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Who, What, Where and When
• Instructor: Charles Hughes; 

Harris Engineering 439C; 823-2762; 
ceh@cs.ucf.edu

• Web Page: http://www.cs.ucf.edu/courses/cot5310/

• Meetings: MW 7:30PM-8:45PM, HEC-103; 
29 periods, each 75 minutes long.  
Office Hours: MW 5:00PM-6:15PM

• GTA: Greg Tener
Office Hours: TR 6:30PM-7:30PM  
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Text Material
• This and other material linked from web site. 

I will occasionally use Dr. Tiplea’s notes from 
Fall 2005, as well as mine.

• References: 
– Davis, Sigal and Weyuker, Computability, 

Complexity and Languages 2nd Ed., Academic 
Press (Morgan Kaufmann), 1994.

– Hopcroft, Motwani and Ullman, Introduction to 
Automata Theory, Languages and Computation
2nd Ed., Addison-Wesley, 2001.
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Expectations
• Prerequisites: COP 4020 (Covers parsing and some 

semantic models); COT 4210 (covers regular and 
context free languages)

• Assignments: Seven (7) or so. At least one (the review 
on prerequisite formal languages and automata) will be 
extensive. 

• Exams: Two (2) midterms and a final. 
• Material: I will draw heavily from Davis, Chapters 2-4, 

parts of 5, 6-8 and 11. Some material will also come 
from Hopcroft. Class notes and in-class discussions are, 
however, comprehensive and cover models and 
undecidable problems that are not addressed in either of 
these texts.
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Goals of Course
• Provide characterizations (computational models) of 

the class of effective procedures / algorithms. 
• Study the boundaries between complete (or so it 

seems) and incomplete models of computation. 
• Study the properties of classes of solvable and 

unsolvable problems. 
• Solve or prove unsolvable open problems. 
• Determine reducibility and equivalence relations 

among unsolvable problems. 
• Apply results to various other areas of CS. 
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Expected Outcomes
• By the time this course ends, I expect you to have a 

solid understanding of models of computation, the 
limits that are imposed by the very nature of 
computation, and the ubiquity of unsolvable 
problems throughout CS. 

• I also hope that you come away with stronger formal 
proof skills and a better appreciation of the 
importance of discrete mathematics to all aspects of 
CS. 

• I do not expect to turn you into recursive function 
theorists. That's a long journey, of which this course 
represents only the first few steps. 
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Being Prepared
• Prerequisites are COT 4210 and COP 4020. 
• While I understand that some of you may not have the same 

material in your background as covered here, I do expect you 
to become familiar with the material in these courses. 

• I will not spend time on the basics of formal languages, 
automata theory, or parsing. 

• I will, however, approach the course material starting with 
computation theory, rather than the applications of theory to 
formal languages. You will have about six weeks to get on top 
of these topics before they become critical to your 
understanding of COT 5310. 

• Use this time wisely to review or learn the prerequisite topics.
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Keeping Up
• I expect you to visit the course web site regularly 

(preferably daily) to see if changes have been made 
or material has been added. 

• Attendance is preferred, although I do not take role. 
• I do, however, ask lots of questions in class and give 

lots of hints about the kinds of questions I will ask 
on exams. It would be a shame to miss the hints, or 
to fail to impress me with your insightful in-class 
answers.

• You are responsible for all material covered in class, 
whether in the text or not.
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Rules to Abide By
• Do Your Own Work

– When you turn in an assignment, you are implicitly telling me 
that these are the fruits of your labor. Do not copy anyone else's 
homework or let anyone else copy yours. In contrast, working 
together to understand lecture material and problems not posed 
as assignments is encouraged.

• Late Assignments
– I will accept no late assignments, except under very unusual 

conditions, and those exceptions must be arranged with me or 
GTA in advance unless associated with some tragic event.

• Exams
– No communication during exams, except with me or a 

designated proctor, will be tolerated. A single offense will lead to 
termination of your participation in the class, and the assignment 
of a failing grade.
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Grading
• Grading of Assignments

– My GTA and I will grade harder than our actual 
expectations run. Consequently, a grade of 90% or 
above will translate into a perfect grade. In general, I 
will award everyone 10% over the grade they are 
assigned on the returned papers.

• Exam Weights
– The weights of exams will be adjusted to your 

personal benefits, as I weigh exams you do well in 
more than those in which you do less well.
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Important Dates

• Exam#1 – Mon., October 1
• Withdraw Deadline – Fri., October 12
• Exam#2 – Wed., November 7
• Final – Wed., Dec. 5, 7:00PM – 9:50PM 
• Holidays

– Labor Day – September 3
– Veterans Day – November 12
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Evaluation (tentative)
• Mid Terms – 100 points each
• Final Exam – 150 points 
• Assignments – 100 points
• Bonus – best exam weighed +50 points
• Total Available: 500 
• Grading will be A >= 90%, B+ >= 87%, 

B >= 80%, C+ >= 77%, C >= 70%, 
D >= 50%, F < 50%
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What You Should Know

• Proof Techniques
• Regular Sets
• Context Free Languages
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Regular Sets # 1
• Regular expressions: Definition and associated 

languages. 
• Finite state automata. Associating FSAs with REs. 
• Associating REs with FSAs. Proof using Rijk sets. 
• Moore and Mealy models: Automata with output. 

Basic equivalence. 
• Non-determinism: Its use. Conversion to 

deterministic FSAs. Formal proof of equivalence. 
• Lambda moves: Lambda closure of a state. 

Equivalence to non-determinism. 
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Regular Sets # 2
• Regular equations: REs and FSAs.
• Myhill-Nerode Theorem: Right invariant 

equivalence relations. Specific relation for a 
language L. Proof and applications.

• Minimization: Why it's unique. Process of 
minimization. Analysis of cost of different 
approaches. 

• Regular (right linear) grammars, regular 
languages and their equivalence to FSA 
languages. 
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Regular Sets # 3
• Pumping Lemmas: Proof and applications. 
• Closure properties: Union, concat, *, 

complement, reversal, intersection, set 
difference, substitution, homomorphism and 
inverse homomorphism, INIT, LAST, MID, 
EXTERIOR, quotient (with regular set, with 
arbitrary set). 

• Algorithms for reachable states and states 
that can reach a point. 

• Decision properties: Emptiness, finiteness, 
equivalence.
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Context Free # 1
• Leftmost versus rightmost derivations. 
• Parse trees, A-trees. Definition of a parse tree and 

proof that A =>* X iff there exists an A-tree with X as 
its yield. 

• Ambiguity and leftmost (rightmost) derivations. 
• Pushdown automata; various notions of acceptance 

and their equivalences 
• Push down languages and their equivalence to 

CFLs. 
• Parsing Techniques: LL (top down) and LR (bottom 

up) parsers 
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Context Free # 2
• Reduced grammars.
• Keep non-terminal A iff A =>* w for some 

terminal string w. 
• Keep symbol X iff S =>* WXY for some 

strings W and Y. 
• Lamba rule removal. 
• Chain (unit) rule removal. 
• Chomsky Normal Form. 
• Left recursion removal. 
• Greibach Normal Form. 



Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 19

Context Free # 3

• Pumping Lemmas for CFLs. 
• Closure of CFLs: Union, concat, *, 

reversal, substitution, homomorphism 
and inverse homomorphism, INIT, 
LAST, MID, EXTERIOR, quotient with 
regular. 

• Decision algorithms: Empty, finite, 
infinite; CKY for membership.
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Assignment # 1

Assignment #1
Take Home Review 
This is a review of COT 4210 material. 
It serves as a wake up call if you are 
not familiar with the material and as a 
gauge for me. 

Due: October 15



Computability
The study of what can/cannot 
be done via purely mechanical 

means



History

The Quest for Mechanizing 
Mathematics
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Hilbert, Russell and Whitehead

• Late 1800’s to early 1900’s
• Axiomatic schemes

– Axioms plus sound rules of inference
– Much of focus on number theory

• First Order Predicate Calculus
– ∀x∃y [y > x]

• Second Order (Peano’s Axiom)
– ∀P [[P(0) && ∀x[P(x) ⇒P(x+1)]] ⇒ ∀xP(x)]
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Hilbert
• In 1900 declared there were 23 really 

important problems in mathematics.
• Belief was that the solutions of these would 

help address math’s complexity.
• Hilbert’s Tenth asks for an algorithm to find 

the integral zeros of polynomial equations 
with integral coefficients. This is now known 
to be impossible (In 1972, Matiyacevic
showed undecidable; Martin Davis et al. 
contributed key ideas to showing this).
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Hilbert’s Belief

• All mathematics could be developed 
within a formal system that allowed the 
mechanical creation and checking of 
proofs. 
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Gödel
• In 1931 he showed that any first order theory 

that embeds elementary arithmetic is either 
incomplete or inconsistent.

• He did this by showing that such a first order 
theory cannot reason about itself. That is, 
there is a first order expressible proposition 
that cannot be either proved or disproved, or 
the theory is inconsistent (some proposition 
and its complement are both provable).

• Gödel also developed the general notion of 
recursive functions but made no claims 
about their strength.
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Turing (Post, Church, Kleene)
• In 1936, each presented a formalism for 

computability.
– Turing and Post devised abstract machines and claimed 

these represented all mechanically computable functions.
– Church developed the notion of lambda-computability from 

recursive functions (as previously defined by Gödel and 
Kleene) and claimed completeness for this model.

• Kleene demonstrated the computational equivalence 
of recursively defined functions to Post-Turing 
machines. 

• Church’s notation was the lambda calculus, which 
later gave birth to Lisp.
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More on Emil Post
• In the late 1930’s and the 1940’s, Post devised 

symbol manipulation systems in the form of 
rewriting rules (precursors to Chomsky’s 
grammars). He showed their equivalence to Turing 
machines.

• In the 1920’s, starting with notation developed by 
Frege and others in 1880s, Post devised the truth 
table form we all use now for Boolean expressions 
(propositional logic). This was a part of his PhD 
thesis in which he showed the axiomatic 
completeness of the propositional calculus.

• Later (1940s), Post showed the complexity 
(undecidability) of determining what is derivable 
from an arbitrary set of propositional axioms. 



Basic Definitions
The Preliminaries
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Effective Procedure
• A process whose execution is clearly specified to 

the smallest detail
• Such procedures have, among other properties, the 

following:
– Processes must be finitely describable and the language used to 

describe them must be over a finite alphabet.
– The current state of the machine model must be finitely 

presentable.
– Given the current state, the choice of actions (steps) to move to 

the next state must be easily determinable from the procedure’s 
description.

– Each action (step) of the process must be capable of being 
carried out in a finite amount of time.

– The semantics associated with each step must be clear and 
unambiguous.
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Algorithm

• An effective procedure that halts on all 
input

• The key term here is “halts on all input”
• By contrast, an effective procedure 

may halt on all, none or some of its 
input.

• The domain of an algorithm is its entire 
domain of possible inputs.
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Sets, Problems & Predicates
• Set -- A collection of atoms from some 

universe U.  Ø denotes the empty set.
• (Decision) Problem -- A set of 

questions, each of which has answer 
“yes” or “no”.

• Predicate -- A mapping from some 
universe U into the Boolean set {true, 
false}.  A predicate need not be defined 
for all values in U.
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How They relate
• Let S be an arbitrary subset of some universe U.  The 

predicate χS over U may be defined by:
χS(x) = true  if and only if  x ∈ S
χS is called the characteristic function of S.

• Let K be some arbitrary predicate defined over some 
universe U.  The problem PK associated with K is the 
problem to decide of an arbitrary member x of U, 
whether or not K(x) is true.

