
least as many markers as arcs leading from them to this
transition.

• Progress is made whenever at least one transition is enabled.
Among all enabled, one is chosen randomly to fire.

• Firing a transition removes one marker per arc from the
incoming nodes and adds one marker per arc to the outgoing
nodes.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 72

Petri Net Computation
• A Petri Net starts with some finite number of markers

distributed throughout its n nodes.
• The state of the net is a vector of n natural numbers, with the i-

th component’s number indicating the contents of the i-th
node. E.g., <0,1,4,0,6> could be the state of a Petri Net with 5
places, the 2nd, 3rd and 5th, having 1, 4, and 6 markers, resp.,
and the 1st and 4th being empty.

• Computation progresses by selecting and firing enabled
transitions. Non-determinism is typical as many transitions can
be simultaneously enabled.

• Petri nets are often used to model coordination algorithms,
especially for computer networks.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 73

Variants of Petri Nets
• A Petri Net is not computationally complete. In fact, its halting

and word problems are decidable. However, its containment
problem (are the markings of one net contained in those of
another?) is not decidable.

• A Petri net with prioritized transitions, such that the highest
priority transitions is fired when multiple are enabled is
equivalent to an FRS. (Think about it).

• A Petri Net with negated input arcs is one where any arc with a
slash through it contributes to enabling its associated
transition only if the node is empty. These are computationally
complete. They can simulate register machines. (Think about
this also).

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 74

Petri Net Example

Marker

Place

Transition

Arc

… …

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 75

Vector Addition
• Start with a finite set of vectors in integer n-space.
• Start with a single point with non-negative integral

coefficients.
• Can apply a vector only if the resultant point has

non-negative coefficients.
• Choose randomly among acceptable vectors.
• This generates the set of reachable points.
• Vector addition systems are equivalent to Petri Nets.
• If order vectors, these are equivalent to FRS.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 76

Vectors as Resource Models
• Each component of a point in n-space

represents the quantity of a particular
resource.

• The vectors represent processes that
consume and produce resources.

• The issues are safety (do we avoid bad
states) and liveness (do we attain a
desired state).

• Issues are deadlock, starvation, etc.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 77

Factors with Residues
• Rules are of form

– ai x + ci → bi x + di

– There are n such rules
– Can apply if number is such that you get a residue

(remainder) ci when you divide by ai

– Take quotient x and produce a new number
bi x + di

– Can apply any applicable one (no order)

• These systems are equivalent to Register
Machines.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 78

Abelian Semi-Group
S = (G, •) is a semi-group if

G is a set, • is a binary operator, and
1. Closure: If x,y ∈ G then x • y ∈ G
2. Associativity: x • (y • z) = (x • y) • z

S is a monoid if
3. Identity: ∃e ∈ G ∀x ∈ G [e • x = x • e = x]

S is a group if
4. Inverse: ∀x ∈ G ∃x-1 ∈ G [x-1 • x = x • x-1 = e]

S is Abelian if • is commutative

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 79

Finitely Presented
• S = (G, •), a semi-group (monoid, group), is finitely presented if

there is a finite set of symbols, Σ, called the alphabet or
generators, and a finite set of equalities (αi = βi), the reflexive
transitive closure of which determines equivalence classes
over G.

• Note, the set G is the closure of the generators under the semi-
group’s operator •.

• The problem of determining membership in equivalence
classes for finitely presented Abelian semi-groups is equivalent
to that of determining mutual derivability in an unordered FRS
or Vector Addition System with inverses for each rule.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 80

Assignment # 2
a. Present a Register Machine that computes FIB. Assume R1=x; at

termination, set R2=1 if x is a member of the Fibonacci sequence and 0 if
not.

b. Present a Factor Replacement System that computes FIB. Assume starting
number is 3^x 5; at termination, result is 2=2^1 if x is a member of the
Fibonacci sequence; 1= 2^0 otherwise. Actually, it can be done without the
5, but that may make it easier.

c. Prove that non-deterministic FRS's are no more powerful than non-
deterministic VAS. This means you need only show that any non-
deterministic FRS can be simulated by a non-deterministic VAS.
Note: To do this most effectively, you need to first develop the notion of an
instantaneous description (ID) of a FRS (that's a point in 1-space) and of a VAS
(that’s a point in n-space). You then need a mapping from an FRS ID to a
corresponding VAS ID, and this mapping needs to be some function (many-one
into), f. Next, there must be a mapping from the rules of the FRS to create those of
the VAS, such that a single step of the FRS from x to y is mimicked by some finite
number of steps of the VAS from f(x) to f(y), where f(y) is the first ID derived from
f(x) that is a mapping from some ID of the VAS

Due: September 10

Recursive Functions

Primitive and μ-Recursive

Primitive Recursive

An Incomplete Model

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 83

Basis of PRFs
• The primitive recursive functions are defined

by starting with some base set of functions
and then expanding this set via rules that
create new primitive recursive functions from
old ones.

• The base functions are:
Ca(x1,…,xn) = a : constant functions

(x1,…,xn) = xi : identity functions
: aka projection

S(x) = x+1 : an increment function

 i
nI

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 84

Building New Functions
• Composition:

If G, H1, … , Hk are already known to be primitive
recursive, then so is F, where

F(x1,…,xn) = G(H1(x1,…,xn), … , Hk(x1,…,xn))
• Iteration (aka primitive recursion):

If G, H are already known to be primitive recursive,
then so is F, where

F(0, x1,…,xn) = G(x1,…,xn)
F(y+1, x1,…,xn) = H(y, x1,…,xn, F(y, x1,…,xn))

We also allow definitions like the above, except
iterating on y as the last, rather than first argument.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 85

Addition & Multiplication
Example: Addition

+(0,y) = (y)
+(x+1,y) = H(x,y,+(x,y))

where H(a,b,c) = S((a,b,c))
Example: Multiplication

*(0,y) = C0(y)
(x+1,y) = H(x,y,(x,y))

where H(a,b,c) = +((a,b,c), (a,b,c))
= b+c = y + *(x,y) = (x+1)*y

 2
3I

 1
1I

 3
3I

 3
3I

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 86

Basic Arithmetic
x + 1:

x + 1 = S(x)
x – 1:

0 - 1 = 0
(x+1) - 1 = x

x + y:
x + 0 = x
x+ (y+1) = (x+y) + 1

x – y: // limited subtraction
x – 0 = x
x – (y+1) = (x–y) – 1

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 87

2nd Grade Arithmetic
x * y:

x * 0 = 0
x * (y+1) = x*y + x

x!:
0! = 1
(x+1)! = (x+1) * x!

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 88

Basic Relations
x == 0:

0 == 0 = 1
(y+1) == 0 = 0

x == y:
x==y = ((x – y) + (y – x)) == 0

x ≤y :
x≤y = (x – y) == 0

x ≥ y:
x≥y = y≤x

x > y :
x>y = ~(x≤y) /* See ~ on next page */

x < y :
x<y = ~(x≥y)

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 89

Basic Boolean Operations
~x:

~x = 1 – x or (x==0)

signum(x): // 1 if x>0; 0 if x==0
~(x==0)

x && y:
x&&y = signum(x*y)

x || y:
x||y = ~((x==0) && (y==0))

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 90

Definition by Cases
One case

g(x) if P(x)
f(x) =

h(x) otherwise
f(x) = P(x) * g(x) + (1-P(x)) * h(x)

Can use induction to prove this is true for all k>0, where
g1(x) if P1(x)
g2(x) if P2(x) && ~P1(x)

f(x) = …
gk(x) if Pk(x) && ~(P1(x) || … || ~Pk-1(x))
h(x) otherwise

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 91

Bounded Minimization 1
f(x) = μ z (z ≤ x) [P(z)] if ∃ such a z,

= x+1, otherwise
where P(z) is primitive recursive.

Can show f is primitive recursive by
f(0) = 1-P(0)
f(x+1) = f(x) if f(x) ≤ x

= x+2-P(x+1) otherwise

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 92

Bounded Minimization 2
f(x) = μ z (z < x) [P(z)] if ∃ such a z,

= x, otherwise
where P(z) is primitive recursive.

Can show f is primitive recursive by
f(0) = 0
f(x+1) = μ z (z ≤ x) [P(z)]

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 93

Intermediate Arithmetic
x // y:

x//0 = 0 : silly, but want a value
x//(y+1) = μ z (z<x) [(z+1)*(y+1) > x]

x | y: x is a divisor of y
x|y = ((y//x) * x) == y

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 94

Primality
firstFactor(x): first non-zero, non-one factor of x.

firstfactor(x) = μ z (2 ≤ z ≤ x) [z|x] ,
0 if none

isPrime(x):
isPrime(x) = firstFactor(x) == x && (x>1)

prime(i) = i-th prime:
prime(0) = 2
prime(x+1) = μ z(prime(x)< z ≤prime(x)!+1)[isPrime(z)]

We will abbreviate this as pi for prime(i)

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 95

Exponents

x^y:
x^0 = 1
x^(y+1) = x * x^y

exp(x,i): the exponent of pi in number x.
exp(x,i) = μ z (z<x) [~(pi^(z+1) | x)]

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 96

Pairing Functions
• pair(x,y) = <x,y> = 2x (2y + 1) – 1

• with inverses
<z>1 = exp(z+1,0)

<z>2 = (((z + 1) // 2 <z>1) – 1) // 2
• These are very useful and can be extended to

encode n-tuples
<x,y,z> = <x, <y,z> > (note: stack analogy)

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 97

Assignment # 3
Show that prfs are closed under mutual
recursion. That is, assuming F1, F2 and G1
and G2 are pr, show that H1 and H2 are,
where
H1(0, x) = F1(x); H2(0, x) = F2(x)
H1(y+1, x) = G1(y,x,H2(y,x)); H2(y+1, x) =
G2(y,x,H1(y,x))
Hint: The pairing function is useful here.

Due: September 17

μ Recursive

4th Model
A Simple Extension to Primitive

Recursive

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 99

μ Recursive Concepts
• All primitive recursive functions are

algorithms since the only iterator is
bounded. That’s a clear limitation.

• There are algorithms like Ackerman’s
function that cannot be represented by the
class of primitive recursive functions.

• The class of recursive functions adds one
more iterator, the minimization operator (μ),
read “the least value such that.”

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 100

Ackermann’s Function
• A(1, j)=2j for j ≥ 1
• A(i, 1)=A(i-1, 2) for i ≥ 2
• A(i, j)=A(i-1, A(i, j-1)) for i, j ≥ 2
• Wilhelm Ackermann observed in 1928 that

this is not a primitive recursive function.
• Ackermann’s function grows too fast to have

a for-loop implementation.
• The inverse of Ackermann’s function is

important to analyze Union/Find algorithm.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 101

Union/Find
• Start with a collection S of unrelated

elements – singleton equivalence classes
• Union(x,y), x and y are in S, merges the class

containing x ([x]) with that containing y ([y])
• Find(x) returns the canonical element of [x]
• Can see if x≡y, by seeing if Find(x)==Find(y)
• How do we represent the classes?

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 102

The μ Operator

• Minimization:
If G is already known to be recursive,
then so is F, where

F(x1,…,xn) = μy (G(y,x1,…,xn) == 1)
• We also allow other predicates besides

testing for one. In fact any predicate
that is recursive can be used as the
stopping condition.

Turing Machines

5th Model
A Linear Memory Machine

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 104

Basic Description
• We will use a simplified form that is a variant of Post’s and

Turing’s models.
• Here, each machine is represented by a finite set of states of

states Q, the simple alphabet {0,1}, where 0 is the blank
symbol, and each state transition is defined by a 4-tuple of form

q a X s
where q a is the discriminant based on current state q, scanned
symbol a; X can be one of {R, L, 0, 1}, signifying move right,
move left, print 0, or print 1; and s is the new state.

• Limiting the alphabet to {0,1} is not really a limitation. We can
represent a k-letter alphabet by encoding the j-th letter via j 1’s
in succession. A 0 ends each letter, and two 0’s ends a word.

• We rarely write quads. Rather, we typically will build machines
from simple forms.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 105

Base Machines
• R -- move right over any scanned symbol
• L -- move left over any scanned symbol
• 0 -- write a 0 in current scanned square
• 1 -- write a 1 in current scanned square
• We can then string these machines together with

optionally labeled arc.
• A labeled arc signifies a transition from one part of

the composite machine to another, if the scanned
square’s content matches the label. Unlabeled arcs
are unconditional. We will put machines together
without arcs, when the arcs are unlabeled.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 106

Useful Composite Machines
R -- move right to next 0 (not including current square)

…?11…10… ⇒ …?11…10…
L -- move left to next 0 (not including current square)

…011…1?… ⇒ …011…1?…
R -- move right to next 00 (not including current

square)
…?11…1011…10…11…100… ⇒
…?11…1011…10…11…100…

L -- move left to next 00 (not including current square)
…0011…1011…10…11…1?… ⇒
…0011…1011…10…11…1?…

R 1

L 1

 1R 0 LR

 1L 0 RL

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 107

Commentary on Machines
• These machines can be used to move

over encodings of letters or encodings
of unary based natural numbers.

• In fact, any effective computation can
easily be viewed as being over natural
numbers. We can get the negative
integers by pairing two natural
numbers. The first is the sign (0 for +, 1
for -). The second is the magnitude.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 108

Computing with TMs
A reasonably standard definition of a Turing
computation of some n-ary function F is to
assume that the machine starts with a tape
containing the n inputs, x1, … , xn in the
form

…01x101x20…01xn0…
and ends with

…01x101x20…01xn01y0…
where y = F(x1, … , xn).

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 109

Addition by TM

Need the copy family of useful
submachines, where Ck copies k-th
preceding value.

The add machine is then
C2 C2 L 1 R L 0

1

0

R L
k R

0 R

k k+1 1 L
k+1

1

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 110

Turing Machine Variations

• Two tracks
• N tracks
• Non-deterministic
• Two-dimensional
• K dimensional
• Two stack machines
• Two counter machines

Computational Complexity

Limited to Concepts of P and NP
COT6410 covers much more

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 112

P = Polynomial Time
• P is the class of decision problems

containing all those that can be solved by a
deterministic Turing machine using
polynomial time in the size of each instance
of the problem.

• P contain linear programming over real
numbers, but not when the solution is
constrained to integers.

• P even contains the problem of determining
if a number is prime.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 113

NP = Non-Det. Poly Time
• NP is the class of decision problems solvable in

polynomial time on a non-deterministic Turing
machine.

• Clearly P ⊆ NP. Whether or not this is proper
inclusion is the well-known challenge P = NP?

• NP can also be described as the class of decision
problems that can be verified in polynomial time.

• NP can even be described as the class of decision
problems that can be solved in polynomial time
when no a priori bound is placed on the number of
processors that can be used in the algorithm.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 114

NP-Complete; NP-Hard
• A decision problem, C, is NP-complete if:

– C is in NP and
– C is NP-hard. That is, every problem in NP is polynomially reducible to C.

• D polynomially reduces to C means that there is a deterministic
polynomial-time many-one algorithm, f, that transforms each instance
x of D into an instance f(x) of C, such that the answer to f(x) is YES if
and only if the answer to x is YES.

• To prove that an NP problem A is NP-complete, it is sufficient to show
that an already known NP-complete problem polynomially reduces to
A. By transitivity, this shows that A is NP-hard.

• A consequence of this definition is that if we had a polynomial time
algorithm for any NP-complete problem C, we could solve all problems
in NP in polynomial time. That is, P = NP.

• Note that NP-hard does not necessarily mean NP-complete, as a given
NP-hard problem could be outside NP.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 115

SAT
• SAT is the problem to decide of an arbitrary

Boolean formula (wff in the propositional
calculus) whether or not this formula is
satisfiable (has a set of variable assignments
that evaluate the expression to true).

• SAT clearly can be solved in time k2n, where
k is the length of the formula and n is the
number of variables in the formula.

• What we can show is that SAT is NP-
complete, providing us our first concrete
example of an NP-complete decision
problem.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 116

Simulating ND TM
• Given a TM, M, and an input w, we need to create a

formula, ϕM,w, containing a polynomial number of
terms that is satisfiable just in case M accepts w in
polynomial time.

• The formula must encode within its terms a trace of
configurations that includes
– A term for the starting configuration of the TM
– Terms for all accepting configurations of the TM
– Terms that ensure the consistency of each configuration
– Terms that ensure that each configuration after the first

follows from the prior configuration by a single move

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 117

Cook’s Theorem

• ϕM,w = φcell ∧ φstart ∧ φmove ∧ φaccept
• See the following for a detailed

description and discussion of the four
terms that make up this formula.