• Let P be an arbitrary decision problem and let U 
denote the set of questions in P (usually just the set 
over which a single variable part of the questions 
ranges).  The set SP associated with P is

{ x | x ∈ U and x has answer “yes” in P }
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Categorizing Problems (Sets) # 1

• Recursively enumerable -- A set S is 
recursively enumerable (re) if S is empty (S = 
Ø) or there exists an algorithm F, over the 
natural numbers ℵ, whose range is exactly S.  
A problem is said to be re if the set 
associated with it is re.

• Semi-Decidable -- A problem is said to be 
semi-decidable if there is an effective 
procedure F which, when applied to a 
question q in P, produces the answer “yes” if 
and only if q has answer “yes”.  F need not 
halt if q has answer “no”.
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Categorizing Problems (Sets) # 2

• Solvable or Decidable -- A problem P is said 
to be solvable (decidable) if there exists an 
algorithm F which, when applied to a 
question q in P, produces the correct answer 
(“yes” or “no”).

• Solved -- A problem P is said to solved if P is 
solvable and we have produced its solution.

• Unsolved, Unsolvable (Undecidable), Non-re, 
Not Semi-Decidable -- Complements of …
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Immediate Implications
• P enumerable iff P semi-decidable.
• P solvable iff both SP and (U — SP) are 

re (semi-decidable).
• P solved implies P solvable implies P 

semi-decidable (re).
• P non-re implies P unsolvable implies P 

unsolved.
• P finite implies P solvable.
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Goals of Computability (Again)
• Provide precise characterizations (computational 

models) of the class of effective procedures / 
algorithms.

• Study the boundaries between complete and 
incomplete models of computation.

• Study the properties of classes of solvable and 
unsolvable problems.

• Solve or prove unsolvable open problems.
• Determine reducibility and equivalence relations 

among unsolvable problems.
• Our added goal is apply these techniques and 

results across Computer Science.
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Existence of Undecidables
• A counting argument

– The number of mappings from ℵ to ℵ is at least as 
great as the number of subsets of ℵ. But the number 
of subsets of ℵ is uncountably infinite (ℵ1). However, 
the number of programs in any model of computation 
is countably infinite (ℵ0). This latter statement is a 
consequence of the fact that the descriptions must be 
finite and they must be written in a language with a 
finite alphabet. In fact, not only is the number of 
programs countable, it is also effectively enumerable; 
moreover, its membership is decidable. 

• A diagonalization argument
– Will be shown in class



The Need for Divergence

For vs While Loops
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Bounded Iteration
• Any programming language that limits 

iteration to control structures in which we 
can pre-compute a bound on the number of 
repetitions is an incomplete language.

• In other words, the possibility of divergence 
is essential to a complete model of effective 
computation.

• I will prove this in class, along with showing 
you Cantor’s proof that there are more reals
in [0,1) than there are natural numbers.



Hilbert’s Tenth

Diophantine Equations are 
Semi-decidable

One Variable Diophantine 
Equations are Solvable
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Hilbert’s 10th is Semi-Decidable

• Consider over one variable: P(x) = 0
• Can semi-decide by plugging in 

0, 1, -1, 2, -2, 3, -3, …
• This terminates and says “yes” if P(x) 

evaluates to 0, eventually. 
Unfortunately, it never terminates if 
there is no x such that P(x) =0.

• Can easily extend to P(x1,x2,..,xk) = 0.
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P(x) = 0 is Decidable

• cn xn + cn-1 xn-1 +… + c1 x + c0 = 0
• xn = -(cn-1 xn-1 + … + c1 x + c0)/cn

• |xn| ≤ cmax(|xn-1| + … + |x| + 1|)/|cn|
• |xn| ≤ cmax(n |xn-1|)/|cn|, since |x|≥1
• |x| ≤ n×cmax/|cn|
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P(x) = 0 is Decidable
• Can bound the search to values of x in range 

[± n * ( cmax / cn )], where
n = highest order exponent in polynomial
cmax = largest absolute value coefficient
cn = coefficient of highest order term 

• Once we have a search bound and we are 
dealing with a countable set, we have an 
algorithm to decide if there is an x.

• Cannot find bound when more than one 
variable, so cannot extend to P(x1,x2,..,xk) = 0.



Models of Computation

S-Programs
Register Machines

Factor Replacement Systems
Recursive Functions

Turing Machines



S-Programs

1st Model
A Familiar Feeling Number 

Manipulation Language
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S-Program Concept
• An S-program consists of a finite 

length program, each of whose 
instructions is chosen from a small 
repertoire of simple commands.

• The instructions are optionally labeled 
with symbolic tags used in branching 
commands.  Termination occurs as a 
result of an attempt to branch to a non-
existent label.
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S Program Basic parts
• Computation is limited to non-negative values. 

These are stored in a set of variables. 
• The inputs for an n-ary function are in variables X1, 

X2, … , Xn; output is in Y; and Z1, Z2, … are available 
for storing intermediate results. 

• Y and all Z-variables start with the value zero. 
• Labels are chosen from A1, B1, C1, D1, E1, A2, B2, 

C2, D2, E2, …
• Simple names X, Z, A, B, C, D and E are often used in 

place of X1, Z1, A1, B1, C1, D1 and E1, respectively.
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Primitive S Commands

• The primitive commands are (the labels 
are optional):

[A] V ← V + 1
[B] V ← V – 1
[C] V ← V
[D] IF V ≠ 0 GOTO L
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Useful Macros # 1

GOTO A
Z ← Z+1
IF Z ≠ 0 GOTO A

IF V = 0 GOTO A
IF V ≠ 0 GOTO E
GOTO A

[E]…
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Useful Macros # 2
V ← 0

[A] IF V = 0 GOTO E
V ← V-1
GOTO A

[E] …
V ← k+1 // assume we have macro for V ← k

V ← k
V ← V+1
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Useful Macros # 3
V ← U

[A] IF U = 0 GOTO B
U ← U-1
Z ← Z+1
GOTO A

[B] V ← 0
[C] IF Z = 0 GOTO E

Z ← Z-1
U ← U+1
V ← V+1
GOTO C

[E] …
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Addition by S Program
Compute V + U (args are X1, X2)

Z1 ← X1
Z2 ← X2

[A] IF Z2 = 0 GOTO B
Z1 ← Z1+1
Z2 ← Z2-1
GOTO A

[B] Y ← Z1
Z1 ← 0
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Subtraction
Compute V – U, if V≥U; ↑, otherwise (args are X1, X2)

Z1 ← X1
Z2 ← X2

[A] IF Z2 = 0 GOTO B
IF Z1 = 0 GOTO A
Z1 ← Z1-1
Z2 ← Z2-1
GOTO A

[B] Y ← Z1
Z1 ← 0
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Limited Subtraction
Compute V – U, if V≥U; 0, otherwise (args are X1, X2)

Z1 ← X1
Z2 ← X2

[A] IF Z1 = 0 GOTO B
IF Z2 = 0 GOTO C
Z1 ← Z1-1
Z2 ← Z2-1
GOTO A

[B] Z2 ← 0
[C] Y ← Z1

Z1 ← 0
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Alternative Version
Compute V – U, if V≥U; 0, otherwise (args are X1, X2)

Z1 ← X1
Z2 ← X2

[A] IF Z2 = 0 GOTO C
Z1 ← Z1-1
Z2 ← Z2-1
GOTO A

[C] Y ← Z1
Z1 ← 0



Register Machines

2nd Model
Feels Like Assembly Language
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Register Machine Concepts
• A register machine consists of a finite length 

program, each of whose instructions is chosen from 
a small repertoire of simple commands.

• The instructions are labeled from 1 to m, where there 
are m instructions.  Termination occurs as a result of 
an attempt to execute the m+1-st instruction.

• The storage medium of a register machine is a finite 
set of registers, each capable of storing an arbitrary 
natural number.

• Any given register machine has a finite, 
predetermined number of registers, independent of 
its input.
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Computing by Register Machines

• A register machine partially computing some 
n-ary function F typically starts with its 
argument values in the first n registers and 
ends with the result in the n+1-st register.

• We extend this slightly to allow the 
computation to start with values in its k+1-st 
through k+n-th register, with the result 
appearing in the k+n+1-th register, for any k, 
such that there are at least k+n+1 registers.

• Sometimes, we use the notation of finishing 
with the results in the first register, and the 
arguments appearing in 2 to n+1.
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Register Instructions
• Each instruction of a register machine is of 

one of two forms:

INCr[i] -- increment r and jump to i.

DECr[p, z] –
if register r > 0, decrement r and jump to p

else jump to z

• Note, I will not use subscripts if obvious.
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Addition by RM
Addition (r3 ← r1 + r2)
1. DEC3[1,2] : Zero result (r3) and work (r4) registers 
2. DEC4[2,3]
3. DEC1[4,6] : Add r1 to r3, saving original r1 in r4
4. INC3[5]
5. INC4[3]
6. DEC4[7,8] : Restore r1
7. INC1[6]
8. DEC2[9,11] : Add r2 to r3, saving original r2 in r4
9. INC3[10]
10. INC4[8]
11.DEC4[12,13] : Restore r2
12. INC2[11]
13. : Halt by branching here
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Limited Subtraction by RM
Subtraction (r3 ← r1 - r2, if r1≥r2; 0, otherwise)
1. DEC3[1,2] : Zero result (r3) and work (r4) registers 
2. DEC4[2,3]
3. DEC1[4,6] : Add r1 to r3, saving original r1 in r4
4. INC3[5]
5. INC4[3]
6. DEC4[7,8] : Restore r1
7. INC1[6]
8. DEC2[9,11] : Subtract r2 from r3, saving original r2 in r4
9. DEC3[10,10]   : Note that decrementing 0 does nothing
10. INC4[8]
11.DEC4[12,13] : Restore r2
12. INC2[11]
13. : Halt by branching here



Factor Replacement 
Systems

3rd Model
Deceptively Simple
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Factor Replacement Concepts
• A factor replacement system (FRS) consists of a 

finite (ordered) sequence of fractions, and some 
starting natural number x.  

• A fraction a/b is applicable to some natural number 
x, just in case x is divisible by b.  We always chose 
the first applicable fraction (a/b), multiplying it times 
x to produce a new natural number x*a/b.  The 
process is then applied to this new number.  

• Termination occurs when no fraction is applicable.  
• A factor replacement system partially computing n-

ary function F typically starts with its argument 
encoded as powers of the first n odd primes.  Thus, 
arguments x1,x2,…,xn are encoded as 3x15x2…pn

xn.  
The result then appears as the power of the prime 2.
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Addition by FRS
Addition is 3x15x2 becomes 2x1+x2 

or, in more details, 203x15x2 becomes 2x1+x2 3050

2 / 3
2 / 5

Note that these systems are sometimes presented as 
rewriting rules of the form

bx  → ax
meaning that a number that has a factored as bx can 
have the factor b replaced by an a.  
The previous rules would then be written

3x  → 2x
5x  → 2x
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Limited Subtraction by FRS
Subtraction is 3x15x2 becomes 2max(0,x1-x2) 

3⋅5x  → x
3x     → 2x
5x     → x



Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 67

Ordering of Rules
• The ordering of rules are immaterial for the 

addition example, but are critical to the 
workings of limited subtraction.

• In fact, if we ignore the order and just allow 
any applicable rule to be used we get a form 
of non-determinism that makes these 
systems equivalent to Petri nets.  