• http://www.cs.tau.ac.il/~safra/Complexity/Cook.ppt

Equivalence of Models

Equivalency of computation by S-
programs, register machines, factor

replacement systems, recursive functions
and Turing machines

S-Machine ≡ REGISTER

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 120

S Program ≤ Reg. Machine
• Let P be an S Program consisting of m instructions computing

f(x1,…, xn). Assume the highest indexed temporary variable is Zt
• Define the mapping g, g(Xi) = i, 1≤i≤n, g(Y) = n+1, and g(Zj) = n+j+1,

1≤j≤t.
• Change each IF V≠0 GOTO L to IF V≠0 GOTO Ak, where L is the k-th

instruction, or if L is E, k=m+1
• Map the j-th S instruction by

– [Aj] V ← V maps to
2j-1. DECn+t+2(2j,2j)
2j. DECn+t+2(2j+1,2j+1)

– [Aj] V ← V+1 maps to
2j-1. INCg(v)(2j)
2j. DECn+t+2(2j+1,2j+1)

– [Aj] V ← V-1 maps to
2j-1. DECg(v)(2j,2j)
2j. DECn+t+2(2j+1,2j+1)

– [Aj] IF V≠0 GOTO Ak maps to
2j-1. DECg(v)(2j,2j+1)
2j. INCg(v)(2k-1)

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 121

Reg. Machine ≤ S Program
• Let M be a Register Machine consisting of m instructions computing

f(x1,…, xn). Assume highest indexed register is Rs
• Define the mapping g, g(i)=Xi, 1≤i≤n, g(n+1)=Y, and g(i)=Zi-n-1, n+2≤i≤s.
• Start the S Program with the command

– [A1] Zs-n ← Zs-n + 1
• Map the j-th Register Machine instruction by

– j. INCr(k) to
[A4j-2] g(r) ← g(r) + 1
[A4j-1] IF g(r)≠0 GOTO A4k-2
[A4j] g(r) ← g(r)
[A4j+1] g(r) ← g(r)

– j. DECr(p,z) to
[A4j-2] IF g(r)≠0 GOTO A4j
[A4j-1] IF Zs-n≠0 GOTO A4z-2
[A4j] g(r) ← g(r) - 1
[A4j+1] IF Zs-n≠0 GOTO A4p-2

• The 4m+1 instructions above are ordered by their labels. Note that label A4m+2
may be recast as the special label E.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 122

Proving Equivalence

• The previous constructions do not, by
themselves, prove equivalence.

• To do so, we need to develop a notion
of an “instantaneous description” (id)
of an S-program and of a register
machine.

• We will then show a mapping of id’s
between the models.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 123

Instantaneous Descriptions
• An instantaneous description (id) is a finite

description of a state achievable by a computational
machine, M.

• Each machine starts in some initial id, id0.
• The semantics of the instructions of M define a

relation ⇒M such that, idi ⇒M idi+1, i≥0, if the
execution of a single instruction of M would alter M’s
state from idi to idi+1 or if M halts in state idi and
idi+1=idi.

• ⇒+
M is the transitive closure of ⇒M

• ⇒*M is the reflexive transitive closure of ⇒M

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 124

id Definitions
• For an S-program, P, an id is an n+t+2 tuple of the

form (i, x1,…,xn, y, z1,…,zt)P specifying the number of
the next instruction to be executed and the values of
all variables prior to its execution.

• For a register machine, M, an id is an s+1 tuple of the
form (i, r1,…,rs)M specifying the number of the next
instruction to be executed and the values of all
registers prior to its execution.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 125

Equivalence Steps
• Assume we have a machine M in one model of computation and

a mapping of M into a machine M’ in a second model.
• Assume the initial configuration of M is id0 and that of M’ is id’0
• Define a mapping, h, from id’s of M into those of M’, such that,

RM = {h(d) | d is an instance of an id of M}, and
– id’0⇒*M’ h(id0), and h(id0) is the only member of RM in the

configurations encountered in this derivation.
– h(idi)⇒+

M’ h(idi+1), i≥0, and h(idi+1) is the only member of RM in
this derivation.

• The above, in effect, provides an inductive proof that
– id0⇒*M id implies id’0⇒*M’ h(id), and
– If id’0⇒*M’ id’ then either id0⇒*M id, where id’ = h(id), or id’ ∉ RM

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 126

Completion of S-P ≤ RM
• To go from S-program, P, to reg. machine, M, define

h(i,x1,…,xn,y,z1,…,zt)P=(2i-1,x1,…,xn,y,z1,…,zt,0)M

under our previous association of x1,…,xn with
r1,…,rn, y with rn+1, and z1,…,zt with rn+2,…,rn+1+t.

• The proof can now be completed as follows.
– Note that, when computing f(a1,…,an),

P starts on id0 = (1,a1,…,an,0,0…,0)P and
M starts at h(id0) = (1, a1,…,an,0,0…,0,0)M.

– Show that that our instruction mappings preserve the
h-mapping, above. This requires a simple case analysis for the
four S-program instruction types. Since this takes two steps per
instruction, you must note that no intermediary id is in the range
of h, but that’s easy as they have even instruction counters.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 127

Completion of RM ≤ S-P
• To go from reg. machine, M, to S-program, P, define

h(i,r1,…,rn,rn+1,rn+2,…,rs)M=(4i-2,r1,…,rn,rn+1,rn+2,…,rs,1) P
under our previous association of x1,…,xn with
r1,…,rn, y with rn+1, and z1,…,zs-n-1 with rn+2,…,rs.

• The proof can now be completed as follows.
– Note that, when computing f(a1,…,an),

M starts on id0 = (1,a1,…,an,0,0…,0)M and
P starts at (1, a1,…,an,0,0…,0,0)P and in one step transitions to
h(id0) = (2, a1,…,an,0,0…,0,1)P.

– Show that that our instruction mappings preserve the
h-mapping, above. This requires a simple case analysis for the
two register machine instruction types. Since this takes more
than one step per instruction, you must note that no intermediary
id is in the range of h.

All Models are Equivalent

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 129

Our Plan of Attack

• We will now show
TURING ≤ REGISTER ≤ FACTOR ≤

RECURSIVE ≤ TURING
where by A ≤ B, we mean that every
instance of A can be replaced by an
equivalent instance of B.

• The transitive closure will then get us
the desired result.

TURING ≤ REGISTER

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 131

Encoding a TM’s State
• Assume that we have an n state Turing machine. Let

the states be numbered 0,…, n-1.
• Assume our machine is in state 7, with its tape

containing
… 0 0 1 0 1 0 0 1 1 q7 0 0 0 …

• The underscore indicates the square being read. We
denote this by the finite id
1 0 1 0 0 1 1 q7 0

• In this notation, we always write down the scanned
square, even if it and all symbols to its right are
blank.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 132

More on Encoding of TM
• An id can be represented by a triple of natural

numbers, (R,L,i), where R is the number denoted by
the reversal of the binary sequence to the right of the
qi, L is the number denoted by the binary sequence
to the left, and i is the state index.

• So,
… 0 0 1 0 1 0 0 1 1 q7 0 0 0 …
is just (0, 83, 7).
… 0 0 1 0 q5 1 0 1 1 0 0 …
is represented as (13, 2, 5).

• We can store the R part in register 1, the L part in
register 2, and the state index in register 3.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 133

Simulation by RM
1. DEC3[2,q0] : Go to simulate actions in state 0
2. DEC3[3,q1] : Go to simulate actions in state 1
…
n. DEC3[ERR,qn-1] : Go to simulate actions in state n-1
…
qj. IF_r1_ODD[qj+2] : Jump if scanning a 1
qj+1. JUMP[set_k] : If (qj 0 0 qk) is rule in TM
qj+1. INC1[set_k] : If (qj 0 1 qk) is rule in TM
qj+1. DIV_r1_BY_2 : If (qj 0 R qk) is rule in TM

MUL_r2__BY_2
JUMP[set_k]

qj+1. MUL_r1_BY_2 : If (qj 0 L qk) is rule in TM
IF_r2_ODD then INC1
DIV_r2__BY_2[set_k]

…
set_n-1. INC3[set_n-2] : Set r3 to index n-1 for simulating state n-1
set_n-2. INC3[set_n-3] : Set r3 to index n-2 for simulating state n-2
…
set_0. JUMP[1] : Set r3 to index 0 for simulating state 0

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 134

Fixups
• Need epilog so action for missing quad

(halting) jumps beyond end of
simulation to clean things up, placing
result in r1.

• Can also have a prolog that starts with
arguments in first n registers and
stores values in r1, r2 and r3 to
represent Turing machines starting
configuration.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 135

Prolog
Example assuming n arguments (fix as needed)
1. MUL_rn+1_BY_2[2] : Set rn+1 = 11…102, where, #1's = r1
2. DEC1[3,4] : r1 will be set to 0
3. INCn+1[1] :
4. MUL_rn+1_BY_2[5] : Set rn+1 = 11…1011…102, where, #1's = r1, then r2
5. DEC2[6,7] : r2 will be set to 0
6. INCn+1[4] :
…
3n-2. DECn[3n-1,3n+1] : Set rn+1 = 11…1011…1011…12, where, #1's = r1, r2,…
3n-1. MUL_rn+1_BY_2[3n] : rn will be set to 0
3n. INCn+1[3n-2] :
3n+1 DECn+1[3n+2,3n+3] : Copy rn+1 to r1, rn+1 is set to 0
3n+2. INC2[3n+1] :
3n+3. : r2 = left tape, r1 = 0 (right), r3 = 0 (initial state)

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 136

Epilog
1. DEC3[1,2] : Set r3 to 0 (just cleaning up)
2. IF_r1_ODD[3,5] : Are we done with answer?
3. INC2[4] : putting answer in r2
4. DIV_r1_BY_2[2] : strip a 1 from r1
5. DEC1[5,6] : Set r1 to 0 (prepare for answer)
6. DEC2[6,7] : Copy r2 to r1
7. INC1[6] :
8. : Answer is now in r1

REGISTER ≤ FACTOR

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 138

Encoding a RM’s State
• This is a really easy one based on the fact that every member of

Z+ (the positive integers) has a unique prime factorization.
Thus all such numbers can be uniquely written in the form

where the pi's are distinct primes and the ki's are non-zero
values, except that the number 1 would be represented by 20.

• Let R be an arbitrary n-register machine, having m instructions.

Encode the contents of registers r1,…,rn by the powers of
p1,…pn .

Encode rule number's 1…m by primes pn+1 ,…, pn+m

Use pn+m+1 as prime factor that indicates simulation is done.
• This is in essence the Gödel number of the RM’s state.

1i
1kp

2i
2kp …

ji
jkp

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 139

Simulation by FRS
• Now, the j-th instruction (1≤j≤m) of R has

associated factor replacement rules as
follows:
j. INCr[i]

pn+jx → pn+iprx
j. DECr[s, f]

pn+jprx → pn+sx
pn+jx → pn+fx

• We also add the halting rule associated with
m+1 of

pn+m+1x → x

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 140

Importance of Order
• The relative order of the two rules to

simulate a DEC are critical.
• To test if register r has a zero in it, we,

in effect, make sure that we cannot
execute the rule that is enabled when
the r-th prime is a factor.

• If the rules were placed in the wrong
order, or if they weren't prioritized, we
would be non-deterministic.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 141

Example of Order

Consider the simple machine to
compute r1:=r2 – r3 (limited)
1. DEC3[2,3]
2. DEC2[1,1]
3. DEC2[4,5]
4. INC1[3]
5.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 142

Subtraction Encoding
Start with 3x5y7

7 • 5 x → 11 x
7 x → 13 x
11 • 3 x → 7 x
11 x → 7 x
13 • 3 x → 17 x
13 x → 19 x
17 x → 13 • 2 x
19 x → x

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 143

Analysis of Problem
• If we don't obey the ordering here, we could

take an input like 35527 and immediately
apply the second rule (the one that mimics a
failed decrement).

• We then have 355213, signifying that we will
mimic instruction number 3, never having
subtracted the 2 from 5.

• Now, we mimic copying r2 to r1 and get
255219 .

• We then remove the 19 and have the wrong
answer.

FACTOR ≤ RECURSIVE

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 145

Universal Machine
• In the process of doing this reduction, we

will build a Universal Machine.
• This is a single recursive function with two

arguments. The first specifies the factor
system (encoded) and the second the
argument to this factor system.

• The Universal Machine will then simulate the
given machine on the selected input.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 146

Encoding FRS

• Let (n, ((a1,b1), (a2,b2), … ,(an,bn)) be
some factor replacement system,
where (ai,bi) means that the i-th rule is

aix → bix
• Encode this machine by the number F,

pppp nnnn

n bababa nn

2212212117532 2211

++−
K

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 147

Simulation by Recursive # 1
• We can determine the rule of F that applies to x by

RULE(F, x) = μ z (1 ≤ z ≤ exp(F, 0)+1) [exp(F, 2*z-1) | x]
• Note: if x is divisible by ai, and i is the least integer for which

this is true, then exp(F,2*i-1) = ai where ai is the number of
prime factors of F involving p2i-1. Thus, RULE(F,x) = i.

If x is not divisible by any ai, 1≤i≤n, then x is divisible by 1, and
RULE(F,x) returns n+1. That’s why we added p2n+1 p2n+2.

• Given the function RULE(F,x), we can determine NEXT(F,x), the
number that follows x, when using F, by

NEXT(F, x) = (x // exp(F, 2*RULE(F, x)-1)) * exp(F, 2*RULE(F, x))

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 148

Simulation by Recursive # 2

• The configurations listed by F, when
started on x, are

CONFIG(F, x, 0) = x
CONFIG(F, x, y+1) = NEXT(F, CONFIG(F, x, y))

• The number of the configuration on
which F halts is

HALT(F, x) = μ y [CONFIG(F, x, y) == CONFIG(F, x, y+1)]
This assumes we converge to a fixed point only if we
stop.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 149

Simulation by Recursive # 3
• A Universal Machine that simulates an

arbitrary Factor System, Turing Machine,
Register Machine, Recursive Function can
then be defined by

Univ(F, x) = exp (CONFIG (F, x, HALT (F, x)), 0)

• This assumes that the answer will be
returned as the exponent of the only even
prime, 2. We can fix F for any given Factor
System that we wish to simulate.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 150

Simplicity of Universal

• A side result is that every computable
(recursive) function can be expressed
in the form

F(x) = G(μ y H(x, y))

where G and H are primitive recursive.

RECURSIVE ≤ TURING

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 152

Standard Turing Computation
• Our notion of standard Turing computability

of some n-ary function F assumes that the
machine starts with a tape containing the n
inputs, x1, … , xn in the form

…01x101x20…01xn0…

and ends with

…01x101x20…01xn01y0…

where y = F(x1, … , xn).

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 153

More Helpers
• To build our simulation we need to construct some useful

submachines, in addition to the R, L, R, L, and Ck machines
already defined.

• T -- translate moves a value left one tape square
…?01x0… ⇒ …?1x00…

• Shift -- shift a rightmost value left, destroying value to its left
…01x101x20… ⇒ …01x20…

• Rotk -- Rotate a k value sequence one slot to the left
…01x101x20…01xk0…

⇒ …01x20…01xk01x10…

 R1 L0R

R 1

L T

R

0
kL k

k+1 1 L k L 0 T k L k+1

L 1

T
L 0 T

0

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 154

Basic Functions

All Basis Recursive Functions are
Turing computable:

• Ca
n(x1,…,xn) = a

(R1)aR
• (x1,…,xn) = xi

Cn-i+1

• S(x) = x+1
C11R

 i
nI

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 155

Closure Under Composition
If G, H1, … , Hk are already known to be Turing computable,
then so is F, where

F(x1,…,xn) = G(H1(x1,…,xn), … , Hk(x1,…,xn))

To see this, we must first show that if E(x1,…,xn) is Turing
computable then so is

E<m>(x1,…,xn, y1,…,ym) = E(x1,…,xn)

This can be computed by the machine

Ln+m (Rotn+m)n Rn+m E Ln+m+1 (Rotn+m)m Rn+m+1

Can now define F by

H1 H2<1> H3<2> … Hk<k-1> G Shiftk

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 156

Closure Under Minimization

If G is already known to be Turing
computable, then so is F, where

F(x1,…,xn) = μy (G(x1,…,xn, y) == 1)

This can be done by

R G L 1 0 L
0

1

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 157

Assignment # 4
a. Present a Turing Machine to do MAX of n non-zero arguments,

n>=0. You know you’ve run out of arguments when you encounter
the value 0, represented by two successive 0's (blanks). Use the
machines we have already built up and others you build. Do NOT
turn in Turing Tables. We won't pay any attention to them if you do.

b. Show that Turing Machine are closed under iteration (primitive
recursion). This completes the equivalence proofs for our five
models of computation.

c. Constructively (no proof required), show how a standard register
machine can simulate a different register machine model with
instructions of form:
i. if even(r) goto j // goto j if value in register r is even
i. r = r+1 // increment contents of r
i. r = r-1 // decrement contents of r
Note: all registers except input ones start with 0; inputs are in registers r1,
r2,…, rn; output in rn+1

Due: September 24

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 158

Consequences of Equivalence

• Theorem: The computational power of S-
Programs, Recursive Functions, Turing
Machines, Register Machine, and Factor
Replacement Systems are all equivalent.

• Theorem: Every Recursive Function (Turing
Computable Function, etc.) can be performed
with just one unbounded type of iteration.

• Theorem: Universal machines can be
constructed for each of our formal models of
computation.

Undecidability

We Can’t Do It All

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 160

Undecidability Precursor
• We can see that there are undecidable functions merely by

noting that there are an uncountable number of mappings from
the natural numbers into the natural numbers. Since effective
procedures are always over a language with a finite number of
primitives, and since we restrict programs to finite length, there
can be only a countable number of effective procedures. Thus
no formalism can get us all mappings -- some must be non-
computable.

• The above is a great existence proof, but is unappealing since
it doesn’t help us to understand what kinds of problems are
uncomputable. The classic unsolvable problem is called the
Halting Problem. It is the problem to decide of an arbitrary
effective procedure f: ℵ → ℵ , and an arbitrary n ∈ ℵ, whether
or not f(n) is defined.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 161

Halting Problem
Assume we can decide the halting problem. Then there exists some
total function Halt such that

1 if [x] (y) is defined
Halt(x,y) =

0 if [x] (y) is not defined
Here, we have numbered all programs and [x] refers to the x-th
program in this ordering. Now we can view Halt as a mapping from ℵ
into ℵ by treating its input as a single number representing the
pairing of two numbers via the one-one onto function

pair(x,y) = <x,y> = 2x (2y + 1) – 1

with inverses
<z>1 = exp(z+1,1)

<z>2 = (((z + 1) // 2 <z>1) – 1) // 2

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 162

The Contradiction
Now if Halt exist, then so does Disagree, where

0 if Halt(x,x) = 0, i.e, if [x] (x) is not defined
Disagree(x) =

μy (y == y+1) if Halt(x,x) = 1, i.e, if [x] (x) is defined

Since Disagree is a program from ℵ into ℵ , Disagree can be
reasoned about by Halt. Let d be such that Disagree = [d], then
Disagree(d) is defined ⇔ Halt(d,d) = 0

⇔ d is undefined
⇔ Disagree(d) is undefined
But this means that Disagree contradicts its own existence.
Since every step we took was constructive, except for the
original assumption, we must presume that the original
assumption was in error. Thus, the Halting Problem is not
solvable.

Additional Notations

Includes comment on our
notation versus that of others

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 164

Universal Machine
• Others consider functions of n arguments, whereas

we had just one. However, our input to the FRS was
actually an encoding of n arguments.

• The fact that we can focus on just a single number
that is the encoding of n arguments is easy to justify
based on the pairing function.

• Some presentations order arguments differently,
starting with the n arguments and then the Gödel
number of the function, but closure under argument
permutation follows from closure under substitution.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 165

Universal Machine Mapping

• Φ(n)(x1,…,xn, f) = Univ (f,)
• We will sometimes adopt the above and

also its common shorthand
Φf

(n)(x1,…,xn) = Φ(n)(x1,…,xn, f)
and the even shorter version
Φf(x1,…,xn) = Φ(n)(x1,…,xn, f)

∏ =

n

i

x

ip i

1

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 166

SNAP and TERM
• Our CONFIG is essentially the common

SNAP (snapshot) with arguments
permuted
SNAP(x, f, t) = CONFIG(f, x, t)

• Termination in our notation occurs
when we reach a fixed point, so
TERM(x, f) = (NEXT(f, x) == x)

• Again, we used a single argument but that
can be extended as we have already shown.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 167

STP Predicate

• STP(x1,…,xn, f, t) is a predicate
defined to be true iff [f](x1,…,xn)
converges in at most t steps.

• STP is primitive recursive since it can
be defined by
STP(x, f, s) = TERM(CONFIG(f, x, s), f)
Extending to many arguments is easily done
as before.

Recursively Enumerable

Properties of re Sets

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 169

Definition of re
• Some texts define re in the same way as I have

defined semi-decidable.
S ⊆ ℵ is semi-decidable iff there exists a partially
computable function g where

S = { x ∈ ℵ | g(x)↓ }
• I prefer the definition of re that says

S ⊆ ℵ is re iff S = ∅ or there exists a totally
computable function f where

S = { y | ∃x f(x) == y }
• We will prove these equivalent. Actually, f can be a

primitive recursive function.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 170

Semi-Decidable Implies re
Theorem: Let S be semi-decided by GS.

Assume GS is the gS function in our
enumeration of effective procedures. If S = Ø
then S is re by definition, so we will assume
wlog that there is some a ∈ S. Define the
enumerating algorithm FS by
FS(<x,t>) = x * STP(x, gs, t)

+ a * (1-STP(x, gs, t))
Note: FS is primitive recursive and it
enumerates every value in S infinitely often.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 171

re Implies Semi-Decidable
Theorem: By definition, S is re iff S == Ø or

there exists an algorithm FS, over the natural
numbers ℵ, whose range is exactly S. Define

μy [y == y+1] if S == Ø
ψS(x) =

signum((μy[FS(y)==x])+1), otherwise
This achieves our result as the domain of ψS
is the range of FS, or empty if S == Ø.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 172

Domain of a Procedure
Corollary: S is re/semi-decidable iff S is the

domain / range of a partial recursive
predicate FS.

Proof: The predicate ψS we defined earlier to
semi-decide S, given its enumerating
function, cab be easily adapted to have this
property.

μy [y == y+1] if S == Ø
ψS(x) =

x*signum((μy[FS(y)==x])+1), otherwise

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 173

Recursive Implies re
Theorem: Recursive implies re.
Proof: S is recursive implies there is a total

recursive function fS such that
S = { x ∈ ℵ | fs(x) == 1 }

Define gs(x) = μy (fs(x) == 1)
Clearly
dom(gs) = {x ∈ ℵ | gs(x)↓}

= { x ∈ ℵ | fs(x) == 1 }
= S

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 174

Related Results
Theorem: S is re iff S is semi-decidable.
Proof: That’s what we proved.
Theorem: S and ~S are both re (semi-decidable)

iff S (equivalently ~S) is recursive (decidable).
Proof: Let fS semi-decide S and fS’ semi-decide ~S. We

can decide S by gS

gS(x) = STP(x, fS, μt (STP(x, fS, t) || STP(x, fS’ ,t))
~S is decided by gS’(x) = ~gS(x) = 1- gS(x).
The other direction is immediate since, if S is
decidable then ~S is decidable (just complement gS)
and hence they are both re (semi-decidable).

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 175

Enumeration Theorem
• Define

Wn = { x ∈ ℵ | Φ(x,n)↓ }
• Theorem: A set B is re iff there exists

an n such that B = Wn.
Proof: Follows from definition of Φ(x,n).

• This gives us a way to enumerate the
recursively enumerable sets.

• Note: We will later show (again) that we
cannot enumerate the recursive sets.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 176

The Set K

• K = { n ∈ ℵ | n ∈ Wn }
• Note that

n ∈ Wn ⇔ Φ(n,n)↓ ⇔ HALT(n,n)
• Thus, K is the set consisting of the

indices of each program that halts
when given its own index

• K can be semi-decided by the HALT
predicate above, so it is re.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 177

K is not Recursive

• Theorem: We can prove this by
showing ~K is not re.

• If ~K is re then ~K = Wi, for some i.
• However, this is a contradiction since

i ∈ K ⇔ i ∈ Wi ⇔ i ∈ ~K ⇔ i ∉ K

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 178

re Characterizations
Theorem: Suppose S ≠∅ then the following are

equivalent:
1. S is re
2. S is the range of a primitive rec. function
3. S is the range of a recursive function
4. S is the range of a partial rec. function
5. S is the domain of a partial rec. function

S-m-n Theorem

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 180

Parameter (S-m-n) Theorem
• Theorem: For each n,m>0, there is a prf

Sm
n(u1,…,un,y) such that

Φ(m+n)(x1,…,xm, u1,…,un, y)
= Φ(m)(x1,…, xm, Sm

n(u1,…,un,y))
• The proof of this is highly dependent

on the system in which you proved
universality and the encoding you
chose.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 181

S-m-n for FRS
• We would need to create a new FRS, from an existing one F,

that fixes the value of ui as the exponent of the prime pm+i.
• Sketch of proof:

Assume we normally start with p1
x1 … pm

xm p1
u1 … pm+n

un σ
Here the first m are variable; the next n are fixed; σ denotes
prime factors used to trigger first phase of computation.
Assume that we use fixed point as convergence.
We start with just p1

x1 … pm
xm, with q the first unused prime.

q α x → q β x replaces α x→ β x in F
q x → q x ensures we loop at end
x → q pm+1

u1 … pm+n
un σ x
adds fixed input, start state and q
this is selected once and never again

Note: q = prime(S(max(n+m, lastFactor(Product[i=1 to r] αi βi))))
where r is the number of rules in F.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 182

Details of S-m-n for FRS
• The number of F (called F, also) is 2r3a15b1…p2r-1

arp2r
br

• Sm,n(u1,…un, F) = 2r+23q×a15q×b1…p2r-1
q×arp2r

q×br

p2r+1
qp2r+2

q p2r+3p2r+4
q pm+1u1 … pm+nun σ

• This represents the rules we just talked about. The
first added rule pair means that if the algorithm does
not use fixed point, we force it to do so. The last rule
pair is the only one initially enabled and it adds the
prime q, the fixed arguments u1,…un, the enabling
prime q, and the σ needed to kick start computation.
Note that σ could be a 1, if no kick start is required.

• Sm,n=Sm
n is clearly primitive recursive. I’ll leave the

precise proof of that as a challenge to you.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 183

Quantification#1
• S is decidable iff there exists an algorithm χS (called

S’s characteristic function) such that
x ∈ S ⇔ χS(x)
This is just the definition of decidable.

• S is re iff there exists an algorithm AS where
x ∈ S ⇔ ∃t AS(x,t)
This is clear since, if gS is the index of the procedure
ψS defined earlier that semi-decides S then
x ∈ S ⇔ ∃t STP(x, gS, t)
So, AS(x,t) = STPgS(x, t), where STPgS is the STP
function with its second argument fixed.

• Creating new functions by setting some one or more
arguments to constants is an application of Sm

n.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 184

Quantification#2
• S is re iff there exists an algorithm AS such that

x ∉ S ⇔ ∀t AS(x,t)
This is clear since, if gS is the index of the procedure
ψS that semi-decides S, then
x ∉ S ⇔ ~∃t STP(x, gS, t) ⇔ ∀t ~STP(x, gS, t)
So, AS(x,t) = ~STPgS(x, t), where STPgS is the STP
function with its second argument fixed.

• Note that this works even if S is recursive
(decidable). The important thing there is that if S is
recursive then it may be viewed in two normal forms,
one with existential quantification and the other with
universal quantification.

• The complement of an re set is co-re. A set is
recursive (decidable) iff it is both re and co-re.

Diagonalization and
Reducibility

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 186

Non-re Problems
• There are even “practical” problems that are worse

than unsolvable -- they’re not even semi-decidable.
• The classic non-re problem is the Uniform Halting

Problem, that is, the problem to decide of an
arbitrary effective procedure P, whether or not P is
an algorithm.

• Assume that the algorithms can be enumerated, and
that F accomplishes this. Then

F(x) = Fx

where F0, F1, F2, … is a list of all the algorithms

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 187

The Contradiction
• Define G(x) = Univ (F(x) , x) + 1 = Φ(x, F(x)) = Fx(x) + 1

• But then G is itself an algorithm. Assume it is the g-th one

F(g) = Fg = G

Then, G(g) = Fg(g) + 1 = G(g) + 1

• But then G contradicts its own existence since G would need to
be an algorithm.

• This cannot be used to show that the effective procedures are
non-enumerable, since the above is not a contradiction when
G(g) is undefined. In fact, we already have shown how to
enumerate the (partial) recursive functions.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 188

The Set TOT

• The listing of all algorithms can be
viewed as

TOT = { f ∈ ℵ | ∀x Φ(x,f)↓ }
• We can also note that

TOT = { f ∈ ℵ | Wf =ℵ }
• Theorem: TOT is not re.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 189

Quantification#3
• The Uniform Halting Problem was already

shown to be non-re. It turns out its
complement is also not re. We’ll cover that
later. In fact, we will show that TOT requires
an alternation of quantifiers. Specifically,

f ∈ TOT⇔ ∀x∃t (STP(x, f, t))
and this is the minimum quantification we
can use, given that the quantified predicate
is recursive.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 190

Reduction Concepts
• Proofs by contradiction are tedious after

you’ve seen a few. We really would like
proofs that build on known unsolvable
problems to show other, open problems are
unsolvable. The technique commonly used
is called reduction. It starts with some
known unsolvable problem and then shows
that this problem is no harder than some
open problem in which we are interested.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 191

Reduction Example
• We can show that the Halting Problem is no harder than the

Uniform Halting Problem. Since we already know that the
Halting Problem is unsolvable, we would now know that the
Uniform Halting Problem is also unsolvable. We cannot reduce
in the other direction since the Uniform Halting Problem is in
fact harder.

• Let F be some arbitrary effective procedure and let x be some
arbitrary natural number.

• Define Fx(y) = F(x), for all y ∈ ℵ
• Then Fx is an algorithm if and only if F halts on x. This is

another application of the Sm
n theorem

• Thus a solution to the Uniform Halting Problem would provide a
solution to the Halting Problem.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 192

Classic Undecidable Sets
• The universal language

K0 = Lu = { <f, x> | [f] (x) is defined }

• Membership problem for Lu is the Halting Problem.
• The sets Lne and Le, where

NON-EMPTY = Lne = { f | ∃ x [f] (x) is defined }

EMPTY = Le = { f | ∀ x [f] (x) is undefined }

are the next ones we will study.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 193

Lne is re
• Lne is enumerated by

F(<f, x, t>) = f * STP(x, f, t)

• This assumes that 0 is in Lne since 0
probably encodes some trivial machine. If
this isn’t so, we’ll just slightly vary our
enumeration of the recursive functions so it
is true.

• Thus, the range of this total function F is
exactly the indices of functions that
converge for some input, and that’s Lne.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 194

Lne is Non-Recursive
• Note in the previous enumeration that F is a function

of just one argument, as we are using an extended
pairing function <x,y,z> = <x,<y,z>>.

• Now Lne cannot be recursive, for if it were then Lu is
recursive by the reduction we showed before.

• In particular, from any index x and input y, we
created a new function which accepts all input just in
case the x-th function accepts y. Hence, this new
function’s index is in Lne just in case (x, y) is in Lu.

• Thus, a decision procedure for Lne (equivalently for
Le) implies one for Lu.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 195

Lne is re by Quantification

• Can do by observing that

f ∈ Lne ⇔ ∃ <x,t> STP(x, f, t)

• By our earlier results, any set whose
membership can be described by an
existentially quantified recursive predicate is
re (semi-decidable).

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 196

Le is not re
• If Le were re, then Lne would be

recursive since it and its complement
would be re.

• Can also observe that Le is the
complement of an re set since

f ∈ Le ⇔ ∀ <x,t> ~STP(x, f, t)
⇔ ~∃ <x,t> STP(x, f, t)
⇔ f ∉ Lne

Exam#1 Review

You are responsible for the first
196 pages of these notes,

except for the P=NP material.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 198

Sample Question#1
1. Present a register machine and a

factor replacement system that each
produce the value 1 (true), if x>y, and
0 (false), otherwise.

a) For the register machine, assume it
starts with x in R2 and y in R3, and all
else 0. The result must end up in R1, with
R2 and R3 unchanged.

b) For the FRS, assume it starts with 3x5y

and must end up with 2result.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 199

Sample Question#2

2. Prove that the following are
equivalent

a) S is an infinite recursive (decidable) set.
b) S is the range of a monotonically

increasing total recursive function.
Note: f is monotonically increasing
means that ∀x f(x+1) > f(x).

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 200

Sample Question#3

3. Let A and B be re sets. For each of the
following, either prove that the set is
re, or give a counterexample that
results in some known non-re set.

a) A ∪ B
b) A ∩ B
c) ~A

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 201

Sample Question#4

4. Present a demonstration that the even
function is primitive recursive.
even(x) = 1 if x is even
even(x) = 0 if x is odd
You may assume only that the base
functions are prf and that prf’s are
closed under a finite number of
applications of composition and
primitive recursion.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 202

Sample Question#5

5. Given that the predicate STP is a prf,
show that we can semi-decide

{ f | f evaluates to 0 for some input}

Note: STP(x, f, s) is true iff Φf(x)
converges in s or fewer steps

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 203

Sample Question#6
6. Let S be an re (recursively enumerable),

non-recursive set, and T be an re, possibly
recursive set. Let
E = { z | z = x + y, where x ∈ S and y ∈ T }.
Answer with proofs, algorithms or
counterexamples, as appropriate, each of
the following questions:
(a) Can E be non re?
(b) Can E be re non-recursive?
(c) Can E be recursive?

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 204

Sample Question#7

7. Assuming that the Uniform Halting
Problem is undecidable (it’s actually
not even re), use reduction to show
the undecidability of

{ f | ∀x f(x+1) > f(x) }

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 205

Sample Question#8

8. Assume that f and g are both standard
Turing Computable (STC). Show that
f+g is also STC. You must
demonstrate this by writing a new
machine in diagrammatic notation. Of
course, f and g may be used as
submachines.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 206

Sample Question#9

9. Let S be a recursive (decidable set),
what can we say about the complexity
(recursive, re non-recursive, non-re)
of T, where T ⊂ S?

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 207

Sample Question#10

10.Define the pairing function <x,y> and
its two inverses <z>1 and <z>2, where
if z = <x,y>, then x = <z>1 and y = <z>2.