• The ordered kind are deterministic and are 
equivalent to a Petri net in which the 
transitions are prioritized.
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Why Deterministic?
To see why determinism makes a difference, consider

3⋅5x  → x
3x     → 2x
5x     → x

Starting with 135 = 3351, deterministically we get
135 ⇒ 9 ⇒ 6 ⇒ 4 = 22

Non-deterministically we get a larger, less selective set.
135 ⇒ 9 ⇒ 6 ⇒ 4 = 22

135 ⇒ 90 ⇒ 60 ⇒ 40 ⇒ 8 = 23

135 ⇒ 45 ⇒ 3 ⇒ 2 = 21

135 ⇒ 45 ⇒ 15 ⇒ 1 = 20

135 ⇒ 45 ⇒ 15 ⇒ 5 ⇒ 1 = 20

135 ⇒ 45 ⇒ 15 ⇒ 3 ⇒ 2 = 21

135 ⇒ 45 ⇒ 9 ⇒ 6 ⇒ 4 = 22

135 ⇒ 90 ⇒ 60 ⇒ 40 ⇒ 8 = 23

…
This computes 2z where 0 ≤ z≤x1. Think about it.



Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 69

More on Determinism

In general, we might get an infinite set 
using non-determinism, whereas 
determinism might produce a finite set.  
To see this consider a system

2x  → x
2x  → 4x

starting with the number 2.
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Systems Related to FRS
• Petri Nets:

– Unordered
– Ordered
– Negated Arcs

• Vector Addition Systems:
– Unordered
– Ordered

• Factors with Residues:
– a x + c   → b x + d

• Finitely Presented Abelian Semi-Groups
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Petri Net Operation
• Finite number of places, each of which can hold zero of more 

markers.
• Finite number of transitions, each of which has a finite number 

of input and output arcs, starting and ending, respectively, at 
places.

• A transition is enabled if all the nodes on its input arcs have at 
least as many markers as arcs leading from them to this 
transition.

• Progress is made whenever at least one transition is enabled. 
Among all enabled, one is chosen randomly to fire.

• Firing a transition removes one marker per arc from the 
incoming nodes and adds one marker per arc to the outgoing 
nodes.
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Petri Net Computation
• A Petri Net starts with some finite number of markers 

distributed throughout its n nodes. 
• The state of the net is a vector of n natural numbers, with the i-

th component’s number indicating the contents of the i-th
node. E.g., <0,1,4,0,6> could be the state of a Petri Net with 5
places, the 2nd, 3rd and 5th, having 1, 4, and 6 markers, resp.,
and the 1st and 4th being empty.

• Computation progresses by selecting and firing enabled 
transitions. Non-determinism is typical as many transitions can 
be simultaneously enabled.

• Petri nets are often used to model coordination algorithms, 
especially for computer networks.
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Variants of Petri Nets
• A Petri Net is not computationally complete. In fact, its halting 

and word problems are decidable. However, its containment 
problem (are the markings of one net contained in those of 
another?) is not decidable.

• A Petri net with prioritized transitions, such that the highest 
priority transitions is fired when multiple are enabled is 
equivalent to an FRS. (Think about it).

• A Petri Net with negated input arcs is one where any arc with a 
slash through it contributes to enabling its associated 
transition only if the node is empty. These are computationally 
complete. They can simulate register machines. (Think about 
this also).
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Petri Net Example

Marker

Place

Transition

Arc

… …
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Vector Addition
• Start with a finite set of vectors in integer n-space.
• Start with a single point with non-negative integral 

coefficients.
• Can apply a vector only if the resultant point has 

non-negative coefficients.
• Choose randomly among acceptable vectors.
• This generates the set of reachable points.
• Vector addition systems are equivalent to Petri Nets.
• If order vectors, these are equivalent to FRS. 
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Vectors as Resource Models
• Each component of a point in n-space 

represents the quantity of a particular 
resource.

• The vectors represent processes that 
consume and produce resources.

• The issues are safety (do we avoid bad 
states) and liveness (do we attain a 
desired state).

• Issues are deadlock, starvation, etc.
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Factors with Residues
• Rules are of form

– ai x + ci → bi x + di

– There are n such rules
– Can apply if number is such that you get a residue 

(remainder) ci when you divide by ai

– Take quotient x and produce a new number 
bi x + di

– Can apply any applicable one (no order)

• These systems are equivalent to Register 
Machines.
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Abelian Semi-Group
S = (G, •) is a semi-group if

G is a set, • is a binary operator, and
1. Closure: If x,y ∈ G then x • y ∈ G 
2. Associativity: x • (y • z) = (x • y) • z

S is a monoid if
3. Identity: ∃e ∈ G ∀x ∈ G [e • x = x • e = x]

S is a group if 
4. Inverse: ∀x ∈ G ∃x-1 ∈ G [x-1 • x = x • x-1 = e]

S is Abelian if • is commutative
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Finitely Presented
• S = (G, •), a semi-group (monoid, group), is finitely presented if 

there is  a finite set of symbols, Σ, called the alphabet or 
generators, and a finite set of equalities (αi = βi), the reflexive 
transitive closure of which determines equivalence classes 
over G. 

• Note, the set G is the closure of the generators under the semi-
group’s operator •.

• The problem of determining membership in equivalence 
classes for finitely presented Abelian semi-groups is equivalent 
to that of determining mutual derivability in an unordered FRS 
or Vector Addition System with inverses for each rule.
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Assignment # 2
a. Present a Register Machine that computes FIB. Assume R1=x; at 

termination, set R2=1 if x is a member of the Fibonacci sequence and 0 if 
not.

b. Present a Factor Replacement System that computes FIB. Assume starting 
number is 3^x 5; at termination, result is 2=2^1 if x is a member of the 
Fibonacci sequence; 1= 2^0 otherwise. Actually, it can be done without the 
5, but that may make it easier.

c. Prove that non-deterministic FRS's are no more powerful than non-
deterministic VAS. This means you need only show that any non-
deterministic FRS can be simulated by a non-deterministic VAS.
Note: To do this most effectively, you need to first develop the notion of an 
instantaneous description (ID) of a FRS (that's a point in 1-space) and of a VAS 
(that’s a point in n-space). You then need a mapping from an FRS ID to a 
corresponding VAS ID, and this mapping needs to be some function (many-one 
into), f. Next, there must be a mapping from the rules of the FRS to create those of 
the VAS, such that a single step of the FRS from x to y is mimicked by some finite 
number of steps of the VAS from f(x) to f(y), where f(y) is the first ID derived from 
f(x) that is a mapping from some ID of the VAS

Due: September 10 



Recursive Functions

Primitive and μ-Recursive



Primitive Recursive

An Incomplete Model
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Basis of PRFs
• The primitive recursive functions are defined 

by starting with some base set of functions 
and then expanding this set via rules that 
create new primitive recursive functions from 
old ones.

• The base functions are:
Ca(x1,…,xn) = a : constant functions

(x1,…,xn) = xi : identity functions
: aka projection 

S(x) = x+1 : an increment function

  i
nI
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Building New Functions
• Composition: 

If G, H1, … , Hk are already known to be primitive 
recursive, then so is F, where

F(x1,…,xn) = G(H1(x1,…,xn), … , Hk(x1,…,xn))
• Iteration (aka primitive recursion): 

If G, H are already known to be primitive recursive, 
then so is F, where

F(0, x1,…,xn) = G(x1,…,xn)
F(y+1, x1,…,xn) = H(y, x1,…,xn, F(y, x1,…,xn))

We also allow definitions like the above, except 
iterating on y as the last, rather than first argument.
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Addition & Multiplication
Example: Addition

+(0,y) =    (y)
+(x+1,y) = H(x,y,+(x,y))

where H(a,b,c) = S(    (a,b,c))
Example: Multiplication

*(0,y) = C0(y)
*(x+1,y) = H(x,y,*(x,y)) 

where H(a,b,c) = +(    (a,b,c),    (a,b,c)) 
= b+c = y + *(x,y) = (x+1)*y

 2
3I

  1
1I

 3
3I

 3
3I
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Basic Arithmetic
x + 1:

x + 1 = S(x)
x – 1:

0 - 1 = 0
(x+1) - 1 = x

x + y:
x + 0 = x
x+ (y+1) = (x+y) + 1

x – y: // limited subtraction
x – 0 = x 
x – (y+1) = (x–y) – 1
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2nd Grade Arithmetic
x * y:

x * 0 = 0
x * (y+1) = x*y + x

x!:
0! = 1
(x+1)! = (x+1) * x!
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Basic Relations
x == 0:

0 == 0 = 1
(y+1) == 0 = 0

x == y:
x==y = ((x – y) + (y – x )) == 0

x ≤y :
x≤y = (x – y) == 0

x ≥ y:
x≥y = y≤x

x > y :
x>y = ~(x≤y)  /* See ~ on next page */

x < y :
x<y = ~(x≥y)
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Basic Boolean Operations
~x:

~x = 1 – x  or  (x==0)

signum(x): // 1 if x>0; 0 if x==0
~(x==0)

x && y:
x&&y = signum(x*y)

x || y:
x||y = ~((x==0) && (y==0))
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Definition by Cases 
One case

g(x) if P(x) 
f(x) = 

h(x) otherwise
f(x) = P(x) * g(x) + (1-P(x)) * h(x)

Can use induction to prove this is true for all k>0, where
g1(x) if P1(x) 
g2(x) if P2(x) && ~P1(x)

f(x) = …
gk(x) if Pk(x) && ~(P1(x) || … || ~Pk-1(x))
h(x) otherwise
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Bounded Minimization 1
f(x) = μ z (z ≤ x) [ P(z) ] if ∃ such a z,

= x+1, otherwise
where P(z) is primitive recursive. 

Can show f is primitive recursive by 
f(0) = 1-P(0)
f(x+1) = f(x) if f(x) ≤ x 

= x+2-P(x+1) otherwise
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Bounded Minimization 2
f(x) = μ z (z < x) [ P(z) ] if ∃ such a z,

= x, otherwise
where P(z) is primitive recursive. 

Can show f is primitive recursive by 
f(0) = 0
f(x+1) = μ z (z ≤ x) [ P(z) ]  
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Intermediate Arithmetic
x // y:

x//0 = 0 : silly, but want a value
x//(y+1) = μ z (z<x) [ (z+1)*(y+1) > x ]

x | y: x is a divisor of y
x|y = ((y//x) * x) == y
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Primality
firstFactor(x): first non-zero, non-one factor of x.

firstfactor(x) = μ z  (2 ≤ z ≤ x) [ z|x ] , 
0 if none

isPrime(x):
isPrime(x) = firstFactor(x) == x && (x>1)

prime(i) = i-th prime:
prime(0) = 2
prime(x+1) = μ z(prime(x)< z ≤prime(x)!+1)[isPrime(z)]

We will abbreviate this as pi for prime(i)
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Exponents

x^y:
x^0 = 1
x^(y+1) = x * x^y

exp(x,i): the exponent of pi in number x.
exp(x,i) = μ z  (z<x) [ ~(pi^(z+1) | x) ]
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Pairing Functions
• pair(x,y) = <x,y> = 2x (2y + 1) – 1

• with inverses
<z>1 = exp(z+1,0)

<z>2 = ((( z + 1 ) // 2 <z>1 ) – 1 ) // 2
• These are very useful and can be extended to 

encode n-tuples
<x,y,z> = <x, <y,z> > (note: stack analogy)
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Assignment # 3
Show that prfs are closed under mutual 
recursion. That is, assuming F1, F2 and G1 
and G2 are pr, show that H1 and H2 are, 
where
H1(0, x) = F1(x); H2(0, x) = F2(x)
H1(y+1, x) = G1(y,x,H2(y,x)); H2(y+1, x) = 
G2(y,x,H1(y,x))
Hint: The pairing function is useful here.