Reduction and Equivalence

m-1, 1-1, Turing Degrees

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 209

Many-One Reduction
• Let A and B be two sets.
• We say A many-one reduces to B,

A ≤m B, if there exists a total recursive
function f such that
x ∈ A ⇔ f(x) ∈ B

• We say that A is many-one equivalent to B,
A ≡m B, if A ≤m B and B ≤m A

• Sets that are many-one equivalent are in
some sense equally hard or easy.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 210

Many-One Degrees
• The relationship A ≡m B is an equivalence

relationship (why?)
• If A ≡m B, we say A and B are of the same

many-one degree (of unsolvability).
• Decidable problems occupy three m-1

degrees: ∅, ℵ, all others.
• The hierarchy of undecidable m-1 degrees is

an infinite lattice (I’ll discuss in class)

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 211

One-One Reduction
• Let A and B be two sets.
• We say A one-one reduces to B, A ≤1 B,

if there exists a total recursive 1-1 function f
such that
x ∈ A ⇔ f(x) ∈ B

• We say that A is one-one equivalent to B,
A ≡1 B, if A ≤1 B and B ≤1 A

• Sets that are one-one equivalent are in a
strong sense equally hard or easy.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 212

One-One Degrees
• The relationship A ≡1 B is an equivalence

relationship (why?)
• If A ≡1 B, we say A and B are of the same

one-one degree (of unsolvability).
• Decidable problems occupy infinitely many

1-1 degrees: each cardinality defines another
1-1 degree (think about it).

• The hierarchy of undecidable 1-1 degrees is
an infinite lattice.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 213

Turing (Oracle) Reduction
• Let A and B be two sets.
• We say A Turing reduces to B, A ≤t B, if the

existence of an oracle for B would provide us
with a decision procedure for A.

• We say that A is Turing equivalent to B,
A ≡t B, if A ≤t B and B ≤t A

• Sets that are Turing equivalent are in a very
loose sense equally hard or easy.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 214

Turing Degrees
• The relationship A ≡t B is an equivalence

relationship (why?)
• If A ≡t B, we say A and B are of the same

Turing degree (of unsolvability).
• Decidable problems occupy one Turing

degree. We really don’t even need the oracle.
• The hierarchy of undecidable Turing degrees

is an infinite lattice.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 215

Complete re Sets
• A set C is re 1-1 (m-1, Turing) complete if, for

any re set A, A ≤1 (≤m , ≤t) C.
• The set HALT is an re complete set (in regard

to 1-1, m-1 and Turing reducibility).
• The re complete degree (in each sense of

degree) sits at the top of the lattice of re
degrees.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 216

The Set Halt = K0 = Lu

• Halt = K0 = Lu = { <f, x> | [f](x) is defined }
• Let A be an arbitrary re set. By definition, there

exists an effective procedure φa, such that dom(φa) =
A. Put equivalently, there exists an index, a, such
that A = Wa.

• x ∈ A iff x ∈ dom(φa) iff φa(x)↓ iff <a,x> ∈ K0

• The above provides a 1-1 function that reduces A to
K0 (A ≤1 K0)

• Thus the universal set, Halt = K0 = Lu, is an re
(1-1, m-1, Turing) complete set.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 217

The Set K
• K = { f | φf(f) is defined }
• Define fx(y) = φf(x). That is, fx(y) = φf(x). The index for

fx can be computed from f and x using S1,1, where we
add a dummy argument, y, to φf. Let that index be fx.
(Yeah, that’s overloading.)

• <f,x> ∈ K0 iff x ∈ dom(φf) iff ∀y[φfx(y)↓] iff fx ∈ K.
• The above provides a 1-1 function that reduces K0 to

K.
• Since K0 is an re (1-1, m-1, Turing) complete set and

K is re, then K is also re (1-1, m-1, Turing) complete.

Reduction and Rice’s

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 219

Two Interesting Sets
• The sets

Lr = { x | dom [x] is recursive }

Lnr = { x | dom [x] is not recursive }
• Lr is very easily confused with the set of indices of

algorithms. It includes the indices of all algorithms,
since their domains (all natural numbers) are clearly
recursive. It also includes many indices of functions
which diverge at some points where a corresponding
algorithm might have produced a 0 output
(rejection).

• Our claim is that neither of these sets is re.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 220

Lr is Non-RE
Let HALT(x,y) = ∃t STP(y, x, t)
Consider again the set

Lr = { x | dom [x] is recursive }
Suppose Lr is re. We can show that this implies that the complement
of Lu is also re, but then since Lu is re, we would have that Lu is
recursive (decidable), an impossibility. We attack this by defining, for
each function index x and input y, a function
Fx,y(z) = HALT(x, y) + HALT(<z>1 , <z>2)
This function’s domain is Lu, if [x] (y) is defined, and is Ø, otherwise.
Thus, Fx,y accepts a recursive language just in case (x, y) ∉ Lu (that is,
[x] (y) is undefined). But (x, y) ∉ Lu just in case Fx,y’s index is in Lr.
Thus, a semi-decision procedure for Lr implies one for the
complement of Lu. So Lr is not re.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 221

Lr Picture Proof

x

y
ϕx(y)

ϕz1(z2)
z

Given arbitrary x, y, define the function fx,y(z) = ϕx(y) + ϕz1(z2).
The following illustrates fx,y,.
Here, dom(fx,y,) = φ if ϕx(y)↑; = K0 if ϕx(y)↓
Thus, ϕx(y)↑ iff fx,y is in Lr, and so ~K0 ≤1 Lr. If Lr is re then so is ~K0 and
hence K0 and its complement are both re, implying K0 is recursive, but
that cannot be so, Hence Lr is not re.

dom(fx,y) = φ If ϕx(y)↑

dom(fx,y) = K0 If ϕx(y)↓

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 222

Lnr is Non-re
• A similar proof exists to show that Lnr is not re. In this case we want a function

whose domain is Lu, if [x] (y) is undefined, and is ℵ, otherwise.
• I’d like you to think about this one -- not an assignment, rather a challenge.

You might consider starting with a function

HALT(x, y) * (z // 2) if z is odd
Gx,y(z) =

HALT(<z // 2>1 , <z // 2>2) * (z // 2) if z is even
• But this function’s range is Lu, if [x] (y) is undefined, and is ℵ, otherwise.

That’s not quite what we were after -- we need domain, not range -- but let’s
assume it’s on the right track and that we have Fx,y.

• Thus, Fx,y accepts a recursive language just in case (x, y) is in Lu (that is, [x] (y)
is defined). But then (x, y) is not in Lu just in case Fx,y’s index is in Lnr.

• Thus, a semi-decision procedure for Lnr implies one for the complement of Lu.
So Lnr is not re.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 223

Either Trivial or Undecidable
• The previous proof shows that we cannot decide if a (partially)

recursive function accepts a recursive set. We cannot even
decide if it accepts the empty set.

• In general, there’s really nothing that we can decide about
recursive functions, based purely on their input/output
behavior.

• This generalization of what was just done is Rice’s Theorem for
recursive index sets.

• Let P be some set of re languages, e.g. P = { L | L is infinite re }.
We call P a property of re languages since it divides the class
of all re languages into two subsets, those having property P
and those not having property P. P is said to be trivial if it is
empty (this is not the same as saying P contains the empty set)
or contains all re languages. Trivial properties are not very
discriminating in the way they divide up the re languages (all or
nothing).

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 224

Rice’s Theorem
Rice’s Theorem: Let P be some non-trivial property of the re languages. Then

LP = { x | dom [x] is in P (has property P) }
is undecidable. Note that membership in LP is based purely on the domain of a function,
not on any aspect of its implementation.
Proof: We will assume, wlog, that P does not contain Ø. If it does we switch our attention
to the complement of P. Now, since P is non-trivial, there exists some language L with
property P. Let [r] be a recursive function whose domain is L (r is the index of a semi-
decision procedure for L). Suppose P were decidable. We will use this decision procedure
and the existence of r to decide Lu. First we define a function Fr,x,y for r and each function
[x] and input y as follows.

Fr,x,y(z) = HALT(x , y) + HALT(r , z)
The domain of this function is L if [x](y) converges, otherwise it’s Ø. Now if we can
determine membership in LP , we can use this algorithm to decide Lu merely by applying it
to Fr,x,y. An answer as to whether or not Fr,x,y has property P is also the correct answer as
to whether or not [x](y) converges.
Thus, there can be no decision procedure for P. And consequently, there can be no
decision procedure for any non-trivial property of re languages.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 225

Rice’s Picture Proof

x

y
ϕx(y)

ϕr(z)
z

Let P be an arbitrary, non-trivial, I/O property of effective procedures.
Assume wlog that the functions with empty domains are not in P.

Given x, y, r, where r is in the set SP.= {f | ϕf has property P}, define the
function fx,y,r(z) = ϕx(y) - ϕx(y) + ϕr(z). The following illustrates fx,y,r.
Here, dom(fx,y,r) = dom(ϕr) (fx,y,r(z) = ϕr(z)) if ϕx(y)↓ ; = φ if ϕx(y)↑ .
Thus, ϕx(y)↓ iff fx,y,r has property P, and so K0 ≤1 SP.

dom(fx,y,r) = φ If ϕx(y)↑

rng(fx,y,r) = φ If ϕx(y)↑

rng(fx,y,r) = rng(ϕr) If ϕx(y)↓

dom(fx,y,r) = dom(ϕr) If ϕx(y)↓

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 226

Corollaries to Rice’s

Corollary: The following properties of
re sets are undecidable

a) L = Ø
b) L is finite
c) L is a regular set
d) L is a context-free set

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 227

Assignment # 5
1. Let INF = { f | domain(f) is infinite } and NE = { f | there is a y

such that f(y) converges}. Show that NE <=m INF. Present the
mapping and then explain why it works as desired. To do
this, define a total recursive function g, such that index f is in
NE iff g(f) is in INF. Be sure to address both cases (f in & f not
in)

2. Is INF <=m NE? If you say yes, show it. If you say no, give a
convincing argument that INF is more complex that NE.

3. What, if anything, does Rice’s Theorem have to say about the
following? In each case explain by either showing that all of
Rice’s conditions are met or convincingly that at least one is
not met.

a.) RANGE = { f | there is a g [range(g) = domain(f)] }
b.) PRIMITIVE = { f | f’s description uses no unbounded mu operations }
c.) FINITE = { f | domain(f) is finite }

Due: October 22

Canonical Processes,
Groups and Grammars

Post Canonical Systems of Varying Sorts and Their
Relation to Groups and Grammars

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 229

Semi-Groups, Monoids, Groups

S = (G, •) is a semi-group if
G is a set, • is a binary operator, and
1. Closure: If x,y ∈ G then x • y ∈ G
2. Associativity: x • (y • z) = (x • y) • z

S is a monoid if
3. Identity: ∃e ∈ G ∀x ∈ G [e • x = x • e = x]

S is a group if
4. Inverse: ∀x ∈ G ∃x-1 ∈ G [x-1 • x = x • x-1 = e]

S is Abelian if • is commutative

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 230

Finitely Presented
• If S is a semi-group (monoid, group) defined by a

finite set of symbols Σ, called the alphabet or
generators, and a finite set of equalities (αi = βi),
the reflexive transitive closure of which determines
equivalence classes over S, then S is a finitely
presented semi-group (monoid, group). Note, the
set S is the closure of the generators under the
semi-group’s operator.

• The word problem for S is the problem to
determine of two elements α, β, whether or not
α = β, that is, whether or not they are in the same
equivalence class.

• If • is commutative, then S is Abelian.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 231

Finitely Presented Monoids
• Strings over an alphabet (operation is concatenation,

identity is string of length zero).
• Natural numbers (use alphabet {1} make + the

operator, identity is 0 occurrences of a 1, use
shorthand that n represents n adds: 1+1+ … +1).
This is actually an Abelian monoid.

• In above cases, we would also need rules for
equivalence classes, e.g., we can get the
equivalences classes dividing the even and odd
numbers by
1+1 = 0
The two classes have representatives 0 and 1.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 232

Abelian Monoids
• Consider a finitely presented Abelian monoid over generators Σ

= {a1,…,an}.
• Since this is Abelian, we can always organize the letters in a

word into a canonical form, a1
k1,…,an

kn , ki is the number of
times ai appears.

• Thus, each word is a vector <k1,.., kn> and each rule is a pair of
such vectors.

• The above can be recast as a FRS, where each rule is bi-
directional (vector values are powers of primes) and there is no
order. It can also be recast as a bi-directional vector addition
system, VAS, where a rule in a VAS is of the form

<j1,.., jn> → <k1,.., kn>

This means add <k1-j1,.., kn-jn> to a vector <i1,.., in>,
provided is ≥ js, 1≤s≤n.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 233

Thue Systems
• Devised by Axel Thue
• Just a string rewriting view of finitely

presented monoids
• T = (Σ, R), where Σ is a finite alphabet

and R is a finite set of bi-directional
rules of form αi ↔ βi , αi, βi∈Σ*

• We define ⇔* as the reflexive, transitive
closure of ⇔, where w ⇔ x iff w=yαz
and x=yβz, where α ↔ β

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 234

Semi-Thue Systems
• Devised by Emil Post
• A one-directional version of Thue

systems
• S = (Σ, R), where Σ is a finite alphabet

and R is a finite set of rules of form
αi → βi , αi, βi∈Σ*

• We define ⇒* as the reflexive, transitive
closure of ⇒, where w ⇒ x iff w=yαz
and x=yβz, where α → β

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 235

Word Problems
• Let S = (Σ, R) be some Thue (Semi-Thue)

system, then the word problem for S is the
problem to determine of arbitrary words w
and x over S, whether or not w ⇔* x (w ⇒* x)

• The Thue system word problem is the
problem of determining membership in
equivalence classes. This is not true for
Semi-Thue systems.

• We can always consider just the relation ⇒*
since the symmetric property of ⇔* comes
directly from the rules of Thue systems.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 236

Post Canonical Systems
• These are a generalization of Semi-Thue systems.
• P = (Σ, V, R), where Σ is a finite alphabet, V is a finite set of

“variables”, and R is a finite set of rules.
• Here the premise part (left side) of a rule can have many

premise forms, e.g, a rule appears as
P1,1α1,1 P1,2… α1,n P1,n α1,n +1 ,1 1 1P2,1α2,1 P2,2… α2,n2

P2,n2
α2,n2+1 ,

…

Pk,1αk,1 Pk,2… αk,n Pk,n αk,n +1 ,k k k→ Q1β1 Q2… βnk+1
Qnk+1

βnk+1+1
• In the above, the P’s and Q’s are variables, the α’s and β’s are

strings over Σ, and each Q must appear in at least one premise.
• We can extend the notion of ⇒* to these systems considering

sets of words that derive conclusions. Think of the original set
as axioms, the rules as inferences and the final word as a
theorem to be proved.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 237

Examples of Canonical Forms
• Propositional rules

P, P ⊃ Q → Q
~P, P ∪ Q → Q
P ∩ Q → P oh, oh a ∩ (b ∩ c) ⇒ a ∩ (b
P ∩ Q → Q
(P ∩ Q) ∩ R ↔ P ∩ (Q ∩ R)
(P ∪ Q) ∪ R ↔ P ∪ (Q ∪ R)
~(~P) ↔ P
P ∪ Q → Q ∪ P
P ∩ Q → Q ∩ P

• Some proofs over {a,b,(,),~,⊃,∪,∩}
{a ∪ c, b ⊃ ~c, b} ⇒ {a ∪ c, b ⊃ ~c, b, ~c} ⇒
{a ∪ c, b ⊃ ~c, b, ~c, c ∪ a} ⇒
{a ∪ c, b ⊃ ~c, b, ~c, c ∪ a, a} which proves “a”

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 238

Simplified Canonical Forms
• Each rule of a Semi-Thue system is a canonical rule

of the form
PαQ → PβQ

• Each rule of a Thue system is a canonical rule of the
form
PαQ ↔ PβQ

• Each rule of a Post Normal system is a canonical
rule of the form
αP → Pβ

• Tag systems are just Normal systems where all
premises are of the same length (the deletion
number), and at most one can begin with any given
letter in Σ. That makes Tag systems deterministic.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 239

Examples of Post Systems
• Alphabet Σ = {a,b,#}. Semi-Thue rules:

aba → b
#b# → λ
For above, #anbam# ⇒* λ iff n=m

• Alphabet Σ = {0,1,c,#}. Normal rules:
0c → 1
1c → c0
#c → #1
0 → 0
1 → 1
→ #
For above, binaryc# ⇒* binary+1# where binary is
some binary number.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 240

Simulating Turing Machines
• This is done in text and will be done in class.

Basically, we need at least one rule for each
4-tuple in the Turing machine’s description.

• The rules lead from one instantaneous
description to another.

• The Turing ID αqaβ is represented by the
string hαqaβh, a being the scanned symbol.

• The tuple q a b s leads to
qa → sb

• Moving right and left can be harder due to
blanks.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 241

Details of Halt(TM) ≤ Word(ST)
• Let M = (Q, {0,1}, T), T is Turing table.
• If qabs ∈ T, add rule qa → sb
• If qaRs ∈ T, add rules

– qab → asb if a≠0 ∀b∈{0,1}
– qah → as0h if a≠0
– cqab → casb if a=0 ∀b,c∈{0,1}
– hqab → hsb if a=0 ∀b∈{0,1}
– cqah → cas0h if a=0 ∀c∈{0,1}
– hqah → hs0h if a=0

• If qaLs ∈ T, add rules
– bqac → sbac ∀a,b,c∈{0,1}
– hqac → hs0ac if ∀a,c∈{0,1}
– bqah → sbah if a≠0 ∀c∈{0,1}
– bqah → sbh if a=0 ∀b∈{0,1}
– hqah → hs0ah if a≠0
– hqah → hs0h if a=0

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 242

Semi-Thue Word Problem

• Construction from TM, M, gets:
• h1xq10h ⇒∑(M)* hq0h iff x∈L(M).
• hq0h ⇒∏(M)* h1xq10h iff x∈L(M).
• hq0h ⇔∑ (M)* h1xq10h iff x∈L(M).
• Can recast both Semi-Thue and Thue

Systems to ones over alphabet {a,b} or
{0,1}

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 243

Assignment # 6
1. Using reduction from the complement of the Halting Problem, show the

undecidability of the problem to determine if an arbitrary partial
recursive function, f, has a summation upper bound. This means that
there is a M, such that the sum of all values in the range of f (repeats
are added in and divergence just adds 0) is ≤ M.