Due: September 17



μ Recursive

4th Model
A Simple Extension to Primitive 

Recursive
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μ Recursive Concepts
• All primitive recursive functions are 

algorithms since the only iterator is 
bounded.  That’s a clear limitation.

• There are algorithms like Ackerman’s 
function that cannot be represented by the 
class of primitive recursive functions.  

• The class of recursive functions adds one 
more iterator, the minimization operator (μ), 
read “the least value such that.”
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Ackermann’s Function
• A(1, j)=2j for j ≥ 1 
• A(i, 1)=A(i-1, 2) for i ≥ 2 
• A(i, j)=A(i-1, A(i, j-1)) for i, j ≥ 2 
• Wilhelm Ackermann observed in 1928 that 

this is not a primitive recursive function.
• Ackermann’s function grows too fast to have 

a for-loop implementation.
• The inverse of Ackermann’s function is 

important to analyze Union/Find algorithm.
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Union/Find
• Start with a collection S of unrelated 

elements – singleton equivalence classes
• Union(x,y), x and y are in S, merges the class 

containing x ([x]) with that containing y ([y])
• Find(x) returns the canonical element of [x]
• Can see if x≡y, by seeing if Find(x)==Find(y)
• How do we represent the classes? 
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The μ Operator

• Minimization: 
If G is already known to be recursive, 
then so is F, where

F(x1,…,xn) = μy (G(y,x1,…,xn) == 1)
• We also allow other predicates besides 

testing for one.  In fact any predicate 
that is recursive can be used as the 
stopping condition.



Turing Machines

5th Model
A Linear Memory Machine
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Basic Description
• We will use a simplified form that is a variant of Post’s and 

Turing’s models.   
• Here, each machine is represented by a finite set of states of 

states Q, the simple alphabet {0,1}, where 0 is the blank 
symbol, and each state transition is defined by a 4-tuple of form 

q a X s
where q a is the discriminant based on current state q, scanned 
symbol a; X can be one of {R, L, 0, 1}, signifying move right, 
move left, print 0, or print 1; and s is the new state.  

• Limiting the alphabet to {0,1} is not really a limitation.  We can 
represent a k-letter alphabet by encoding the j-th letter via j 1’s 
in succession.  A 0 ends each letter, and two 0’s ends a word. 

• We rarely write quads.  Rather, we typically will build machines
from simple forms. 
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Base Machines
• R -- move right over any scanned symbol
• L -- move left over any scanned symbol
• 0 -- write a 0 in current scanned square
• 1 -- write a 1 in current scanned square
• We can then string these machines together with 

optionally labeled arc.
• A labeled arc signifies a transition from one part of 

the composite machine to another, if the scanned 
square’s content matches the label.  Unlabeled arcs 
are unconditional.  We will put machines together 
without arcs, when the arcs are unlabeled. 
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Useful Composite Machines
R -- move right to next 0 (not including current square)  

…?11…10… ⇒ …?11…10…
L -- move left to next 0 (not including current square)  

…011…1?… ⇒ …011…1?…
R -- move right to next 00 (not including current 

square)  
…?11…1011…10…11…100… ⇒
…?11…1011…10…11…100…

L -- move left to next 00 (not including current square)
…0011…1011…10…11…1?… ⇒
…0011…1011…10…11…1?…

R 1

L 1

 1R 0 LR 

 1L 0 RL 
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Commentary on Machines
• These machines can be used to move 

over encodings of letters or encodings 
of unary based natural numbers.  

• In fact, any effective computation can 
easily be viewed as being over natural 
numbers.  We can get the negative 
integers by pairing two natural 
numbers.  The first is the sign (0 for +, 1 
for -). The second is the magnitude.
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Computing with TMs
A reasonably standard definition of a Turing 
computation of some n-ary function F is to 
assume that the machine starts with a tape 
containing the n inputs, x1, … , xn in the 
form

…01x101x20…01xn0…
and ends with

…01x101x20…01xn01y0…
where y = F(x1, … , xn).
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Addition by TM

Need the copy family of useful 
submachines, where Ck copies k-th
preceding value.

The add machine is then
C2 C2 L 1 R L 0

 

1

0 

R L 
k R 

0 R 

k k+1 1 L 
k+1

1
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Turing Machine Variations

• Two tracks
• N tracks
• Non-deterministic
• Two-dimensional
• K dimensional
• Two stack machines
• Two counter machines



Computational Complexity

Limited to Concepts of P and NP
COT6410 covers much more
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P = Polynomial Time
• P is the class of decision problems 

containing all those that can be solved by a 
deterministic Turing machine using 
polynomial time in the size of each instance 
of the problem.

• P contain linear programming over real 
numbers, but not when the solution is 
constrained to integers. 

• P even contains the problem of determining 
if a number is prime.
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NP = Non-Det. Poly Time
• NP is the class of decision problems solvable in 

polynomial time on a non-deterministic Turing 
machine. 

• Clearly P ⊆ NP. Whether or not this is proper 
inclusion is the well-known challenge P = NP?

• NP can also be described as the class of decision 
problems that can be verified in polynomial time. 

• NP can even be described as the class of decision 
problems that can be solved in polynomial time 
when no a priori bound is placed on the number of 
processors that can be used in the algorithm.
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NP-Complete; NP-Hard
• A decision problem, C, is NP-complete if:

– C is in NP and 
– C is NP-hard. That is, every problem in NP is polynomially reducible to C.

• D polynomially reduces to C means that there is a deterministic 
polynomial-time many-one algorithm, f, that transforms each instance 
x of D into an instance f(x) of C, such that the answer to f(x) is YES if 
and only if the answer to x is YES. 

• To prove that an NP problem A is NP-complete, it is sufficient to show 
that an already known NP-complete problem polynomially reduces to 
A. By transitivity, this shows that A is NP-hard.

• A consequence of this definition is that if we had a polynomial time 
algorithm for any NP-complete problem C, we could solve all problems 
in NP in polynomial time. That is, P = NP.

• Note that NP-hard does not necessarily mean NP-complete, as a given 
NP-hard problem could be outside NP.
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SAT
• SAT is the problem to decide of an arbitrary 

Boolean formula (wff in the propositional 
calculus) whether or not this formula is 
satisfiable (has a set of variable assignments 
that evaluate the expression to true).

• SAT clearly can be solved in time k2n, where 
k is the length of the formula and n is the 
number of variables in the formula.

• What we can show is that SAT is NP-
complete, providing us our first concrete 
example of an NP-complete decision 
problem.
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Simulating ND TM
• Given a TM, M, and an input w, we need to create a 

formula, ϕM,w, containing a polynomial number of 
terms that is satisfiable just in case M accepts w in 
polynomial time.

• The formula must encode within its terms a trace of 
configurations that includes
– A term for the starting configuration of the TM
– Terms for all accepting configurations of the TM
– Terms that ensure the consistency of each configuration
– Terms that ensure that each configuration after the first 

follows from the prior configuration by a single move



Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 117

Cook’s Theorem

• ϕM,w = φcell ∧ φstart ∧ φmove ∧ φaccept
• See the following for a detailed 

description  and discussion of the four 
terms that make up this formula.

• http://www.cs.tau.ac.il/~safra/Complexity/Cook.ppt



Equivalence of Models

Equivalency of computation by S-
programs, register machines, factor 

replacement systems, recursive functions 
and Turing machines



S-Machine ≡ REGISTER
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S Program ≤ Reg. Machine
• Let P be an S Program consisting of m instructions computing 

f(x1,…, xn). Assume the highest indexed temporary variable is Zt
• Define the mapping g, g(Xi) = i, 1≤i≤n, g(Y) = n+1, and g(Zj) = n+j+1, 

1≤j≤t. 
• Change each IF V≠0 GOTO L to IF V≠0 GOTO Ak, where L is the k-th

instruction, or if L is E, k=m+1
• Map the j-th S instruction by

– [Aj] V ← V maps to 
2j-1. DECn+t+2(2j,2j)
2j. DECn+t+2(2j+1,2j+1)

– [Aj] V ← V+1 maps to 
2j-1. INCg(v)(2j)
2j. DECn+t+2(2j+1,2j+1)

– [Aj] V ← V-1 maps to 
2j-1. DECg(v)(2j,2j)
2j. DECn+t+2(2j+1,2j+1)

– [Aj] IF V≠0 GOTO Ak maps to 
2j-1. DECg(v)(2j,2j+1)
2j. INCg(v)(2k-1)
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Reg. Machine ≤ S Program
• Let M be a Register Machine consisting of m instructions computing 

f(x1,…, xn). Assume highest indexed register is Rs
• Define the mapping g, g(i)=Xi, 1≤i≤n, g(n+1)=Y, and g(i)=Zi-n-1, n+2≤i≤s.
• Start the S Program with the command

– [A1] Zs-n ← Zs-n + 1
• Map the j-th Register Machine instruction by

– j. INCr(k) to 
[A4j-2] g(r) ← g(r) + 1
[A4j-1] IF g(r)≠0 GOTO A4k-2
[A4j]    g(r) ← g(r)
[A4j+1] g(r) ← g(r)

– j. DECr(p,z) to 
[A4j-2] IF g(r)≠0 GOTO A4j 
[A4j-1] IF Zs-n≠0 GOTO A4z-2 
[A4j]    g(r) ← g(r) - 1
[A4j+1] IF Zs-n≠0 GOTO A4p-2 

• The 4m+1 instructions above are ordered by their labels. Note that label A4m+2
may be recast as the special label E.
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Proving Equivalence

• The previous constructions do not, by 
themselves, prove equivalence. 

• To do so, we need to develop a notion 
of an “instantaneous description” (id) 
of an S-program and of a register 
machine. 

• We will then show a mapping of id’s 
between the models.
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Instantaneous Descriptions
• An instantaneous description (id) is a finite 

description of a state achievable by a computational 
machine, M.

• Each machine starts in some initial id, id0. 
• The semantics of the instructions of M define a 

relation ⇒M such that, idi ⇒M idi+1, i≥0, if the 
execution of a single instruction of M would alter M’s 
state from idi to idi+1 or if M halts in state idi and 
idi+1=idi.

• ⇒+
M is the transitive closure of ⇒M

• ⇒*M is the reflexive transitive closure of ⇒M
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id Definitions
• For an S-program, P, an id is an n+t+2 tuple of the 

form (i, x1,…,xn, y, z1,…,zt)P specifying the number of 
the next instruction to be executed and the values of 
all variables prior to its execution. 

• For a register machine, M, an id is an s+1 tuple of the 
form (i, r1,…,rs)M specifying the number of the next 
instruction to be executed and the values of all 
registers prior to its execution.  
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Equivalence Steps
• Assume we have a machine M in one model of computation and 

a mapping of M into a machine M’ in a second model.
• Assume the initial configuration of M is id0 and that of M’ is id’0
• Define a mapping, h, from id’s of M into those of M’, such that, 

RM = {h(d) | d is an instance of an id of M}, and
– id’0⇒*M’ h(id0), and h(id0) is the only member of RM in the 

configurations encountered in this derivation.
– h(idi)⇒+

M’ h(idi+1), i≥0, and h(idi+1) is the only member of RM in 
this derivation.

• The above, in effect, provides an inductive proof that 
– id0⇒*M id implies id’0⇒*M’ h(id), and
– If id’0⇒*M’ id’ then either id0⇒*M id, where id’ = h(id), or id’ ∉ RM
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Completion of S-P ≤ RM
• To go from S-program, P, to reg. machine, M, define 

h(i,x1,…,xn,y,z1,…,zt)P=(2i-1,x1,…,xn,y,z1,…,zt,0)M

under our previous association of x1,…,xn with 
r1,…,rn, y with rn+1, and  z1,…,zt with rn+2,…,rn+1+t.

• The proof can now be completed as follows. 
– Note that, when computing f(a1,…,an ), 

P starts on id0 = (1,a1,…,an,0,0…,0)P and
M starts at h(id0) = (1, a1,…,an,0,0…,0,0)M.

– Show that that our instruction mappings preserve the 
h-mapping, above. This requires a simple case analysis for the 
four S-program instruction types. Since this takes two steps per 
instruction, you must note that no intermediary id is in the range 
of h, but that’s easy as they have even instruction counters.
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Completion of RM ≤ S-P
• To go from reg. machine, M, to S-program, P, define 

h(i,r1,…,rn,rn+1,rn+2,…,rs)M=(4i-2,r1,…,rn,rn+1,rn+2,…,rs,1) P
under our previous association of x1,…,xn with 
r1,…,rn, y with rn+1, and  z1,…,zs-n-1 with rn+2,…,rs.

• The proof can now be completed as follows. 
– Note that, when computing f(a1,…,an ), 

M starts on id0 = (1,a1,…,an,0,0…,0)M and
P starts at (1, a1,…,an,0,0…,0,0)P and in one step transitions to 
h(id0) = (2, a1,…,an,0,0…,0,1)P.

– Show that that our instruction mappings preserve the 
h-mapping, above. This requires a simple case analysis for the 
two register machine instruction types. Since this takes more 
than one step per instruction, you must note that no intermediary 
id is in the range of h.



All Models are Equivalent



Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 129

Our Plan of Attack

• We will now show 
TURING ≤ REGISTER ≤ FACTOR ≤

RECURSIVE ≤ TURING 
where by A ≤ B, we mean that every 
instance of A can be replaced by an 
equivalent instance of B. 

• The transitive closure will then get us 
the desired result.



TURING ≤ REGISTER
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Encoding a TM’s State
• Assume that we have an n state Turing machine.  Let 

the states be numbered 0,…, n-1.  
• Assume our machine is in state 7, with its tape 

containing
… 0 0 1 0 1 0 0 1 1 q7 0 0 0 …

• The underscore indicates the square being read.  We 
denote this by the finite id
1 0 1 0 0 1 1 q7 0

• In this notation, we always write down the scanned 
square, even if it and all symbols to its right are 
blank.  
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More on Encoding of TM
• An id can be represented by a triple of natural 

numbers, (R,L,i), where R is the number denoted by 
the reversal of the binary sequence to the right of the 
qi, L is the number denoted by the binary sequence 
to the left, and i is the state index.  

• So, 
… 0 0 1 0 1 0 0 1 1 q7 0 0 0 …
is just (0, 83, 7).
… 0 0 1 0 q5 1 0 1 1 0 0 …
is represented as (13, 2, 5).

• We can store the R part in register 1, the L part in 
register 2, and the state index in register 3. 
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Simulation by RM
1. DEC3[2,q0] : Go to simulate actions in state 0
2. DEC3[3,q1] : Go to simulate actions in state 1
…
n. DEC3[ERR,qn-1] : Go to simulate actions in state n-1
…
qj. IF_r1_ODD[qj+2] : Jump if scanning a 1
qj+1. JUMP[set_k] : If (qj 0 0 qk) is rule in TM
qj+1. INC1[set_k] : If (qj 0 1 qk) is rule in TM
qj+1. DIV_r1_BY_2 : If (qj 0 R qk) is rule in TM

MUL_r2__BY_2
JUMP[set_k]

qj+1. MUL_r1_BY_2 : If (qj 0 L qk) is rule in TM
IF_r2_ODD then INC1
DIV_r2__BY_2[set_k]

…
set_n-1. INC3[set_n-2] : Set r3 to index n-1 for simulating state n-1
set_n-2. INC3[set_n-3] : Set r3 to index n-2 for simulating state n-2
…
set_0. JUMP[1] : Set r3 to index 0 for simulating state 0
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Fixups
• Need epilog so action for missing quad 

(halting) jumps beyond end of 
simulation to clean things up, placing 
result in r1.  

• Can also have a prolog that starts with 
arguments in first n registers and 
stores values in r1, r2 and r3 to 
represent Turing machines starting 
configuration.
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Prolog
Example assuming n arguments (fix as needed)
1. MUL_rn+1_BY_2[2] : Set rn+1 = 11…102, where, #1's = r1
2. DEC1[3,4] : r1 will be set to 0
3. INCn+1[1] : 
4. MUL_rn+1_BY_2[5] : Set rn+1 = 11…1011…102, where, #1's = r1, then r2
5. DEC2[6,7] : r2 will be set to 0
6. INCn+1[4] : 
…
3n-2. DECn[3n-1,3n+1] : Set rn+1 = 11…1011…1011…12, where, #1's = r1, r2,…
3n-1. MUL_rn+1_BY_2[3n] : rn will be set to 0
3n. INCn+1[3n-2] : 
3n+1 DECn+1[3n+2,3n+3] : Copy rn+1 to r1, rn+1 is set to 0
3n+2. INC2[3n+1] : 
3n+3. : r2 = left tape, r1 = 0 (right), r3 = 0 (initial state)
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Epilog
1. DEC3[1,2] : Set r3 to 0 (just cleaning up)
2. IF_r1_ODD[3,5] : Are we done with answer?
3. INC2[4] : putting answer in r2
4. DIV_r1_BY_2[2] : strip a 1 from r1
5. DEC1[5,6] : Set r1 to 0 (prepare for answer)
6. DEC2[6,7] : Copy r2 to r1 
7. INC1[6] : 
8. : Answer is now in r1



REGISTER ≤ FACTOR
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Encoding a RM’s State
• This is a really easy one based on the fact that every member of

Z+ (the positive integers) has a unique prime factorization.  
Thus all such numbers can be uniquely written in the form

where the pi's are distinct primes and the ki's are non-zero 
values, except that the number 1 would be represented by 20. 

• Let R be an arbitrary n-register machine, having m instructions.

Encode the contents of registers r1,…,rn by the powers of 
p1,…pn . 

Encode rule number's 1…m by primes pn+1 ,…, pn+m

Use pn+m+1 as prime factor that indicates simulation is done.
• This is in essence the Gödel number of the RM’s state.

1i
1kp

2i
2kp …

ji
jkp
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Simulation by FRS
• Now, the j-th instruction (1≤j≤m) of R has 

associated factor replacement rules as 
follows:
j. INCr[i]

pn+jx → pn+iprx
j. DECr[s, f]

pn+jprx → pn+sx
pn+jx → pn+fx

• We also add the halting rule associated with 
m+1 of

pn+m+1x → x 
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Importance of Order
• The relative order of the two rules to 

simulate a DEC are critical.  
• To test if register r has a zero in it, we, 

in effect, make sure that we cannot 
execute the rule that is enabled when 
the r-th prime is a factor.  

• If the rules were placed in the wrong 
order, or if they weren't prioritized, we 
would be non-deterministic.  
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Example of Order

Consider the simple machine to 
compute r1:=r2 – r3 (limited)
1. DEC3[2,3]
2. DEC2[1,1]
3. DEC2[4,5]
4. INC1[3]
5.
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Subtraction Encoding
Start with 3x5y7

7 • 5 x → 11 x
7 x → 13 x
11 • 3 x → 7 x
11 x → 7 x
13 • 3 x → 17 x
13 x → 19 x
17 x → 13 • 2 x
19 x → x
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Analysis of Problem
• If we don't obey the ordering here, we could 

take an input like 35527 and immediately 
apply the second rule (the one that mimics a 
failed decrement).  

• We then have 355213, signifying that we will 
mimic instruction number 3, never having 
subtracted the 2 from 5.  

• Now, we mimic copying r2 to r1 and get 
255219 . 

• We then remove the 19 and have the wrong 
answer.



FACTOR ≤ RECURSIVE
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Universal Machine
• In the process of doing this reduction, we 

will build a Universal Machine.  
• This is a single recursive function with two 

arguments.  The first specifies the factor 
system (encoded) and the second the 
argument to this factor system.  

• The Universal Machine will then simulate the 
given machine on the selected input.
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Encoding FRS

• Let (n, ((a1,b1), (a2,b2), … ,(an,bn)) be 
some factor replacement system, 
where (ai,bi) means that the i-th rule is

aix → bix
• Encode this machine by the number F,

pppp nnnn

n bababa nn

2212212117532 2211

++−
K
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Simulation by Recursive # 1
• We can determine the rule of F that applies to x by

RULE(F, x) = μ z (1 ≤ z ≤ exp(F, 0)+1) [ exp(F, 2*z-1) | x ]
• Note: if x is divisible by ai, and i is the least integer for which 

this is true, then exp(F,2*i-1) = ai where ai is the number of 
prime factors of F involving p2i-1.  Thus, RULE(F,x) = i. 

If x is not divisible by any ai, 1≤i≤n, then x is divisible by 1, and 
RULE(F,x) returns n+1.  That’s why we added p2n+1 p2n+2.

• Given the function RULE(F,x), we can determine NEXT(F,x), the 
number that follows x, when using F, by

NEXT(F, x) = (x // exp(F, 2*RULE(F, x)-1)) * exp(F, 2*RULE(F, x))
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Simulation by Recursive # 2

• The configurations listed by F, when 
started on x, are

CONFIG(F, x, 0) = x
CONFIG(F, x, y+1) = NEXT(F, CONFIG(F, x, y))

• The number of the configuration on 
which F halts is

HALT(F, x) = μ y [CONFIG(F, x, y) == CONFIG(F, x, y+1)]
This assumes we converge to a fixed point only if we 
stop.
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Simulation by Recursive # 3
• A Universal Machine that simulates an 

arbitrary Factor System, Turing Machine, 
Register Machine, Recursive Function can 
then be defined by 

Univ(F, x) =  exp ( CONFIG ( F, x, HALT ( F, x ) ), 0)

• This assumes that the answer will be 
returned as the exponent of the only even 
prime, 2.  We can fix F for any given Factor 
System that we wish to simulate.  
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Simplicity of Universal

• A side result is that every computable 
(recursive) function can be expressed 
in the form

F(x) = G(μ y H(x, y))

where G and H are primitive recursive. 



RECURSIVE ≤ TURING
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Standard Turing Computation
• Our notion of standard Turing computability 

of some n-ary function F assumes that the 
machine starts with a tape containing the n 
inputs, x1, … , xn in the form

…01x101x20…01xn0…

and ends with

…01x101x20…01xn01y0…

where y = F(x1, … , xn).
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More Helpers
• To build our simulation we need to construct some useful 

submachines, in addition to the R, L, R, L, and Ck machines 
already defined.