2. Use one of the versions of Rice’s Theorem to show the undecidability
of the problem to determine if an arbitrary partial recursive function, f,
has a summation upper bound. This means that there is a M, such that
the sum of all values in the range of f (repeats are added in and
divergence just adds 0) is ≤ M.

3. Show that given a Semi-Thue, S, you can produce a Post Normal
System, NS, such that x ⇒S* y iff $x ⇒NS* $y. You must give the
construction of NS from S and a justification of why this meets the
condition stated above.

Due: October 29

Formal Language Review

Pretty Basic Stuff

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 245

Closure Properties
• Regular (Finite State) Languages

– Union, intersection, complement, substitution,
quotient (with anything), max, min, cycle, reversal

– Use of Pumping Lemma and Myhill-Nerode
• Context Free

– Union, intersection with regular, substitution, quotient
with regular, cycle, reversal

– Use of Pumping and Ogden’s Lemma
• Context Sensitive Languages

– Union, intersection, complement, Epsilon-free
substitution, cycle, reversal

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 246

Non-Closure

• CFLs not closed under
– Intersection, complement, max, min

• CSLs not closed under
– Homomorphism (or substitution with empty

string), max (similar to homomorphism)

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 247

Grammars and re Sets

• Every grammar lists an re set.
• Some grammars (regular, CFL and

CSG) produce recursive sets.
• Type 0 grammars are as powerful at

listing re sets as Turing machines are
at enumerating re sets (Proof later).

Formal Language

Undecidability Continued
PCP and Traces

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 249

Post Correspondence Problem
• Many problems related to grammars can be shown

to be no more complex than the Post
Correspondence Problem (PCP).

• Each instance of PCP is denoted: Given n>0, Σ a
finite alphabet, and two n-tuples of words
(x1, … , xn), (y1, … , yn) over Σ,
does there exist a sequence i1, … , ik , k>0, 1 ≤ ij ≤ n,
such that
xi1 … xik = yi1 … yik ?

• Example of PCP:
n = 3, Σ = { a , b }, (a b a , b b , a), (b a b , b , b a a).
Solution 2 , 3, 1 , 2
b b a a b a b b = b b a a b a b b

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 250

PCP Example#2

• Start with Semi-Thue System
– aba → ab; a → aa; b → a
– Instance of word problem: bbbb ⇒*? aa

• Convert to PCP
– [bbbb* ab ab aa aa a a]

[aba aba a a b b *aa]
– And * * a a b b

* * a a b b

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 251

How PCP Construction Works?

• Using underscored letters (~ in text)
avoids solutions that don’t relate to
word problem instance. E.g.,

aba a
ab aa

• Top row insures start with [W0*
• Bottom row insures end with *Wf]
• Bottom row matches Wi, while top

matches Wi+1 (one is underscored)

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 252

Ambiguity of CFG
• Problem to determine if an arbitrary

CFG is ambiguous
S → A | B
A→ xi A [i] | xi [i] 1 ≤ i ≤ n
B→ yi B [i] | yi [i] 1 ≤ i ≤ n
A ⇒* xi1 … xik [ik] … [i1] k > 0
B ⇒* yi1 … yik [ik] … [i1] k > 0

• Ambiguous if and only if there is a
solution to this PCP instance.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 253

Intersection of CFLs
• Problem to determine if arbitrary CFG’s

define overlapping languages
• Just take the grammar consisting of all

the A-rules from previous, and a
second grammar consisting of all the
B-rules. Call the languages generated
by these grammars, LA and LB.
LA ∩ LB ≠ Ø, if and only there is a
solution to this PCP instance.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 254

CSG Produces Something
S → xi S yi

R | xi T yi
R 1 ≤ i ≤ n

a T a → * T *
* a → a *
a * → * a
T → *

• Our only terminal is *. We get strings
of form *2j+1, for some j’s if and only if
there is a solution to this PCP instance.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 255

Assignment # 7
1. Present the description of a PDA (in words) that

accepts LA (see page 253). You may assume that [i] is
a single symbol.

2. Present the description of a PDA (in words) that
accepts ~LA (see page 253).

3. Use (2) to show that it is undecidable to determine of
an arbitrary CFL, L, whether or not L = Σ*.

4. Prove that Post Correspondence Systems over {a}
are decidable.

Due: November 14

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 256

Traces (Valid Computations)
• A trace of a machine M, is a word of the form

X0 # X1 # X2 # X3 # … # Xk-1 # Xk

where Xi ⇒ Xi+1 0 ≤ i < k, X0 is a starting configuration and Xk is
a terminating configuration.

• We allow some laxness, where the configurations might be
encoded in a convenient manner. Many texts show that a
context free grammar can be devised which approximates
traces by either getting the even-odd pairs right, or the odd-
even pairs right. The goal is to then to intersect the two
languages, so the result is a trace. This then allows us to
create CFLs L1 and L2, where L1 ∩ L2 ≠ Ø , just in case the
machine has an element in its domain. Since this is
undecidable, the non-emptiness of the intersection problem is
also undecidable. This is an alternate proof to one we already
showed based on PCP.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 257

Traces of FRS
• I have chosen, once again to use the Factor Replacement

Systems, but this time, Factor Systems with Residues.
The rules are unordered and each is of the form
a x + b → c x + d

• These systems need to overcome the lack of ordering when
simulating Register Machines. This is done by
j. INCr[i] pn+j x → pn+i pr x
j. DECr[s, f] pn+j pr x → pn+s x

pn+j pr x + k pn+j → pn+f pr x + k pn+f , 1 ≤ k < pr

We also add the halting rule associated with m+1 of
pn+m+1 x → 0

• Thus, halting is equivalent to producing 0. We can also add
one more rule that guarantees we can reach 0 on both odd and
even numbers of moves

0 → 0

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 258

Intersection of CFLs
• Let (n, ((a1,b1,c1,d1) , … ,(ak,bk,ck,dk)) be some factor replacement

system with residues. Define grammars G1 and G2 by using the 4k+2
rules
G : Fi → 1aiFi1ci | 1ai+bi#1ci+di 1 ≤ i ≤ k

S1 → # Fi S1 | # Fi # 1 ≤ i ≤ k
S2 → # 1x0S11z0# Z0 is 0 for us

G1 starts with S1 and G2 with S2
• Thus, using the notation of writing Y in place of 1Y,

L1 = L(G1) = { #Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }
where Y2i ⇒ Y2i+1 , 0 ≤ i ≤ j.
This checks the even/odd steps of an even length computation.
But, L2 = L(G2) = { #X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 # }
where X2i-1 ⇒ X2i , 1 ≤ i ≤ k.
This checks the odd/steps of an even length computation.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 259

Intersection Continued
Now, X0 is chosen as some selected input value to
the Factor System with Residues, and Z0 is the
unique value (0 in our case) on which the machine
halts. But,
L1 ∩ L2 = {#X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 # }
where Xi ⇒ Xi+1 , 0 ≤ i < 2k, and X2k ⇒ Z0 . This
checks all steps of an even length computation. But
our original system halts if and only if it produces 0
(Z0) in an even (also odd) number of steps. Thus the
intersection is non-empty just in case the Factor
System with residue eventually produces 0 when
started on X0, just in case the Register Machine halts
when started on the register contents encoded by X0.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 260

Quotients of CFLs
• Let (n, ((a1,b1,c1,d1) , … ,(ak,bk,ck,dk)) be some factor replacement system

with residues. Define grammars G1 and G2 by using the 4k+4 rules
G : Fi → 1aiFi1ci | 1ai+bi#1ci+di 1 ≤ i ≤ k

T1 → # Fi T1 | # Fi # 1 ≤ i ≤ k
A → 1 A 1 | $ #
S1 → $T1
S2 → A T1 # 1z0 # Z0 is 0 for us

G1 starts with S1 and G2 with S2
• Thus, using the notation of writing Y in place of 1Y,

L1 = L(G1) = { $ #Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }
where Y2i ⇒ Y2i+1 , 0 ≤ i ≤ j.
This checks the even/odd steps of an even length computation.
But, L2 = L(G2) = { X $ #X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 # }
where X2i-1 ⇒ X2i , 1 ≤ i ≤ k and X = X0
This checks the odd/steps of an even length computation, and includes
an extra copy of the starting number prior to its $.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 261

Finish Quotient
Now, consider the quotient of L2 / L1 . The
only ways a member of L1 can match a final
substring in L2 is to line up the $ signs. But
then they serve to check out the validity and
termination of the computation. Moreover,
the quotient leaves only the starting number
(the one on which the machine halts.) Thus,
L2 / L1 = { X | the system F halts on zero }.
Since deciding the members of an re set is in
general undecidable, we have shown that
membership in the quotient of two CFLs is
also undecidable.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 262

Traces and Type 0
• Here, it is actually easier to show a simulation of a Turing machine than of a

Factor System.
• Assume we are given some machine M, with Turing table T (using Post

notation). We assume a tape alphabet of Σ that includes a blank symbol B.
• Consider a starting configuration C0. Our rules will be

S → # C0 # where C0 = Yq0aX is initial ID
q a → s b if q a b s ∈ T
b q a x → b a s x if q a R s ∈ T, a,b,x ∈ Σ
b q a # → b a s B # if q a R s ∈ T, a,b ∈ Σ
q a x → # a s x if q a R s ∈ T, a,x ∈ Σ, a≠B
q a # → # a s B # if q a R s ∈ T, a ∈ Σ, a≠B
q a x → # s x # if q a R s ∈ T, x ∈ Σ, a=B
q a # → # s B # if q a R s ∈ T, a=B
b q a x → s b a x if q a L s ∈ T, a,b,x ∈ Σ
q a x → # s B a x if q a L s ∈ T, a,x ∈ Σ
b q a # → s b a # if q a L s ∈ T, a,b ∈ Σ, a≠B
q a # → # s B a # if q a L s ∈ T, a ∈ Σ, a≠B
b q a # → s b # if q a L s ∈ T, b ∈ Σ, a=B
q a # → # s B # if q a L s ∈ T, a=B
f → λ if f is a final state
→ λ just cleaning up the dirty linen

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 263

CSG and Undecidability
• We can almost do anything with a CSG that can be done with a Type 0

grammar. The only thing lacking is the ability to reduce lengths, but
we can throw in a character that we think of as meaning “deleted”.
Let’s use the letter d as a deleted character, and use the letter e to
mark both ends of a word.

• Let G = (V, T, P , S) be an arbitrary Type 0 grammar.
• Define the CSG G’ = (V ∪ {S’, D}, T ∪ {d, e}, S’, P’), where P’ is

S’ → e S e
D x → x D when x ∈ V ∪ T
D e → e d push the delete characters to far right
α → β where α → β ∈ P and |α| ≤ |β|
α → βDk where α → β ∈ P and |α| - |β| = k > 0

• Clearly, L(G’) = { e w e dm | w ∈ L(G) and m≥0 is some integer }
• For each w ∈ L(G), we cannot, in general, determine for which values

of m, e w e dm ∈ L(G’). We would need to ask a potentially infinite
number of questions of the form
“does e w e dm ∈ L(G’)” to determine if w ∈ L(G). That’s a semi-
decision procedure.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 264

Some Consequences
• CSGs are not closed under Init, Final, Mid, quotient

with regular sets and homomorphism (okay for λ-
free homomorphism)

• We also have that the emptiness problem is
undecidable from this result. That gives us two
proofs of this one result.

• For Type 0, emptiness and even the membership
problems are undecidable.

Summary of Grammar
Results

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 266

Decidability

• Everything about regular
• Membership in CFLs and CSLs

– CKY for CFLs

• Emptiness for CFLs

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 267

Undecidability
• Is L =∅, for CSL, L?
• Is L=Σ*, for CFL (CSL), L?
• Is L1=L2 for CFLs (CSLs), L1, L2?
• Is L1⊆L2 for CFLs (CSLs), L1, L2?
• Is L1∩L2=∅ for CFLs (CSLs), L1, L2?
• Is L regular, for CFL (CSL), L?
• Is L1∩L2 a CFL for CFLs, L1, L2?
• Is ~L CFL, for CFL, L?

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 268

More Undecidability

• Is CFL, L, ambiguous?
• Is L=L2, L a CFL?
• Does there exist a finite n, Ln=LN+1?
• Is L1/L2 finite, L1 and L2 CFLs?
• Membership in L1/L2, L1 and L2 CFLs?

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 269

Word to Grammar Problem
• Recast semi-Thue system making all

symbols non-terminal, adding S and V
to non-terminals and terminal set Σ={a}
G: S → h1xq10h

hq0h → V
V → aV
V → λ

• x∈L(M) iff L(G) ≠ Ø iff L(G) infinite
iff a ∈ L(G) iff L(G) = Σ*

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 270

Consequences for Grammar
• Unsolvables

– L(G) = Ø
– L(G) = Σ*
– L(G) infinite
– w ∈ L(G), for arbitrary w
– L(G) ⊇ L(G2)
– L(G) = L(G2)

• Latter two results follow when have
– G2: S → aS | λ a∈Σ

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 271

Turing Machine Traces

• A valid trace
– C1 # C2

R $ C3 # C4
R … $ C2k-1 # C2k

R $,
where k ≥ 1 and Ci ⇒M Ci+1, for 1 ≤ i < 2k.
Here, ⇒M means derive in M, and CR means
C with its characters reversed

• An invalid trace
– C1 # C2

R $ C3 # C4
R … $ C2k-1 # C2k

R $,
where k ≥ 1 and for some i, it is false that
Ci ⇒M Ci+1.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 272

What’s Context Free?
• Given a Turing Machine M

– The set of invalid traces of M is Context Free
– The set of valid traces is Context Sensitive
– The set of valid terminating traces is Context

Sensitive
– The complement of the valid traces is Context

Free
– The complement of the valid terminating

traces is Context Free

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 273

What’s Undecidable?

• We cannot decide if the set of valid
terminating traces of an arbitrary
machine M is non-empty.

• We cannot decide if the complement of
the set of valid terminating traces of an
arbitrary machine M is everything. In
fact, this is not even semi-decidable.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 274

L = Σ*?

• If L is regular, then L = Σ*? is decidable
– Easy – Reduce to minimal deterministic FSA,
AL accepting L. L = Σ* iff AL is a one-state
machine, whose only state is accepting

• If L is context free, then L = Σ*? is
undecidable
– Just produce the complement of a Turing

Machine’s valid terminating traces

Undecidability of Finite
Convergence for Operators on

Formal Languages
Relation to Real-Time

(Constant Time) Execution

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 276

Simple Operators

• Concatenation
– A • B = { xy | x ∈ A & y ∈ B }

• Insertion
– A B = { xyz | y ∈ A, xz ∈ B, x, y, z ∈ Σ*}
– Clearly, since x can be λ, A • B ⊆ A B

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 277

K-insertion

• A [k] B = { x1y1x2y2 … xkykxk+1 |
y1y2 … yk ∈ A,
x1x2 … xkxk+1 ∈ B,
xi, yj ∈ Σ*}

• Clearly, A • B ⊆ A [k] B , for all k>0

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 278

Iterated Insertion

• A (1) [n] B = A [n] B

• A (k+1) [n] B = A [n] (A (k) [n] B)

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 279

Shuffle
• Shuffle (product and bounded product)

– A B = ∪ j ≥ 1 A [j] B
– A [k] B = ∪ 1≤j≤k A [j] B = A [k] B

• One is tempted to define shuffle product as
A B = A [k] B where

k = μ y [A [j] B = A [j+1] B]
but such a k may not exist – in fact, we will
show the undecidability of determining
whether or not k exists

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 280

More Shuffles

• Iterated shuffle
– A 0 B = A
– A k +1 B = (A [k] B) B

• Shuffle closure
– A * B = ∪ k ≥ 0 (A [k] B)

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 281

Crossover

• Unconstrained crossover is defined by
A ⊗u B = { wz, yx | wx∈A and yz∈B}

• Constrained crossover is defined by
A ⊗c B = { wz, yx | wx∈A and yz∈B,

|w| = |y|, |x| = |z| }

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 282

Who Cares?
• People with no real life (me?)
• Insertion and a related deletion operation

are used in biomolecular computing and
dynamical systems

• Shuffle is used in analyzing concurrency
as the arbitrary interleaving of parallel
events

• Crossover is used in genetic algorithms

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 283

Some Known Results

• Regular languages, A and B
– A • B is regular
– A [k] B is regular, for all k>0
– A B is regular
– A * B is not necessarily regular

• Deciding whether or not A * B is regular is an
open problem

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 284

More Known Stuff
• CFLs, A and B

– A • B is a CFL
– A B is a CFL
– A [k] B is not necessarily a CFL, for k>1

• Consider A=anbn; B = cmdm and k=2
• Trick is to consider (A [2] B) ∩ a*c*b*d*

– A B is not necessarily a CFL
– A * B is not necessarily a CFL

• Deciding whether or not A * B is a CFL is an open problem

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 285

Immediate Convergence

• L = L2 ?
• L = L L ?
• L = L L ?
• L = L * L ?
• L = L ⊗c L ?
• L = L ⊗u L ?