• T -- translate moves a value left one tape square 
…?01x0… ⇒ …?1x00…

• Shift -- shift a rightmost value left, destroying value to its left
…01x101x20… ⇒ …01x20…

• Rotk -- Rotate a k value sequence one slot to the left  
…01x101x20…01xk0…

⇒ …01x20…01xk01x10…

 R1 L0R 

 
R 1 

L T

R 

0 
kL k

k+1 1 L k L 0 T k L k+1

 
L 1

T
L 0 T

0
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Basic Functions

All Basis Recursive Functions are 
Turing computable:

• Ca
n(x1,…,xn) = a

(R1)aR
• (x1,…,xn) = xi

Cn-i+1

• S(x) = x+1
C11R

  i
nI
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Closure Under Composition
If G, H1, … , Hk are already known to be Turing computable, 
then so is F, where

F(x1,…,xn) = G(H1(x1,…,xn), … , Hk(x1,…,xn))

To see this, we must first show that if E(x1,…,xn) is Turing 
computable then so is 

E<m>(x1,…,xn, y1,…,ym) = E(x1,…,xn)

This can be computed by the machine

Ln+m (Rotn+m)n Rn+m E  Ln+m+1 (Rotn+m)m Rn+m+1

Can now define F by 

H1 H2<1> H3<2> … Hk<k-1> G Shiftk
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Closure Under Minimization

If G is already known to be Turing 
computable, then so is F, where

F(x1,…,xn) = μy (G(x1,…,xn, y) == 1)

This can be done by
 

R G L 1 0 L 
0

1
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Assignment # 4
a. Present a Turing Machine to do MAX of n non-zero arguments, 

n>=0. You know you’ve run out of arguments when you encounter 
the value 0, represented by two successive 0's (blanks). Use the
machines we have already built up and others you build. Do NOT 
turn in Turing Tables. We won't pay any attention to them if you do.

b. Show that Turing Machine are closed under iteration (primitive 
recursion). This completes the equivalence proofs for our five 
models of computation.

c. Constructively (no proof required), show how a standard register
machine can simulate a different register machine model with 
instructions of form:
i. if even(r) goto j // goto j if value in register r is even
i. r = r+1 // increment contents of r
i. r = r-1 // decrement contents of r
Note: all registers except input ones start with 0; inputs are in registers r1, 
r2,…, rn; output in rn+1

Due: September 24
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Consequences of Equivalence

• Theorem: The computational power of S-
Programs, Recursive Functions, Turing 
Machines, Register Machine, and Factor 
Replacement Systems are all equivalent.

• Theorem: Every Recursive Function (Turing 
Computable Function, etc.) can be performed 
with just one unbounded type of iteration.

• Theorem: Universal machines can be 
constructed for each of our formal models of 
computation.



Undecidability

We Can’t Do It All
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Undecidability Precursor
• We can see that there are undecidable functions merely by 

noting that there are an uncountable number of mappings from 
the natural numbers into the natural numbers.  Since effective 
procedures are always over a language with a finite number of 
primitives, and since we restrict programs to finite length, there 
can be only a countable number of effective procedures.  Thus 
no formalism can get us all mappings -- some must be non-
computable.

• The above is a great existence proof, but is unappealing since 
it doesn’t help us to understand what kinds of problems are 
uncomputable.  The classic unsolvable problem is called the 
Halting Problem.  It is the problem to decide of an arbitrary 
effective procedure f: ℵ → ℵ , and an arbitrary n ∈ ℵ, whether 
or not f(n) is defined.
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Halting Problem
Assume we can decide the halting problem.  Then there exists some 
total function Halt such that

1 if [x] (y) is defined
Halt(x,y) =

0 if [x] (y) is not defined
Here, we have numbered all programs and [x] refers to the x-th
program in this ordering.  Now we can view Halt as a mapping from  ℵ
into ℵ by treating its input as a single number representing the 
pairing of two numbers via the one-one onto function

pair(x,y) = <x,y> = 2x (2y + 1) – 1

with inverses
<z>1 = exp(z+1,1)

<z>2 = ((( z + 1 ) // 2 <z>1 ) – 1 ) // 2
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The Contradiction
Now if Halt exist, then so does Disagree, where

0 if Halt(x,x) = 0, i.e, if [x] (x) is not defined
Disagree(x) =

μy (y == y+1) if Halt(x,x) = 1, i.e, if [x] (x) is defined

Since Disagree is a program from  ℵ into ℵ , Disagree can be 
reasoned about by Halt.  Let d be such that Disagree = [d], then
Disagree(d) is defined ⇔ Halt(d,d) = 0 

⇔ [d](d) is undefined 
⇔ Disagree(d) is undefined
But this means that Disagree contradicts its own existence.  
Since every step we took was constructive, except for the 
original assumption, we must presume that the original 
assumption was in error.  Thus, the Halting Problem is not 
solvable.



Additional Notations

Includes comment on our 
notation versus that of others
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Universal Machine
• Others consider functions of n arguments, whereas 

we had just one. However, our input to the FRS was 
actually an encoding of n arguments. 

• The fact that we can focus on just a single number 
that is the encoding of n arguments is easy to justify 
based on the pairing function.

• Some presentations order arguments differently, 
starting with the n arguments and then the Gödel 
number of the function, but closure under argument 
permutation follows from closure under substitution.
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Universal Machine Mapping

• Φ(n)(x1,…,xn, f) = Univ (f,          )
• We will sometimes adopt the above and 

also its common shorthand
Φf 

(n)(x1,…,xn) = Φ(n)(x1,…,xn, f) 
and the even shorter version
Φf(x1,…,xn) = Φ(n)(x1,…,xn, f) 

∏ =

n

i

x

ip i

1
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SNAP and TERM
• Our CONFIG is essentially the common 

SNAP (snapshot) with arguments 
permuted
SNAP(x, f, t) = CONFIG(f, x, t)

• Termination in our notation occurs 
when we reach a fixed point, so
TERM(x, f) = (NEXT(f, x) == x)

• Again, we used a single argument but that 
can be extended as we have already shown.
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STP Predicate

• STP( x1,…,xn, f, t ) is a predicate 
defined to be true iff [f](x1,…,xn) 
converges in at most t steps.

• STP is primitive recursive since it can 
be defined by
STP( x, f, s ) = TERM(CONFIG(f, x, s), f )
Extending to many arguments is easily done 
as before.



Recursively Enumerable

Properties of re Sets
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Definition of re
• Some texts define re in the same way as I have 

defined semi-decidable. 
S ⊆ ℵ is semi-decidable iff there exists a partially 
computable function g where

S = { x ∈ ℵ | g(x)↓ }
• I prefer the definition of re that says 

S ⊆ ℵ is re iff S = ∅ or there exists a totally 
computable function f where 

S = { y | ∃x f(x) == y }
• We will prove these equivalent. Actually, f can be a 

primitive recursive function.
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Semi-Decidable Implies re
Theorem: Let S be semi-decided by GS. 

Assume GS is the gS function in our 
enumeration of effective procedures.  If S = Ø
then S is re by definition, so we will assume 
wlog that there is some a ∈ S. Define the 
enumerating algorithm FS by
FS(<x,t>) = x * STP(x, gs, t ) 

+ a * (1-STP(x, gs, t ))
Note: FS is primitive recursive and it 
enumerates every value in S infinitely often. 
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re Implies Semi-Decidable
Theorem: By definition, S is re iff S == Ø or 

there exists an algorithm FS, over the natural 
numbers ℵ, whose range is exactly S. Define

μy [y == y+1] if S == Ø
ψS(x) =

signum((μy[FS(y)==x])+1), otherwise
This achieves our result as the domain of ψS
is the range of FS, or empty if S == Ø.
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Domain of a Procedure
Corollary: S is re/semi-decidable iff S is the 

domain / range of a partial recursive 
predicate FS.

Proof: The predicate ψS we defined earlier to 
semi-decide S, given its enumerating 
function, cab be easily adapted to have this 
property.

μy [y == y+1] if S == Ø
ψS(x) =

x*signum((μy[FS(y)==x])+1), otherwise
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Recursive Implies re 
Theorem: Recursive implies re.
Proof: S is recursive implies there is a total 

recursive function fS such that
S = { x ∈ ℵ | fs(x) == 1 }

Define gs(x) = μy (fs(x) == 1)
Clearly 
dom(gs) = {x ∈ ℵ | gs(x)↓} 

= { x ∈ ℵ | fs(x) == 1 } 
= S
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Related Results
Theorem: S is re iff S is semi-decidable.
Proof: That’s what we proved.
Theorem: S and ~S are both re (semi-decidable)

iff S (equivalently ~S) is recursive (decidable).
Proof: Let fS semi-decide S and fS’ semi-decide ~S. We 

can decide S by gS

gS(x) = STP(x, fS, μt (STP(x, fS, t) || STP(x, fS’ ,t))
~S is decided by gS’(x) = ~gS(x) = 1- gS(x).
The other direction is immediate since, if S is 
decidable then ~S is decidable (just complement gS) 
and hence they are both re (semi-decidable).
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Enumeration Theorem
• Define 

Wn = { x ∈ ℵ | Φ(x,n)↓ }
• Theorem: A set B is re iff there exists 

an n such that B = Wn.
Proof: Follows from definition of Φ(x,n).

• This gives us a way to enumerate the 
recursively enumerable sets.

• Note: We will later show (again) that we 
cannot enumerate the recursive sets.
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The Set K

• K = { n ∈ ℵ | n ∈ Wn }
• Note that 

n ∈ Wn ⇔ Φ(n,n)↓ ⇔ HALT(n,n)
• Thus, K is the set consisting of the 

indices of each program that halts 
when given its own index

• K can be semi-decided by the HALT 
predicate above, so it is re.
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K is not Recursive

• Theorem: We can prove this by 
showing ~K is not re.

• If ~K is re then ~K = Wi, for some i.
• However, this is a contradiction since

i ∈ K ⇔ i ∈ Wi ⇔ i ∈ ~K ⇔ i ∉ K
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re Characterizations
Theorem: Suppose S ≠∅ then the following are 

equivalent:
1. S is re
2. S is the range of a primitive rec. function
3. S is the range of a recursive function
4. S is the range of a partial rec. function
5. S is the domain of a partial rec. function



S-m-n Theorem
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Parameter (S-m-n) Theorem
• Theorem: For each n,m>0, there is a prf

Sm
n(u1,…,un,y) such that

Φ(m+n)(x1,…,xm, u1,…,un, y) 
= Φ(m)(x1,…, xm, Sm

n(u1,…,un,y))
• The proof of this is highly dependent 

on the system in which you proved 
universality and the encoding you 
chose. 
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S-m-n for FRS
• We would need to create a new FRS, from an existing one F, 

that fixes the value of ui as the exponent of the prime pm+i. 
• Sketch of proof:

Assume we normally start with p1
x1 … pm

xm p1
u1 … pm+n

un σ
Here the first m are variable; the next n are fixed; σ denotes 
prime factors used to trigger first phase of computation.
Assume that we use fixed point as convergence.
We start with just p1

x1 … pm
xm, with q the first unused prime. 

q α x → q β x replaces α x→ β x in F 
q x → q x ensures we loop at end
x → q pm+1

u1 … pm+n
un σ x
adds fixed input, start state and q
this is selected once and never again

Note: q = prime(S(max(n+m, lastFactor(Product[i=1 to r] αi βi ))))
where r is the number of rules in F.
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Details of S-m-n for FRS
• The number of F (called F, also) is 2r3a15b1…p2r-1

arp2r
br

• Sm,n(u1,…un, F) = 2r+23q×a15q×b1…p2r-1
q×arp2r

q×br 

p2r+1
qp2r+2

q p2r+3p2r+4 
q pm+1u1 … pm+nun σ

• This represents the rules we just talked about. The 
first added rule pair means that if the algorithm does 
not use fixed point, we force it to do so. The last rule 
pair is the only one initially enabled and it adds the 
prime q, the fixed arguments u1,…un, the enabling 
prime q, and the σ needed to kick start computation. 
Note that σ could be a 1, if no kick start is required.

• Sm,n=Sm
n is clearly primitive recursive. I’ll leave the 

precise proof of that as a challenge to you.
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Quantification#1
• S is decidable iff there exists an algorithm χS (called 

S’s characteristic function) such that
x ∈ S ⇔ χS(x)
This is just the definition of decidable.

• S is re iff there exists an algorithm AS where 
x ∈ S ⇔ ∃t AS(x,t)
This is clear since, if gS is the index of the procedure 
ψS defined earlier that semi-decides S then
x ∈ S ⇔ ∃t STP(x, gS, t)
So, AS(x,t) = STPgS( x, t ), where STPgS is the STP 
function with its second argument fixed. 

• Creating new functions by setting some one or more 
arguments to constants is an application of Sm

n.
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Quantification#2
• S is re iff there exists an algorithm AS such that

x ∉ S ⇔ ∀t AS(x,t)
This is clear since, if gS is the index of the procedure 
ψS that semi-decides S, then
x ∉ S ⇔ ~∃t STP(x, gS, t) ⇔ ∀t ~STP(x, gS, t)
So, AS(x,t) = ~STPgS( x, t ), where STPgS is the STP 
function with its second argument fixed. 

• Note that this works even if S is recursive 
(decidable). The important thing there is that if S is 
recursive then it may be viewed in two normal forms, 
one with existential quantification and the other with 
universal quantification.

• The complement of an re set is co-re. A set is 
recursive (decidable) iff it is both re and co-re.



Diagonalization and 
Reducibility
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Non-re Problems
• There are even “practical” problems that are worse 

than unsolvable -- they’re not even semi-decidable.  
• The classic non-re problem is the Uniform Halting 

Problem, that is, the problem to decide of an 
arbitrary effective procedure P, whether or not P is 
an algorithm.  

• Assume that the algorithms can be enumerated, and 
that F accomplishes this.  Then

F(x) = Fx

where F0, F1, F2, … is a list of all the algorithms
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The Contradiction
• Define G( x ) = Univ ( F(x) , x ) + 1 = Φ( x, F(x) ) = Fx(x) + 1

• But then G is itself an algorithm.  Assume it is the g-th one

F(g) = Fg = G

Then, G(g) = Fg(g) + 1 = G(g) + 1

• But then G contradicts its own existence since G would need to 
be an algorithm.

• This cannot be used to show that the effective procedures are 
non-enumerable, since the above is not a contradiction when 
G(g) is undefined.  In fact, we already have shown how to 
enumerate the (partial) recursive functions.
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The Set TOT

• The listing of all algorithms can be 
viewed as

TOT = { f ∈ ℵ | ∀x Φ(x,f)↓ }
• We can also note that

TOT = { f ∈ ℵ | Wf =ℵ }
• Theorem: TOT is not re.
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Quantification#3
• The Uniform Halting Problem was already 

shown to be non-re. It turns out its 
complement is also not re. We’ll cover that 
later. In fact, we will show that TOT requires 
an alternation of quantifiers. Specifically,

f ∈ TOT⇔ ∀x∃t ( STP( x, f, t ) )
and this is the minimum quantification we 
can use, given that the quantified predicate 
is recursive.
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Reduction Concepts
• Proofs by contradiction are tedious after 

you’ve seen a few.  We really would like 
proofs that build on known unsolvable 
problems to show other, open problems are 
unsolvable.  The technique commonly used 
is called reduction.  It starts with some 
known unsolvable problem and then shows 
that this problem is no harder than some 
open problem in which we are interested.
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Reduction Example
• We can show that the Halting Problem is no harder than the 

Uniform Halting Problem.  Since we already know that the 
Halting Problem is unsolvable, we would now know that the 
Uniform Halting Problem is also unsolvable.  We cannot reduce 
in the other direction since the Uniform Halting Problem is in 
fact harder.

• Let F be some arbitrary effective procedure and let x be some 
arbitrary natural number.

• Define Fx(y) = F(x), for all  y ∈ ℵ
• Then Fx is an algorithm if and only if F halts on x. This is 

another application of the Sm
n theorem

• Thus a solution to the Uniform Halting Problem would provide a 
solution to the Halting Problem.
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Classic Undecidable Sets
• The universal language

K0 = Lu = { <f, x> | [f] (x) is defined }

• Membership problem for Lu is the Halting Problem. 
• The sets Lne and Le, where

NON-EMPTY = Lne = { f | ∃ x [f] (x) is defined }

EMPTY = Le = { f | ∀ x [f] (x) is undefined }

are the next ones we will study.
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Lne is re
• Lne is enumerated by 

F( <f, x, t> ) = f * STP( x, f, t )

• This assumes that 0 is in Lne since 0 
probably encodes some trivial machine.  If 
this isn’t so, we’ll just slightly vary our 
enumeration of the recursive functions so it 
is true.  

• Thus, the range of this total function F is 
exactly the indices of functions that 
converge for some input, and that’s Lne.
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Lne is Non-Recursive
• Note in the previous enumeration that F is a function 

of just one argument, as we are using an extended 
pairing function <x,y,z> = <x,<y,z>>.

• Now Lne cannot be recursive, for if it were then Lu is 
recursive by the reduction we showed before.  

• In particular, from any index x and input y, we 
created a new function which accepts all input just in 
case the x-th function accepts y.  Hence, this new 
function’s index is in Lne just in case (x, y)  is in Lu.  

• Thus, a decision procedure for Lne (equivalently for 
Le) implies one for Lu.
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Lne is re by Quantification

• Can do by observing that

f ∈ Lne ⇔ ∃ <x,t> STP( x, f, t)

• By our earlier results, any set whose 
membership can be described by an 
existentially quantified recursive predicate is 
re (semi-decidable). 
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Le is not re
• If Le were re, then Lne would be 

recursive since it and its complement 
would be re.

• Can also observe that Le is the 
complement of an re set since

f ∈ Le ⇔ ∀ <x,t> ~STP( x, f, t) 
⇔ ~∃ <x,t> STP( x, f, t)
⇔ f ∉ Lne



Exam#1 Review

You are responsible for the first 
196 pages of these notes, 

except for the P=NP material.
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Sample Question#1
1. Present a register machine and a 

factor replacement system that each 
produce the value 1 (true), if x>y, and 
0 (false), otherwise. 

a) For the register machine, assume it 
starts with x in R2 and y in R3, and all 
else 0. The result must end up in R1, with 
R2 and R3 unchanged. 

b) For the FRS, assume it starts with 3x5y

and must end up with 2result.
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Sample Question#2

2. Prove that the following are 
equivalent

a) S is an infinite recursive (decidable) set.
b) S is the range of a monotonically 

increasing total recursive function. 
Note: f is monotonically increasing 
means that ∀x f(x+1) > f(x).
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Sample Question#3

3. Let A and B be re sets. For each of the 
following, either prove that the set is 
re, or give a counterexample that 
results in some known non-re set.

a) A ∪ B
b) A ∩ B
c) ~A
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Sample Question#4

4. Present a demonstration that the even
function is primitive recursive.
even(x) = 1 if x is even
even(x) = 0 if x is odd
You may assume only that the base 
functions are prf and that prf’s are 
closed under a finite number of 
applications of composition and 
primitive recursion.
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Sample Question#5

5. Given that the predicate STP is a prf, 
show that we can semi-decide 

{ f | f evaluates to 0 for some input}

Note: STP( x, f, s ) is true iff Φf(x) 
converges in s or fewer steps 
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Sample Question#6
6. Let S be an re (recursively enumerable), 

non-recursive set, and T be an re, possibly 
recursive set. Let 
E = { z | z = x + y, where x ∈ S and y ∈ T }. 
Answer with proofs, algorithms or 
counterexamples, as appropriate, each of 
the following questions:
(a) Can E be non re?
(b) Can E be re non-recursive?
(c) Can E be recursive? 
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Sample Question#7

7. Assuming that the Uniform Halting 
Problem is undecidable (it’s actually 
not even re), use reduction to show 
the undecidability of

{ f | ∀x f(x+1) > f(x) }
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Sample Question#8

8. Assume that f and g are both standard 
Turing Computable (STC).  Show that 
f+g is also STC. You must 
demonstrate this by writing a new 
machine in diagrammatic notation. Of 
course, f and g may be used as 
submachines.
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Sample Question#9

9. Let S be a recursive (decidable set), 
what can we say about the complexity 
(recursive, re non-recursive, non-re) 
of T, where T ⊂ S?



Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 207

Sample Question#10

10.Define the pairing function <x,y> and 
its two inverses <z>1 and <z>2, where 
if z = <x,y>, then x = <z>1 and y = <z>2.



Reduction and Equivalence

m-1, 1-1, Turing Degrees
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Many-One Reduction
• Let A and B be two sets. 
• We say A many-one reduces to B, 

A ≤m B, if there exists a total recursive 
function f such that
x ∈ A ⇔ f(x) ∈ B

• We say that A is many-one equivalent to B, 
A ≡m B, if A ≤m B and B ≤m A

• Sets that are many-one equivalent are in 
some sense equally hard or easy.
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Many-One Degrees
• The relationship A ≡m B is an equivalence 

relationship (why?)
• If A ≡m B, we say A and B are of the same 

many-one degree (of unsolvability).
• Decidable problems occupy three m-1 

degrees: ∅, ℵ, all others.
• The hierarchy of undecidable m-1 degrees is 

an infinite lattice (I’ll discuss in class)
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One-One Reduction
• Let A and B be two sets. 
• We say A one-one reduces to B, A ≤1 B, 

if there exists a total recursive 1-1 function f 
such that
x ∈ A ⇔ f(x) ∈ B

• We say that A is one-one equivalent to B, 
A ≡1 B, if A ≤1 B and B ≤1 A

• Sets that are one-one equivalent are in a 
strong sense equally hard or easy.



Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 212

One-One Degrees
• The relationship A ≡1 B is an equivalence 

relationship (why?)
• If A ≡1 B, we say A and B are of the same 

one-one degree (of unsolvability).
• Decidable problems occupy infinitely many 

1-1 degrees: each cardinality defines another 
1-1 degree (think about it).

• The hierarchy of undecidable 1-1 degrees is 
an infinite lattice.
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Turing (Oracle) Reduction
• Let A and B be two sets. 
• We say A Turing reduces to B, A ≤t B, if the 

existence of an oracle for B would provide us 
with a decision procedure for A.

• We say that A is Turing equivalent to B, 
A ≡t B, if A ≤t B and B ≤t A

• Sets that are Turing equivalent are in a very 
loose sense equally hard or easy.
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Turing Degrees
• The relationship A ≡t B is an equivalence 

relationship (why?)
• If A ≡t B, we say A and B are of the same 

Turing degree (of unsolvability).
• Decidable problems occupy one Turing 

degree. We really don’t even need the oracle.
• The hierarchy of undecidable Turing degrees 

is an infinite lattice.
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Complete re Sets
• A set C is re 1-1 (m-1, Turing) complete if, for 

any re set A, A ≤1 (≤m , ≤t ) C.
• The set HALT is an re complete set (in regard 

to 1-1, m-1 and Turing reducibility).
• The re complete degree (in each sense of 

degree) sits at the top of the lattice of re 
degrees.
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The Set Halt = K0 = Lu

• Halt = K0 = Lu = { <f, x> | [f](x) is defined }
• Let A be an arbitrary re set. By definition, there 

exists an effective procedure φa, such that dom(φa) = 
A. Put equivalently, there exists an index, a, such 
that A = Wa.

• x ∈ A iff x ∈ dom(φa) iff φa(x)↓ iff <a,x> ∈ K0

• The above provides a 1-1 function that reduces A to 
K0 (A ≤1 K0) 

• Thus the universal set, Halt = K0 = Lu, is an re 
(1-1, m-1, Turing) complete set.
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The Set K
• K = { f | φf(f) is defined }
• Define fx(y) = φf(x). That is, fx(y) = φf(x). The index for 

fx can be computed from f and x using S1,1, where we 
add a dummy argument, y, to φf. Let that index be fx. 
(Yeah, that’s overloading.)