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 286

Finite Convergence
• ∃k>0 Lk = Lk+1

• ∃k≥0 L (k) L = L (k+1) L
• ∃k≥0 L [k] L = L [k+1] L
• ∃k≥0 L k L = L k +1 L
• ∃k≥0 L (k) ⊗c L = L (k+1) ⊗c L
• ∃k≥0 L (k) ⊗u L = L (k+1) ⊗u L

• ∃k≥0 A (k) B = A (k+1) B
• ∃k≥0 A [k] B = A [k+1] B
• ∃k≥0 A k B = A k +1 B
• ∃k≥0 A (k) ⊗c B = A (k+1) ⊗c B
• ∃k≥0 A (k) ⊗u B = A (k+1) ⊗u L

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 287

Finite Power of CFG
• Let G be a context free grammar.
• Consider L(G)n

• Question1: Is L(G) = L(G)2?
• Question2: Is L(G)n = L(G)n+1, for some finite

n>0?
• These questions are both undecidable.
• Think about why question1 is as hard as

whether or not L(G) is Σ*.
• Question2 requires much more thought.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 288

1981 Results
• Theorem 1:

The problem to determine if L = Σ* is Turing
reducible to the problem to decide if
L • L ⊆ L, so long as L is selected from a
class of languages C over the alphabet Σ for
which we can decide if Σ ∪ {λ} ⊆ L.

• Corollary 1:
The problem “is L • L = L, for L context free
or context sensitive?” is undecidable

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 289

Proof #1
• Question: Does L • L get us anything new?

– i.e., Is L • L = L?
• Membership in a CSL is decidable.
• Claim is that L = Σ* iff

(1) Σ ∪ {λ} ⊆ L ; and
(2) L • L = L

• Clearly, if L = Σ* then (1) and (2) trivially hold.
• Conversely, we have Σ* ⊆ L*= ∪ n≥0 Ln ⊆ L

– first inclusion follows from (1); second from (2)

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 290

Subsuming •

• Let ⊕ be any operation that subsumes
concatenation, that is A • B ⊆ A ⊕ B.

• Simple insertion is such an operation,
since A • B ⊆ A B.

• Unconstrained crossover also
subsumes •,
A ⊗c B = { wz, yx | wx∈A and yz∈B}

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 291

L = L ⊕ L ?

• Theorem 2:
The problem to determine if L = Σ* is
Turing reducible to the problem to
decide if L ⊕ L ⊆ L, so long as
L • L ⊆ L ⊕ L and L is selected from a
class of languages C over Σ for which
we can decide if
Σ ∪ {λ} ⊆ L.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 292

Proof #2
• Question: Does L ⊕ L get us anything new?

– i.e., Is L ⊕ L = L?
• Membership in a CSL is decidable.
• Claim is that L = Σ* iff

(1) Σ ∪ {λ} ⊆ L ; and
(2) L ⊕ L = L

• Clearly, if L = Σ* then (1) and (2) trivially hold.
• Conversely, we have Σ* ⊆ L*= ∪ n≥0 Ln ⊆ L

– first inclusion follows from (1); second from (1), (2)
and the fact that L • L ⊆ L ⊕ L

Exam#2 Review

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 294

Material
• You are responsible for material that

was covered on Exam#1 and the next
few days (reducibility and Rice’s
Theorem).

• Study notes through page 227.
• Look back at old exam. This one will be

similar, except that it will include some
questions as you’ll see on the next few
pages.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 295

Sample Question#1

1. Assume A ≤m B and B ≤m C.
Prove A ≤m C.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 296

Sample Question#2

2. Let Incr = { f | ∀x, φf(x+1)>φf(x) }.
Let TOT = { f | ∀x, φf(x)↓ }.
Prove that Incr ≡m TOT.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 297

Sample Question#3

3. Let Incr = { f | ∀x φf(x+1)>φf(x) }. Use
Rice’s theorem to show Incr is not
recursive.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 298

Sample Question#4

4. Let P = { f | ∃ x [STP(x, f, x)] }. Why
does Rice’s theorem not tell us
anything about the undecidability of
P?

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 299

Sample Exam#2 Q1
1. Choosing from among (REC) recursive, (RE) re non-recursive,

(CO) co-re non-recursive, (NR) non-re, categorize each of the
sets in a) through d). Justify your answer by showing some
minimal quantification of some known recursive predicate or by
another clear and convincing short argument.

a.) { f | domain(f) is infinite } NR
Justification: ∀x ∃ <y, t> [STP(y, f, t) && y>x]

b.) { f | f converges in 10 steps for some input x } RE
Justification: ∃ x [STP(x, f, 10)]

c.) { f | f converges in 10 steps for some input x<10 } REC
Justification: ∃ x< 10 [STP(x, f, 10)]

d.) { f | domain(f) is empty } CO
Justification: ∀ <x, t> [~STP(x, f, t)]

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 300

Sample Exam#2 Q2
2. Let set A and B be each re non-recursive. Consider C = A ∩ B. For

each part, either show sets A and B with the specified property or
present a demonstration that this property cannot hold.

a.) Can C be recursive? YES
A = { 2x | x ∈ K} ; B = {2x+1 | x ∈ K} are each 1-1 equivalent to K and so
are re, non-recursive.
C = A ∩ B = ∅, which is clearly recursive.

b.) Can C be re non-recursive? YES
A = K; B = K; C = A ∩ B = K which is re, non-recursive,

c.) Can C be non-re? NO
Let fA semi-decide A; fB semi-decide B.
That is, x∈A ⇔ fA(x)↓ and x∈B ⇔ fB(x)↓
Define fC(x) = fA(x) + fB(x)
fC(x)↓ ⇔ (fA(x) + fB(x))↓ ⇔ fA(x)↓ && fB(x)↓ ⇔ x∈A && x∈B⇔
x∈ A ∩ B⇔ x∈C
Thus, fC is a semi-decision procedure for C, proving that C must be re.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 301

Sample Exam#2 Q3
3. Let set A and B be sets, such that A ≤m B. Answer the following,

justifying your answers.

Assume A is non-recursive. What does this say about the complexity
of B?
B is non-recursive. Assume otherwise.
Since A ≤m B then ∃ total recursive function f |∀x x∈ A ⇔ f(x)∈ B.
If B were recursive and had a characteristic function (algorithm) χBthen we could solve A by χA(x) =χB(f(x)), but that contradicts B being
non-recursive.)

Assume B is non-recursive. What does this say about the complexity
of A?
This says nothing about A’s non-recursiveness. It does say that A is
no worse that B, but we haven’t even bounded B’s complexity to be re.
As an example, if A = ℵ and b ∈ B (B must be non-empty) then A ≤m B
by f(x) = b, ∀x. Of course, A could be non-recursive. For example, if
A=B, then A ≤m B by f(x) = x, ∀x

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 302

Sample Exam#2 Q4
4. Assume S is the range of some partial recursive function fS.

Prove that S is the domain and range of some partial recursive
function gS. To get full credit, you must argue convincingly (not
formally) that the function you specified is the correct one for
S. You may use common known recursive functions to attack
this (e.g., STP, VALUE, UNIV), but you may not use known
equivalent definitions of enumerable or semi-decidable.
Define gS(x) = (∃ <y,t> [STP(y, fS, t) && Value(y, fS, t) == x]) * x
gS(x) either diverges or equals x.
gS(x) = x ⇔ gS(x)↓

⇔ ∃ <y,t> [STP(y, fS, t) && Value(y, fS, t) == x]
⇔ ∃ y fS(y) == x ⇔ x∈ range(fS)

Therefore x ∈ range(gS) ⇔ x ∈ domain(gS) ⇔ x ∈ domain(fS)

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 303

Sample Exam#2 Q5
5. Let INFINITE = { f | domain(f) is infinite } and

NE = { f | ∃y ϕf(y)↓ }.
Show that NE ≤m INFINITE. Present the mapping and
then explain why it works as desired.
Define gf(x) = μ <y,t> STP(y, f, t)
f ∈ NE ⇒ ∃ <y,t> STP(y, f, t)

Let k = μ <y,t> STP(y, f, t)
Then gf(x) = k ∀x and gf ∈ INFINITE

f ∉ NE ⇒ ∀ <y,t> ~STP(y, f, t) ⇒
∀ x gf(x)↑ ⇒ gf ∉ INFINITE

Thus, NE ≤m INFINITE as was required.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 304

Sample Exam#2 Q6a,b
6. What, if anything, does Rice’s Theorem have to say about the

following? In each case explain by either showing that all of Rice’s
conditions are met or convincingly that at least one is not met.

a.) RANGE = { f | ∃ g [range(ϕg) = domain(ϕf)] }
This is trivial since, as shown in course and assignments and first
exam, the property holds for all f. The simple thing to do is to define
g(x) = f(x) – f(x) + x. This means that Rice’s Theorem says nothing
about RANGE.

b.) PRIMITIVE = { f | f’s description uses no unbounded μ operations }
This is non-trivial – F1(x) = x ∈ PRIMITIVE but
F2(x) = μ y[x == y] ∉ PRIMITIVE.
However, PRIMITIVE is not an I/O property. Revisiting the two
functions above,
∀ x F1(x) = F2(x) = x, but one is in and the other is out of PRIMITIVE.
Thus, this is not an I/O property and Rice’s Theorem says nothing
about PRIMITIVE.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 305

Sample Exam#2 Q6c
c.) FINITE = { f | domain(f) is finite }

Non-Trivial: ↑(x) = μ y[x == x+1] ∈ FINITE; s(x) = x+1 ∉ FINITE.
I/O Property: Let f, g be arbitrary prf's such that ∀ x f(x) = g(x)
(meaning if one converges, both do and produce the same
value; but if one diverges, both do).
f ∈ FINITE ⇔ domain(f) is finite Definition of FINITE

⇔ domain(g) is finite Since domain(f) = domain(g)
⇔ g ∈ FINITE Definition of FINITE

Thus, Rice’s Theorem applies, proving that FINITE is non-
recursive.

Term Rewriting

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 307

Types of Rewriting
• String rewriting is just grammars and the variety of

rewriting systems posed by Post. In fact. L-systems
are a form of concurrent string rewriting.

• Graph rewriting systems are often used in various
forms of analyzers and optimizers, e.g., compiler
optimizers.

• Some rewriting systems have a knowledge base
underlying them, e.g., about operations on numbers.
Such systems often are used as programming
languages in systems that seek to simplify
expressions, e.g., in Mathematica.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 308

Term Rewriting Systems

• These have equations as rules, but they
are intended to be be rewritten in one
direction only (lhs matches subterm
which is replaced by rhs).

• Matching is a form of unification (as in
theorem proving and Prolog).

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 309

TRS (Ackerman’s Function)
R1: f(0,y) → y+1
R2: f(x+1,0) → f(x,1)
R3: f(x+1,y+1) → f(x,f(x+1,y))
For all x, y in ℵ.
f(0,y) ⇒ y+1 by R1
f(1,y) ⇒ f(0,f(1,y-1)) if y>0

⇒ f(1,y-1)+1 ⇒ … ⇒ f(1,0) + y ⇒ f(0,1) + y ⇒ y+2
f(2,y) ⇒ f(1,f(2,y-1)) if y>0

⇒ … ⇒ f(2,y-1)+2 ⇒ … ⇒ 2y+3
Thus, f(2,3) ⇒ 9

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 310

Process

• Each element is a term
• Each term is rewritten by an equation
• Each application of an equation is

based on a substitution, e.g.,
f(1,2) [x→0, y→1 in f(x+1,y+1) → f(x,f(x+1,y))]
⇒ f(0,f(1,1))

• Equations are only applied left to right

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 311

Sort by Rewriting
max(0,x) → x
max(x,0) → x
max(s(x),s(y)) → s(max(x,y))
min(0,x) → x
min(x,0) → x
min(s(x),s(y)) → s(min(x,y))
sort(λ) → λ
sort(x : y) → insert(x, sort(y))
insert(x,λ) → x : λ
insert(x,y : z) → max(x,y) : insert(min(x,y), z)

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 312

Example Sort
• sort(5:2:3:e) →
• insert(5,sort(2:3:e)) →
• insert(5,insert(2,sort(3:e))) →
• insert(5,insert(2,insert(3:e))) →
• insert(5,insert(2,3:e)) →
• insert(5,max(2,3):insert(min(2,3),e)) → …
• insert(5,3:insert(2,e)) →
• insert(5,3:2:e))) →
• 5:insert(3,2:e) → …
• 5:3:insert(2:e) → …
• 5:3:2:e

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 313

Simplification
0 + X = X
succ(X) + Y = succ(X + Y)
0 * X = 0
succ(X) * Y = X * Y + Y
2 * 3 =

succ(succ(0)) * 3 =
(succ(0)*3) + 3 = 0*3 + 3 + 3 =
0 + 3 + 3 = 3 + 3 =
… = succ(succ(succ(3))) = 6

Assumes knowledge of simple counting by 1.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 314

Differentiation
Consider the rewriting rules
1. x + 0 → x
2. 0 + x → x
3. x × 0 → 0
4. 0 × x → 0
5. x × 1 → x
6. 1 × x → x
7. P(x, 1) → x
8. P(x, 0) → 1
9. D(n, x) → 0 where n is any constant
10. D(x, x) → 1
11. D(y + z, x) → D(y, x) + D(z, x)
12. D(y × z, x) → y × D(z, x) + z × D(y, x)
13. D(P(x, n), x) → n × P(x, n-1) where n is any constant
14. D(y, x, k) → D(D(y, x, k-1), x) provided k is a constant and k>1
15. D(y, x, 1) → D(y, x)
Rewrite D(P(x, 2) + P(x, 1), x, 2) until it terminates.
Assume normal precedence of arithmetic operators.
This is non-deterministic.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 315

Canonical Systems
• A terminating TRS is one where all starting terms t

lead eventually to a term t’ for which no equations
apply

• A confluent TRs is one where,
if t⇒*t1 and t ⇒*t2 then there is a t’ such that t1⇒*t’
and t2 ⇒*t’

• A terminating, confluent trs is called canonical
• Canonical systems are useful in computation

because they always halt and always produce a
single result

• Neither confluence nor termination is decidable, but
they are for some restricted systems, e.g., ones
where the rhs of all equations have no variables

Lindenmayer systems

Grammars and Biology
Modeling Plants

Massively inspired by
Prusinkiewicz & Lindenmayer

The algorithmic beauty of plants, 1990, Springer - Verlag
Available online at:

http://algorithmicbotany.org/papers/

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 317

Aristid Lindenmayer
(biologist and botanist)

• Worked on the growth patterns of
yeast, filamentous fungi and algae

• Formal description of the development
of such simple multicellular organisms

• Extended to describe complex
branching structures and plants

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 318

What are L-systems?

• String-rewriting systems
• Parallel application of the rules

– Reflects the biological motivation
– Captures cell divisions occurring at the same

time

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 319

The first L-system?
• Lindenmayer's original L-system for

modeling the growth of algae.
– variables : A B
– Axiom ω : B
– productions : (A → AB), (B → A)

• which produces:
– n=0 : B → A
– n=1 : A → AB
– n=2 : AB → ABA
– n=3 : ABA → ABAAB
– n=4 : ABAAB → ABAABABA

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 320

Turtle Interpretation
State of the turtle: (x, y, α)

(x, y): Cartesian position of the turtle
α: heading of the turtle, i.e. the direction in which it is heading

Also
d: step size
δ: angle increment

Commands:
F move forward a step of length d drawing a line segment.
f the same without drawing.
+ turn left by angle δ.
- turn right.
[Push state
] Pop state

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 321

Koch island

• ω: F-F-F-F
• p:

F F-F+F+FF-F-F+F

• δ=90°
• d is decreased 4

times between each
derivation step

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 322

Branching structures
ω: F
p1: F → F[+F]F[−F]F : .33
p2: F → F[+F]F : .33
p3: F → F[−F]F : .34
• [and] create a branching structure
• Probabilities of application are

Added at the end of the rules
• A single L-system creates a

variety of plants

p1 p2 p3

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 323

L-Systems for trees

ω: FA(1)

p1: A(k) → /(ϕ) [+(α) FA(k+1)]
–(β) FA(k + 1):

min{1, (2k + 1)/k2}

p2: A(k) → /(ϕ) –(β) FA(k + 1):
max{0, 1 – (2k + 1)/k2}

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 324

Interpretation
axiom ω
Module F is a branch segment
Module A(k) is an apex.

This module grows the tree
k is the generation step

Modules +, – denotes turn
Module / denotes twist
The mean angles for the rotations are specified for a

given class of trees (α = 32°, β =20°, ϕ = 90°).
Module A(k) can be rewritten non-deterministically

p1 produces 2 branches; prob1 = min{1, (2k + 1)/k2}
p2 produces a single branch segment; probability = 1- prob1

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 325

Generations of a Single Tree

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 326

Tree LOD

• Hierarchical
– geometry is replaced by productions

• for example, all geometry due to the symbols
introduced in the 10th iteration is replaced

– geometry is replaced with textured impostors
• cross polygons

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 327

Environment-sensitive

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 328

The creation of urban
environments

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 329

Bibliography
• Prusinkiewicz & Lindenmayer

The algorithmic beauty of plants, 1990, Springer – Verlag

• Prusinkiewicz et al.
L-systems and beyond, Siggraph 2003 course notes
Both available online at:
http://algorithmicbotany.org/papers/

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 330

Halting vs Mortality
• The Halting Problem (Set Halt)

– Given an arbitrary machine M and starting
configuration C, does M halt eventually when started
on C

• The Uniform Halting Problem (Set Total)
– Given an arbitrary machine M does M halt eventually

no matter what finite configuration it is started on?
• The Mortality Problem (Set Mortal)

– Given an arbitrary machine M does M halt eventually
no matter what configuration (finite or infinite) it is
started on?

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 331

Finite vs Infinite?

• Consider the machine that computes
x+1, given input x, leaving its input
unaltered.

• Unary notation. Copy x 1’s. Append a 1.
– On finite input x, machine eventually halts
– But, given a tape with an infinite number of

1’s, this never stops.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 332

Turing Machine Real-Time Set
• CTime = RT = { M | ∃K [M halts in at most K steps

independent of its starting configuration] }
• RT cannot be shown undecidable by Rice’s Theorem

as it breaks property 2
– Choose M1 and M2 to each Standard Turing Compute (STC)

ZERO
– M1 is R (move right to end on a zero)
– M2 is L R R (time is dependent on argument)
– M1 is in RT; M2 is not in RT but they have same I/O behavior, so

RT does not adhere to property 2

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 333

Analyzing with Quantifiers
• CTime = RT = { M | ∃K ∀C [STP(C, M, K)] }
• This would appear to imply that RT is not even re.

However, a TM that only runs for K steps can only
scan at most K distinct tape symbols. Thus, if we
use unary notation, RT can be expressed

• CTime = RT = { M | ∃K ∀C|C|≤K [STP(C, M, K)] }
• We can dovetail over the set of all TMs, M, and all K,

listing those M that halt in constant time.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 334

Immortality Problem

• The immortality problem for Turing
machines is the problem to determine
of an arbitrary TM, M, if there exist a
configuration (not necessarily finite)
that causes M to run forever.

• Its complement, the mortality problem
is re, non-recursive and this is the
basis of our proof.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 335

Infinite Configurations

• Consider the Turing machine
– L R R

• This is just our ZERO machine of a few
pages ago.

• On a finitely marked tape, this machine
is mortal, but on an infinitely marked
one it can be immortal.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 336

Hooper’s Result
• Theorem 3 (Hooper 1966):

Mortal is re undecidable
• Note, the seemingly related problem of

determining if a Turing machine has
any finite immortal configurations is
the complement of TOT and is not even
re.

• Unfortunately, Hoopers’ proof is quite
complex, so we’ll just accept the result.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 337

Mortal and RT
Theorem 4: The set of mortal TMs is exactly the same

as the set of TM in RT.
Proof: If M∈RT then M∈MORTAL, so RT ⊂ MORTAL.

Let M∉RT. If any finite ID does not lead to a halt, then
M∉MORTAL. Assume then that all finite IDs cause M
to halt. Let D be the set of IDs such that, if M starts
on d∈D, it will eventually scan all of d, before
scanning any other square of the tape. Let {q1,…,qm}
be the states of M. We define a forest of m trees, one
for each state, such that the jth tree has root qj. If d0,d1∈D and qj is a symbol of d0 and d1 and d1=σd0 or
d1=d0σ where σ is a tape symbol, then d0 is a parent
of d1 in the jth tree.
(Continued)

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 338

Mortal and RT (continued)
Note that when M starts in d1, the square
containing σ is scanned after every other square of
d1, but before any square not in d1. Since M is not in
RT but every finite ID causes it to halt, at least one of
the trees of the forest must be infinite. Since the
degree of each vertex is finite (bounded by the
number of tape symbols), at least one tree must
have an infinite branch. Therefore, there exists an
infinite ID that causes M to travel an infinite distance
on the tape. It follows that M∉MORTAL, and so if
M∉RT then M∉MORTAL. Hence, MORTAL ⊂ RT.

Combining the two parts, RT = MORTAL.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 339

Consequences

• We cannot decide if the set of valid
terminating traces of an arbitrary
machine M are finite.

• Put differently, we cannot decide if
there is an upper bound on the length
of any valid trace.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 340

1981, Again

• Theorem 5:
The problem to determine, for an
arbitrary context free language L, if
there exist a finite n such that Ln = Ln+1

is undecidable.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 341

L for Machine M

• L1 = { C1# C2
R $ |

C1, C2 are configurations },
• L2 = { C1#C2

R$C3#C4
R … $C2k-1#C2k

R$ |
where k ≥ 1 and, for some i, 1 ≤ i < 2k,
Ci ⇒M Ci+1 is false },

• L = L1 ∪ L2 ∪ {λ}.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 342

Finite Power Property
• L is context free.
• Any product of L1 and L2, which contains L2 at least

once, is L2. For instance, L1 • L2 = L2 • L1 = L2 • L2 =
L2.

• This shows that (L1 ∪ L2)n = L1
n ∪ L2.

• Thus, Ln = {λ} ∪ L1 ∪ L1
2 … ∪ L1

n ∪ L2.
• Analyzing L1 and L2 we see that L1

n ∩ L2 ≠ Ø just in
case there is a word C1 # C2

R $ C3 # C4
R … $ C2n-1 #

C2n
R $ in L1

n that is not also in L2.
• But then there is some valid trace of length 2n.
• L has the finite power property iff M is in RT (CTime).

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 343

Another View of Finite Power
• Create CFGs for the following

– L1 = { #C | C is a configuration of M, a FRS with Residue }
– L2 = { #C1#C2#…#Cn | ~(Ci ⇒ Ci+1), for some I }
– Consider L = (λ ∪ L1 ∪ L2)
– Now, consider L2.

• This is λ ∪ L1 ∪ L2 ∪ L1
2 ∪ L2

2 ∪ L1L2 ∪ L2L1
• But, L2

2 ∪ L1L2 ∪ L2L1 ⊂ L2
• So, L2 = L ∪ L1

2 = L ∪ { #C1#C2 | C1 ⇒ C2 }
• And, Lk = L ∪ L1

k = L ∪ { #C1#C2#…#Ck | Ci ⇒ Ci+1, 1≤i<k}

• L has the finite power property if and only if M halts
in k or fewer steps, for some finite k, independent of
its starting configuration. Thus, Finite Power for
CFLs is undecidable. Or is this a false proof????

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 344

Finite Convergence
• Theorem 6:

The problem to determine, for an
arbitrary regular language R and
context free language L, either of the
following predicates is undecidable

∃k≥0 R (k) L = R (k+1) L
∃k≥0 R [k] L = R [k+1] L

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 345

The Magic R and L
• Let L’ be any arbitrary CFL
• It is undecidable if L’ = Σ*
• We can check if λ is in L’. If not, L’ ≠ Σ*
• Let L = (L’ #)* L’ and R = Σ*
• L’ = Σ* iff R (0) L = R (1) L

iff ∃k≥0 R (k) L = R (k+1) L
• L’ = Σ* iff R [0] L = R [1] L

iff ∃k≥0 R [k] L = R [k+1] L

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 346

References
• V. D. Blondel, O. Bournez, P. Koiran, C. H. Papadimitriou, and J. N.

Tsitsiklis, Deciding stability and mortality of piecewise affine
dynamical systems, Theoretical Computer Science 255(1-2) (2001) 687-
696.

• M. Daley, L. Kari, G. Gloor and R. Siromoney, Circular contextual
insertions/deletions with applications to biomolecular computation,
String Processing and Information Retrieval Symposium / International
Workshop on Groupware, Cancun, Mexico (1999) 47-54

• P. K. Hooper, The undecidability of the Turing machine immortality
problem, Journal of Symbolic Logic 31(2) (1966) 219-234.

• C. E. Hughes and S. M. Selkow, The finite power property for context-
free languages, Theoretical Computer Science 15(1) (1981) 111-114.

• M. Ito, Algebraic Theory of Automata and Languages, World Scientific
Publishing Co. Pte. Ltd., Singapore, 2004.

• L. Kari, On insertion and deletion in formal languages, Ph.D. Thesis,
University of Turku, Finland, 1991.

Propositional Calculus

Axiomatizable Fragments

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 348

Propositional Calculus

• Mathematical of unquantified logical
expressions

• Essentially Boolean algebra
• Goal is to reason about propositions
• Often interested in determining

– Is a well-formed formula (wff) a tautology?
– Is a wff refutable (unsatisfiable)?
– Is a wff satisfiable? (classic NP-complete)

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 349

Tautology and Satisfiability

• The classic approaches are:
– Truth Table
– Axiomatic System (axioms and inferences)

• Truth Table
– Clearly exponential in number of variables

• Axiomatic Systems Rules of Inference
– Substitution and Modus Ponens
– Resolution / Unification

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 350

Proving Consequences
• Start with a set of axioms (all

tautologies)
• Using substitution and MP

(P, P ⊃Q ⇒ Q)
derive consequences of axioms (also
tautologies, but just a fragment of all)

• Can create complete sets of axioms
• Need 3 variables for associativity, e.g.,

(p1 ∨ p2) ∨ p3 ⊃ p1 ∨ (p2 ∨ p3)

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 351

Some Undecidables

• Given a set of axioms,
– Is this set complete?
– Given a tautology T, is T a consequent?

• The above are even undecidable with
one axiom and with only 2 variables. I
will show this result shortly.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 352

Refutation

• If we wish to prove that some wff, F, is
a tautology, we could negate it and try
to prove that the new formula is
refutable (cannot be satisfied; contains
a logical contradiction).

• This is often done using resolution.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 353

Resolution
• Put formula in Conjunctive Normal

Form (CNF)
• If have terms of conjunction

(P ∨ Q), (R ∨ ~Q)
then can determine that (P ∨ R)

• If we ever get a null conclusion, we
have refuted the proposition

• Resolution is not complete for
derivation, but it is for refutation

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 354

Axioms

• Must be tautologies
• Can be incomplete
• Might have limitations on them and on

WFFs, e.g.,
– Just implication
– Only n variables
– Single axiom

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 355

Simulating Machines

• Linear representations require
associativity, unless all operations can
be performed on prefix only (or suffix
only)

• Prefix and suffix based operations are
single stacks and limit us to CFLs

• Can simulate Post normal Forms with
just 3 variables.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 356

Diadic PIPC

• Diadic limits us to two variables
• PIPC means Partial Implicational

Propositional Calculus, and limits us to
implication as only connective

• Partial just means we get a fragment
• Problems

– Is fragment complete?
– Can F be derived by substitution and MP?

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 357

Living without Associativity

• Consider a two-stack model of a TM
• Could somehow use one variable for

left stack and other for right
• Must find a way to encode a sequence

as a composition of forms – that’s the
key to this simulation

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 358

Composition Encoding

• Consider (p ⊃ p), (p ⊃ (p ⊃ p)),
(p ⊃ (p ⊃ (p ⊃ p))), …
– No form is a substitution instance of any of the

other, so they can’t be confused
– All are tautologies

• Consider ((X ⊃ Y) ⊃ Y)
– This is just X ∨ Y

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 359

Encoding
• Use (p ⊃ p) as form of bottom of stack
• Use (p ⊃ (p ⊃ p)) as form for letter 0
• Use (p ⊃ (p ⊃ (p ⊃ p))) as form for 1
• Etc.
• String 01 (reading top to bottom of stack) is

– (((p ⊃ p) ⊃ ((p ⊃ p) ⊃ ((p ⊃ p) ⊃ (p ⊃ p)))) ⊃
(((p ⊃ p) ⊃ ((p ⊃ p) ⊃ ((p ⊃ p) ⊃ (p ⊃ p)))) ⊃
((p ⊃ p) ⊃ ((p ⊃ p) ⊃ ((p ⊃ p) ⊃ (p ⊃ p))))))

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 360

Encodings

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 361

Creating Terminal IDs

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 362

Reversing Print and Left

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 363

Reversing Right

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 364

The Rest of the Story

• It’s in the paper
• Result is that word decision problem

for membership in the theorems of a
diadic pipc is undecidable

First Order Predicate
Calculus

Undecidability and Reduction
Classes

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 366

First Order Primitive Symbols
• Universe of discourse: U
• Variables: x, x1, x2, …, y, y1, y2, …, etc. over U
• Functions: f, f1, …, g, g1, …, etc. from Un to U, where n is the

arity of the given function
• A set of constants denoted a, a1, …, etc. These can be viewed

as 0-ary functions.
• Predicates: P, P1, …, etc. from Un to {T,F}.
• The logical constants T and F. These can be viewed as 0–ary

predicates.
• Boolean operators:

∧ (and), ∨ (or), ¬ (not), ⊃ (implies), ≡ (equivalence)
• Quantifiers over elements of U: ∃ (there exists), ∀ (for all)
• Braces ([,]) to disambiguate bindings
• If we wish, we can also add equality to obtain a first order logic

with equality

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 367

First Order Terms
• Any constant is a term (with no free

variables).
• Any variable is a term (whose only free

variable is itself).
• Any expression f(t1,...,tn) of n≥1 arguments

(where each argument ti is a term and f is a
function symbol of arity n) is a term. Its free
variables are the free variables of any of the
terms ti.

• Nothing else is a term.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 368

Well-Formed Formulas (WFFs)
• If P is a relation of valence n ≥ 1 and the ti are terms then P(t1,...,tn)

is well-formed. Its free variables are the free variables of any of the
terms ti. All such formulas are said to be atomic.

• If φ is a wff, then ¬φ is a wff. Its free variables are the free variables
of φ.

• If φ and ψ are wffs, then [φ ∧ ψ], [φ ∨ ψ], [φ ⊃ ψ], [φ ≡ ψ] are wffs. Its
free variables are the free variables of φ or ψ.

• If φ is a wff, then ∀x[φ] and ∃x[φ] are wffs (and similarly for any
other variable in place of x). Its free variables are the free variables
of φ or ψ other than x. Any instance of x (or other variable replacing
x in this construction) is said to be bound — not free — in ∀x[φ] and
∃x[φ].

• Nothing else is a wff.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 369

Substitution
• If t is a term and φ(x) is a formula possibly containing x as a

free variable, then φ(t) is defined to be the result of replacing all
free instances of x by t, provided that no free variable of t
becomes bound in this process.

• If some free variable of t becomes bound, then to substitute t
for x it is first necessary to change the names of bound
variables of φ to something other than the free variables of t.
To see why this condition is necessary, consider the formula
φ(x) given by ∀y y≤x ("x is maximal"). If t is a term without y as
a free variable, then φ(t) just means t is maximal. However if t is
y the formula φ(y) is ∀y y≤y which does not say that y is
maximal. The problem is that the free variable y of t (=y)
became bound when we substituted y for x in φ(x). So to form
φ(y) we must first change the bound variable y of φ to
something else, say z, so that φ(y) is then ∀z z≤y. Forgetting
this condition is a notorious cause of errors.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 370

Inference (Deduction)
• We can denote deduction by the symbol ├
├ φ means that φ can be proven with no axioms
(pre-suppositions)
π├ φ means φ can be proven assuming π
π├ φ is equivalent to ├ π ⊃ φ

• Modus Ponens
If φ and φ ⊃ ψ are proved, then one can deduce ψ.

• Universal Generalization
If φ(x) is proved then one can deduce ∀x[φ(x)]

• Universal Instantiation
If ∀x[φ(x)] is proved then one can deduce φ(t) where
all free occurrences of variable x are replaced by the
term t. Of course, we can make t = x, and just remove
the universal quantifier.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 371

First Order Theories

• A first-order theory consists of a finite
set of axioms and the statements
deducible from them.

• In general, it not decidable if a given
proposition is deducible within an
arbitrary first-order theory. That was
proven by Gödel in his famous
incompleteness theorem.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 372

Restricted Forms

• Prenex:
Starts with all quantifiers followed by a
quantifier free part, called the matrix

• Conjunctive Normal Form (CNF):
Conjunction (ands) of disjuncts (ors)
The terms in each disjunct are
predicates and negations of predicates

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 373

Reduction Classes
• A Reduction Class is a restricted set of wff,

R, such that there exists a total recursive
procedure, f, that maps an arbitrary first
order wff, w, to a wff, f(w), in R, such that ├ w
iff ├ f(w).

• I will give you a paper that shows that the set
of prenex formulas with two universals and
no existentials, and in conjunctive normal
form with just two variables, x and y, one
binary function, f, and one unary predicate,
T, is a reduction class.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 374

Sketch of Proof
• We first encode variables p1 and p2 as

variables x and y.
• We then encode b ⊃ c as f (b, c)
• We then declare that a formula, P, is a

theorem by stating T(P)
• A1 is the first axiom. For examples, if axiom

A1 is ((p1 ⊃p2) ⊃p2) ⊃ ((p2 ⊃p1) ⊃p1) then we
encode this as A1*=T(f(f(f(x,y),y),f(f(y,x),x)))

• We encode the entire system as D as
A1*&…&An*&∀x∀y [T(x) & T(f(x,y)) ⊃ T(y)]

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 375

General Idea

• Get axioms easily from A1*&…&An*
• Get substitution based on rules from

first order such as universal
generalization and instantiation

• Get MP from the last part
∀x∀y [T(x) & T(f(x,y)) ⊃ T(y)]
which in effect mirrors propositional
MP using f as a substitute for implies

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 376

Inductive Steps

• k=1: This can only be an axiom. We can
clearly deduce Ai* from D.

• k>1:
– if axiom, no problem;
– if substitution of already proved theorem, then

do some instantiation and generalization (see
paper for details)

– If MP, also see paper, but it’s really easy; you
just must be precise

Final Exam Topics

Exclusions as well as Inclusions
Material is from 111 on.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 378

Exclusions

• No explicit Turing Machines to write
• No explicit FRSs to write
• No explicit Register Machines to write
• No Rice-Shapiro (but Rice is definitely

in)
• No explicit S-m-n, recursion or fixed

point theorems

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 379

Inclusions (Guarantees)
• Repeat of material from Exam#2
• A question about quantification
• A question about Real-Time and/or Finite Power Property
• Closure of recursive/re sets
• A question about K and/or K0
• Various re and recursive equivalent definitions
• A reduction or two; a proof by diagonalization
• Use of STP/VALUE
• A question about some simple concepts associated with

propositional logic
• A question about monoids, Post Normal Systems and/or Semi-

Thue Systems
• More on next page

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 380

Guarantees – More
• Application of Rice’s Theorem
• Many-one reduction
• Some CFG that you must write
• Closure question(s)
• Decision problems for languages
• Trace related question
• PCP related question
• Term rewriting question
• L-system question

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 381

Sample#1
1. For each of the following sets, write a set

description that involves the use of a minimum
sequence of alternating quantifiers in front of a
totally computable predicate (typically formed from
STP and/or VALUE). Choosing from among (REC)
recursive, (RE) re non-recursive, (CO-RE)
complement of re non-recursive, (HU) non-re/non-
co-re, categorize each of the sets based on the
quantified predicate you just wrote. No proofs are
required.
a.)S = { f | f(x) ↑ for all x }
b.)A = { <f,x> | f(x) = 0 }

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 382

Sample#2
2.Let set A be recursive, B be re non-

recursive and C be non-re. Choosing
from among (REC) recursive, (RE) re
non-recursive, (NR) non-re, categorize
each of the sets in a) through b) by
listing all possible categories. Briefly,
but convincingly, justify each answer.
a.) A * B = { x*y | x ∈ A and y ∈ B }
b.) B ∩ C = { x | x ∈ B and x ∈ C }

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 383

Sample#3

3.Let S be an arbitrary set.

Show that S is infinite recursive if and
only if it can be enumerated by a
monotonically increasing function fS.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 384

Sample#4

4.Prove that the Halting Problem
(the set K0) is not decidable within any
formal model of computation.

(Hint: A diagonalization proof is
required.)

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 385

Sample#5

5.Consider the set of indices
UNDEFINED = { f |∀<x,t> [~STP(x, f, t)]}.
Use Rice’s Theorem to show that
UNDEFINED is not recursive. Hint:
There are two properties that must be
demonstrated.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 386

Sample#6

6.Show that ~K0 ≤m UNDEFINED, where
~K0 = { <f ,x> | ϕf(x)↑=∀t [~STP(x, f, t)] }.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 387

Sample Question#7

7. Present a Context-Free Grammar, G,
such that L(G) = { aibjck | i<k or j<k }.

What is max(L(G))?

What is min(L(G))?

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 388

Sample Question#8

8. Assuming the undecidability of PCP,
show that the ambiguity problem for
Context-Free Grammars is
undecidable.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 389

Sample Question#9
9. Prove that if L is a Context-Free Language

then so is Mid(L) = { y | ∃ x,z [xyz ∈ L] }.
You may assume that CFLs are closed
under substitution, homomorphism,
concatenation, and intersection with
regular languages.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 390

Sample Question#10

10.Let R be regular and L1,L2 be context
free. What can you say about the
complexity of the languages S?

a) S = L1/R
b) S = L1/L2
c) S = L1∪R
d) S = L1∩L2
e) S, where S⊂R

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 391

Sample Question#11

11.Present an outline of the proof that
the CSL’s are not closed under
homomorphism. You may assume
that the phrase structured grammars
can produce non-CSL languages.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 392

Sample Question#12

12.Why are traces of computation hard
(non-CFLs) but the complements of
traces are easy (CFLs)?

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 393

Sample Question#13

13.Categorize the language L as to
whether it is a CFL or not. If it is a
CFL, show a grammar; if not use the
Pumping Lemma to prove this.
L ={ aibjck | k≥i and k≥j }

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 394

Sample#14
14. Choosing from among (D) decidable, (U)

undecidable, (?) unknown, categorize the
problem “L is infinite?” for each of the
following classes of languages. In each case,
justify your answer. You need not provide a
proof, but your justification should
demonstrate you could do so.
L is Regular:
L is Context Free:
L is Context Sensitive:
L is Recursively Enumerable:

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 395

Sample#15
15. Define each of the following:

Satisfiability of a proposition
Immortality Problem for Turing
Machines

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 396

Sample#16
16. Differentiate Chomsky grammars

from Lindenmayer Systems by
providing two ways in which they
operate differently.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 397

Extra Promises

• I will create a term rewriting system and
an expression that you must rewrite in
accordance with the system’s rules.

• I will create an L-System with an axiom
and have you apply the axiom and a
second generation. The answer may be
in the form of a graphical drawing
based on F, + and - operations.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 398

Fibonacci Numbers
If we define the following simple Lindenmayer system (grammar):

non-terminals : A B
constants : none
ω (start symbol) : A
rules : (A → B), (B → AB)

then this L-system produces the following sequence of strings:
n=0 : A
n=1 : B
n=2 :
n=3 :
n=4 :
n=5 :
n=6 :
n=7 :

What is the relation of these strings to Fibonacci numbers?

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 399

Variant of Koch Curve
A variant of the Koch curve which uses only right-angles.

non-terminals : F
constants : + −
start : F
rules : (F → F+F−F−F+F)

Here, F means "draw forward", + means "turn left 90°", and −
means "turn right 90°“. Write the strings and draw the images
associated with the following numbers of iterations. I did n=0.
n=0:

F −
n=1:

n=2:

Recursion Theorem

Self Reproducibility

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 401

Simple Form

Theorem: There is an index e, such that
∀x φe(x) = e

• This means that we have a function that
always produces its own description
(index) no matter what input you give it.

• People used to have fun trying to find
the smallest self-reproducing Lisp
program or Turing machine.

Fixed Point Theorem

A property of all indexing
schemes

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 403

The Fixed Point Theorem

Theorem: Let f(z) be any computable
function. Then there is an index e such
that
∀x φf(e)(x) = φe(x)

• There are many forms of computation
that seek a fixed point. Correctness
proofs are often of this sort.

Classifying Unsolvable
Problems

Rice-Shapiro Theorem
Minimum Quantification

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 405

Rice-Shapiro Theorem

• Properties of a set of indices P that are
required if P is re:
– If L is in (has property) P and L ⊆ L’, for some

re set L’, then L’ is in P.
– If L is an infinite set in P, then there is some

finite subset L’ of L that is in P.
– The set of finite languages in P is

enumerable.

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 406

Using Extended Rice
• Violate Condition # 1

– L = ∅
– L is recursive
– L is a singleton set
– L is a regular set

• Violates Condition # 2
– L = Σ*

• Violates Condition # 3
– L – Lu ≠ ∅

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 407

RE Sets

• L ≠ ∅

• L contains at least 3 numbers

• W is in L, for a fixed W

• L ∩ Lu ≠ ∅

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 408

Minimum Quantification

• Recursive: unquantified total predicate
• RE: existentially quantified
• ~ RE: universally quantified
• Recursive: Can express as RE & ~RE
• TOT: universal/existential
• ~TOT: existential/universal

	Formal Languages and Automata Theory
	Who, What, Where and When
	Text Material
	Expectations
	Goals of Course
	Expected Outcomes
	Being Prepared
	Keeping Up
	Rules to Abide By
	Grading
	Important Dates
	Evaluation (tentative)
	What You Should Know
	Regular Sets # 1
	Regular Sets # 2
	Regular Sets # 3
	Context Free # 1
	Context Free # 2
	Context Free # 3
	Assignment # 1
	Computability
	History
	Hilbert, Russell and Whitehead
	Hilbert
	Hilbert’s Belief
	Gödel
	Turing (Post, Church, Kleene)
	More on Emil Post
	Basic Definitions
	Effective Procedure
	Algorithm
	Sets, Problems & Predicates
	How They relate
	Categorizing Problems (Sets) # 1
	Categorizing Problems (Sets) # 2
	Immediate Implications
	Goals of Computability (Again)
	Existence of Undecidables
	The Need for Divergence
	Bounded Iteration
	Hilbert’s Tenth
	Hilbert’s 10th is Semi-Decidable
	P(x) = 0 is Decidable
	P(x) = 0 is Decidable
	Models of Computation
	S-Programs
	S-Program Concept
	S Program Basic parts
	Primitive S Commands
	Useful Macros # 1
	Useful Macros # 2
	Useful Macros # 3
	Addition by S Program
	Subtraction
	Limited Subtraction
	Alternative Version
	Register Machines
	Register Machine Concepts
	Computing by Register Machines
	Register Instructions
	Addition by RM
	Limited Subtraction by RM
	Factor Replacement Systems
	Factor Replacement Concepts
	Addition by FRS
	Limited Subtraction by FRS
	Ordering of Rules
	Why Deterministic?
	More on Determinism
	Systems Related to FRS
	Petri Net Operation
	Petri Net Computation
	Variants of Petri Nets
	Petri Net Example
	Vector Addition
	Vectors as Resource Models
	Factors with Residues
	Abelian Semi-Group
	Finitely Presented
	Assignment # 2
	Recursive Functions
	Primitive Recursive
	Basis of PRFs
	Building New Functions
	Addition & Multiplication
	Basic Arithmetic
	2nd Grade Arithmetic
	Basic Relations
	Basic Boolean Operations
	Definition by Cases
	Bounded Minimization 1
	Bounded Minimization 2
	Intermediate Arithmetic
	Primality
	Exponents
	Pairing Functions
	Assignment # 3
	m Recursive
	m Recursive Concepts
	Ackermann’s Function
	Union/Find
	The  Operator
	Turing Machines
	Basic Description
	Base Machines
	Useful Composite Machines
	Commentary on Machines
	Computing with TMs
	Addition by TM
	Turing Machine Variations
	Computational Complexity
	P = Polynomial Time
	NP = Non-Det. Poly Time
	NP-Complete; NP-Hard
	SAT
	Simulating ND TM
	Cook’s Theorem
	Equivalence of Models
	S-Machine  REGISTER
	S Program ≤ Reg. Machine
	Reg. Machine ≤ S Program
	Proving Equivalence
	Instantaneous Descriptions
	id Definitions
	Equivalence Steps
	Completion of S-P ≤ RM
	Completion of RM ≤ S-P
	All Models are Equivalent
	Our Plan of Attack
	TURING ≤ REGISTER
	Encoding a TM’s State
	More on Encoding of TM
	Simulation by RM
	Fixups
	Prolog
	Epilog
	REGISTER  FACTOR
	Encoding a RM’s State
	Simulation by FRS
	Importance of Order
	Example of Order
	Subtraction Encoding
	Analysis of Problem
	FACTOR  RECURSIVE
	Universal Machine
	Encoding FRS
	Simulation by Recursive # 1
	Simulation by Recursive # 2
	Simulation by Recursive # 3
	Simplicity of Universal
	RECURSIVE  TURING
	Standard Turing Computation
	More Helpers
	Basic Functions
	Closure Under Composition
	Closure Under Minimization
	Assignment # 4
	Consequences of Equivalence
	Undecidability
	Undecidability Precursor
	Halting Problem
	The Contradiction
	Additional Notations
	Universal Machine
	Universal Machine Mapping
	SNAP and TERM
	STP Predicate
	Recursively Enumerable
	Definition of re
	Semi-Decidable Implies re
	re Implies Semi-Decidable
	Domain of a Procedure
	Recursive Implies re
	Related Results
	Enumeration Theorem
	The Set K
	K is not Recursive
	re Characterizations
	S-m-n Theorem
	Parameter (S-m-n) Theorem
	S-m-n for FRS
	Details of S-m-n for FRS
	Quantification#1
	Quantification#2
	Diagonalization and Reducibility
	Non-re Problems
	The Contradiction
	The Set TOT
	Quantification#3
	Reduction Concepts
	Reduction Example
	Classic Undecidable Sets
	Lne is re
	Lne is Non-Recursive
	Lne is re by Quantification
	Le is not re
	Exam#1 Review
	Sample Question#1
	Sample Question#2
	Sample Question#3
	Sample Question#4
	Sample Question#5
	Sample Question#6
	Sample Question#7
	Sample Question#8
	Sample Question#9
	Sample Question#10
	Reduction and Equivalence
	Many-One Reduction
	Many-One Degrees
	One-One Reduction
	One-One Degrees
	Turing (Oracle) Reduction
	Turing Degrees
	Complete re Sets
	The Set Halt = K0 = Lu
	The Set K
	Reduction and Rice’s
	Two Interesting Sets
	Lr is Non-RE
	Lr Picture Proof
	Lnr is Non-re
	Either Trivial or Undecidable
	Rice’s Theorem
	Rice’s Picture Proof
	Corollaries to Rice’s
	Assignment # 5
	Canonical Processes, �Groups and Grammars
	Semi-Groups, Monoids, Groups
	Finitely Presented
	Finitely Presented Monoids
	Abelian Monoids
	Thue Systems
	Semi-Thue Systems
	Word Problems
	Post Canonical Systems
	Examples of Canonical Forms
	Simplified Canonical Forms
	Examples of Post Systems
	Simulating Turing Machines
	Details of Halt(TM)  Word(ST)
	Semi-Thue Word Problem
	Assignment # 6
	Formal Language Review
	Closure Properties
	Non-Closure
	Grammars and re Sets
	Formal Language
	Post Correspondence Problem
	PCP Example#2
	How PCP Construction Works?
	Ambiguity of CFG
	Intersection of CFLs
	CSG Produces Something
	Assignment # 7
	Traces (Valid Computations)
	Traces of FRS
	Intersection of CFLs
	Intersection Continued
	Quotients of CFLs
	Finish Quotient
	Traces and Type 0
	CSG and Undecidability
	Some Consequences
	Summary of Grammar Results
	Decidability
	Undecidability
	More Undecidability
	Word to Grammar Problem
	Consequences for Grammar
	Turing Machine Traces
	What’s Context Free?
	What’s Undecidable?
	L = *?
	Undecidability of Finite Convergence for Operators on Formal Languages
	Simple Operators
	K-insertion
	Iterated Insertion
	Shuffle
	More Shuffles
	Crossover
	Who Cares?
	Some Known Results
	More Known Stuff
	Immediate Convergence
	Finite Convergence
	Finite Power of CFG
	1981 Results
	Proof #1
	Subsuming 
	L = L  L ?
	Proof #2
	Exam#2 Review
	Material
	Sample Question#1
	Sample Question#2
	Sample Question#3
	Sample Question#4
	Sample Exam#2 Q1
	Sample Exam#2 Q2
	Sample Exam#2 Q3
	Sample Exam#2 Q4
	Sample Exam#2 Q5
	Sample Exam#2 Q6a,b
	Sample Exam#2 Q6c
	Term Rewriting
	Types of Rewriting
	Term Rewriting Systems
	TRS (Ackerman’s Function)
	Process
	Sort by Rewriting
	Example Sort
	Simplification
	Differentiation
	Canonical Systems
	Lindenmayer systems
	Aristid Lindenmayer �(biologist and botanist)
	What are L-systems?
	The first L-system?
	Turtle Interpretation
	Koch island
	Branching structures
	L-Systems for trees
	Interpretation
	Generations of a Single Tree
	Tree LOD
	Environment-sensitive
	The creation of urban environments
	Bibliography
	Halting vs Mortality
	Finite vs Infinite?
	Turing Machine Real-Time Set
	Analyzing with Quantifiers
	Immortality Problem
	Infinite Configurations
	Hooper’s Result
	Mortal and RT
	Mortal and RT (continued)
	Consequences
	1981, Again
	L for Machine M
	Finite Power Property
	Another View of Finite Power
	Finite Convergence
	The Magic R and L
	References
	Propositional Calculus
	Propositional Calculus
	Tautology and Satisfiability
	Proving Consequences
	Some Undecidables
	Refutation
	Resolution
	Axioms
	Simulating Machines
	Diadic PIPC
	Living without Associativity
	Composition Encoding
	Encoding
	Encodings
	Creating Terminal IDs
	Reversing Print and Left
	Reversing Right
	The Rest of the Story
	First Order Predicate Calculus
	First Order Primitive Symbols
	First Order Terms
	Well-Formed Formulas (WFFs)
	Substitution
	Inference (Deduction)
	First Order Theories
	Restricted Forms
	Reduction Classes
	Sketch of Proof
	General Idea
	Inductive Steps
	Final Exam Topics
	Exclusions
	Inclusions (Guarantees)
	Guarantees – More
	Sample#1
	Sample#2
	Sample#3
	Sample#4
	Sample#5
	Sample#6
	Sample Question#7
	Sample Question#8
	Sample Question#9
	Sample Question	#10
	Sample Question#11
	Sample Question#12
	Sample Question#13
	Sample#14
	Sample#15
	Sample#16
	Extra Promises
	Fibonacci Numbers
	Variant of Koch Curve
	Recursion Theorem
	Simple Form
	Fixed Point Theorem
	The Fixed Point Theorem
	Classifying Unsolvable Problems
	Rice-Shapiro Theorem
	Using Extended Rice
	RE Sets
	Minimum Quantification