• <f,x> ∈ K0 iff x ∈ dom(φf) iff ∀y[φfx(y)↓] iff fx ∈ K.
• The above provides a 1-1 function that reduces K0 to 

K. 
• Since K0 is an re (1-1, m-1, Turing) complete set and 

K is re, then K is also re (1-1, m-1, Turing) complete.



Reduction and Rice’s
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Two Interesting Sets
• The sets

Lr = { x | dom [x] is recursive }

Lnr = { x | dom [x] is not recursive }
• Lr is very easily confused with the set of indices of 

algorithms.  It includes the indices of all algorithms, 
since their domains (all natural numbers) are clearly 
recursive.  It also includes many indices of functions 
which diverge at some points where a corresponding 
algorithm might have produced a 0 output 
(rejection).

• Our claim is that neither of these sets is re.
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Lr is Non-RE
Let HALT(x,y) = ∃t STP(y, x, t)
Consider again the set

Lr = { x | dom [x] is recursive }
Suppose Lr is re.  We can show that this implies that the complement 
of Lu is also re, but then since Lu is re, we would have that Lu is 
recursive (decidable), an impossibility.  We attack this by defining, for 
each function index x and input y, a function
Fx,y( z ) = HALT(x, y) + HALT(<z>1 , <z>2)
This function’s domain is Lu, if [x] (y) is defined, and is Ø, otherwise.  
Thus, Fx,y accepts a recursive language just in case (x, y) ∉ Lu (that is, 
[x] (y) is undefined).  But (x, y) ∉ Lu just in case Fx,y’s index is in Lr.  
Thus, a semi-decision procedure for Lr implies one for the 
complement of Lu.  So Lr is not re. 
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Lr Picture Proof

x

y
ϕx(y)

ϕz1(z2)
z

Given arbitrary x, y, define the function fx,y(z) = ϕx(y) + ϕz1(z2). 
The following illustrates fx,y,.
Here, dom(fx,y,) = φ if ϕx(y)↑; = K0 if ϕx(y)↓
Thus, ϕx(y)↑ iff fx,y is in Lr, and so ~K0 ≤1 Lr. If Lr is re then so is ~K0 and 
hence K0 and its complement are both re, implying K0 is recursive, but 
that cannot be so, Hence Lr is not re.

dom(fx,y) = φ If ϕx(y)↑

dom(fx,y) = K0 If ϕx(y)↓
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Lnr is Non-re
• A similar proof exists to show that Lnr is not re.  In this case we want a function 

whose domain is Lu, if [x] (y) is undefined, and is ℵ, otherwise. 
• I’d like you to think about this one -- not an assignment, rather a challenge.  

You might consider starting with a function

HALT(x, y) * (z // 2) if z is odd
Gx,y( z )     =

HALT( <z // 2>1 , <z // 2>2 ) * (z // 2) if z is even
• But this function’s range is Lu, if [x] (y) is undefined, and is ℵ, otherwise.  

That’s not quite what we were after -- we need domain, not range -- but let’s 
assume it’s on the right track and that we have Fx,y.

• Thus, Fx,y accepts a recursive language just in case (x, y) is in Lu (that is, [x] (y) 
is defined).  But then (x, y) is not in Lu just in case Fx,y’s index is in Lnr.  

• Thus, a semi-decision procedure for Lnr implies one for the complement of Lu.  
So Lnr is not re. 
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Either Trivial or Undecidable
• The previous proof shows that we cannot decide if a (partially) 

recursive function accepts a recursive set.  We cannot even 
decide if it accepts the empty set.  

• In general, there’s really nothing that we can decide about 
recursive functions, based purely on their input/output 
behavior.  

• This generalization of what was just done is Rice’s Theorem for 
recursive index sets.  

• Let P be some set of re languages, e.g. P = { L | L is infinite re }.  
We call P a property of re languages since it divides the class 
of all re languages into two subsets, those having property P 
and those not having property P.  P is said to be trivial if it is 
empty (this is not the same as saying P contains the empty set) 
or contains all re languages.  Trivial properties are not very 
discriminating in the way they divide up the re languages (all or 
nothing).
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Rice’s Theorem
Rice’s Theorem: Let P be some non-trivial property of the re languages. Then

LP = { x | dom [x] is in P (has property P) }
is undecidable.  Note that membership in LP is based purely on the domain of a function, 
not on any aspect of its implementation.
Proof:  We will assume, wlog, that P does not contain Ø.  If it does we switch our attention 
to the complement of P.  Now, since P is non-trivial, there exists some language L with 
property P.  Let [r] be a recursive function whose domain is L (r is the index of a semi-
decision procedure for L).  Suppose P were decidable.  We will use this decision procedure 
and the existence of r to decide Lu.  First we define a function Fr,x,y for r and each function 
[x] and input y as follows.

Fr,x,y( z ) = HALT( x , y ) + HALT( r , z )
The domain of this function is L if [x](y) converges, otherwise it’s Ø.  Now if we can 
determine membership in LP , we can use this algorithm to decide Lu merely by applying it 
to Fr,x,y.  An answer as to whether or not Fr,x,y has property P is also the correct answer as 
to whether or not [x](y) converges.  
Thus, there can be no decision procedure for P.  And consequently, there can be no 
decision procedure for any non-trivial property of re languages.
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Rice’s Picture Proof

x

y
ϕx(y)

ϕr(z)
z

Let P be an arbitrary, non-trivial, I/O property of effective procedures. 
Assume wlog that the functions with empty domains are not in P.

Given x, y, r, where r is in the set SP.= {f | ϕf has property P}, define the 
function fx,y,r(z) = ϕx(y) - ϕx(y) + ϕr(z). The following illustrates fx,y,r.
Here, dom(fx,y,r) = dom(ϕr) (fx,y,r(z) = ϕr(z)) if ϕx(y)↓ ; = φ if ϕx(y)↑ . 
Thus, ϕx(y)↓ iff fx,y,r has property P, and so K0 ≤1 SP.

dom(fx,y,r) = φ If ϕx(y)↑

rng(fx,y,r) = φ If ϕx(y)↑

rng(fx,y,r) = rng(ϕr) If ϕx(y)↓

dom(fx,y,r) = dom(ϕr) If ϕx(y)↓
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Corollaries to Rice’s

Corollary:  The following properties of 
re sets are undecidable

a) L = Ø
b) L is finite
c) L is a regular set
d) L is a context-free set
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Assignment # 5
1. Let INF = { f | domain(f) is infinite } and NE = { f | there is a y 

such that f(y) converges}. Show that NE <=m INF. Present the 
mapping and then explain why it works as desired. To do 
this, define a total recursive function g, such that index f is in 
NE iff g(f) is in INF. Be sure to address both cases (f in & f not 
in)

2. Is INF <=m NE? If you say yes, show it. If you say no, give a 
convincing argument that INF is more complex that NE.

3. What, if anything, does Rice’s Theorem have to say about the 
following? In each case explain by either showing that all of 
Rice’s conditions are met or convincingly that at least one is 
not met.

a.) RANGE = { f | there is a g [ range( g ) = domain( f ) ] }
b.) PRIMITIVE = { f | f’s description uses no unbounded mu operations }
c.) FINITE = { f | domain(f) is finite }

Due: October 22



Canonical Processes, 
Groups and Grammars

Post Canonical Systems of Varying Sorts and Their 
Relation to Groups and Grammars



Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 229

Semi-Groups, Monoids, Groups

S = (G, •) is a semi-group if
G is a set, • is a binary operator, and
1. Closure: If x,y ∈ G then x • y ∈ G 
2. Associativity: x • (y • z) = (x • y) • z

S is a monoid if
3. Identity: ∃e ∈ G ∀x ∈ G [e • x = x • e = x]

S is a group if 
4. Inverse: ∀x ∈ G ∃x-1 ∈ G [x-1 • x = x • x-1 = e]

S is Abelian if • is commutative
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Finitely Presented
• If S is a semi-group (monoid, group) defined by a 

finite set of symbols Σ, called the alphabet or 
generators, and a finite set of equalities (αi = βi), 
the reflexive transitive closure of which determines 
equivalence classes over S, then S is a finitely 
presented semi-group (monoid, group). Note, the 
set S is the closure of the generators under the 
semi-group’s operator.

• The word problem for S is the problem to 
determine of two elements α, β, whether or not 
α = β, that is, whether or not they are in the same 
equivalence class.

• If • is commutative, then S is Abelian.
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Finitely Presented Monoids
• Strings over an alphabet (operation is concatenation, 

identity is string of length zero).
• Natural numbers (use alphabet {1} make + the 

operator, identity is 0 occurrences of a 1, use 
shorthand that n represents n adds: 1+1+ … +1). 
This is actually an Abelian monoid.

• In above cases, we would also need rules for 
equivalence classes, e.g., we can get the 
equivalences classes dividing the even and odd 
numbers by 
1+1 = 0
The two classes have representatives 0 and 1.
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Abelian Monoids
• Consider a finitely presented Abelian monoid over generators Σ 

= {a1,…,an}.
• Since this is Abelian, we can always organize the letters in a 

word into a canonical form, a1
k1,…,an

kn , ki is the number of 
times ai appears.

• Thus, each word is a vector <k1,.., kn> and each rule is a pair of 
such vectors.

• The above can be recast as a FRS, where each rule is bi-
directional (vector values are powers of primes) and there is no
order.  It can also be recast as a bi-directional vector addition 
system, VAS, where a rule in a VAS is of the form 

<j1,.., jn> → <k1,.., kn> 

This means add <k1-j1,.., kn-jn> to a vector <i1,.., in>, 
provided is ≥ js, 1≤s≤n.
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Thue Systems
• Devised by Axel Thue
• Just a string rewriting view of finitely 

presented monoids
• T = (Σ, R), where Σ is a finite alphabet 

and R is a finite set of bi-directional 
rules of form αi ↔ βi , αi, βi∈Σ*

• We define ⇔* as the reflexive, transitive 
closure of ⇔, where w ⇔ x iff w=yαz
and x=yβz, where α ↔ β
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Semi-Thue Systems
• Devised by Emil Post
• A one-directional version of Thue

systems
• S = (Σ, R), where Σ is a finite alphabet 

and R is a finite set of rules of form 
αi → βi , αi, βi∈Σ*

• We define ⇒* as the reflexive, transitive 
closure of ⇒, where w ⇒ x iff w=yαz
and x=yβz, where α → β
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Word Problems
• Let S = (Σ, R) be some Thue (Semi-Thue) 

system, then the word problem for S is the 
problem to determine of arbitrary words w 
and x over S, whether or not w ⇔* x (w ⇒* x )

• The Thue system word problem is the 
problem of determining membership in 
equivalence classes. This is not true for 
Semi-Thue systems.

• We can always consider just the relation ⇒* 
since the symmetric property of ⇔* comes 
directly from the rules of Thue systems.
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Post Canonical Systems
• These are a generalization of Semi-Thue systems.
• P = (Σ, V, R), where Σ is a finite alphabet, V is a finite set of 

“variables”, and R is a finite set of rules.
• Here the premise part (left side) of a rule can have many 

premise forms, e.g, a rule appears as
P1,1α1,1 P1,2… α1,n P1,n α1,n +1 ,1 1 1P2,1α2,1 P2,2… α2,n2

P2,n2
α2,n2+1 ,

…

Pk,1αk,1 Pk,2… αk,n Pk,n αk,n +1 ,k k k→ Q1β1 Q2… βnk+1
Qnk+1

βnk+1+1
• In the above, the P’s and Q’s are variables, the α’s and β’s are 

strings over Σ, and each Q must appear in at least one premise.
• We can extend the notion of ⇒* to these systems considering 

sets of words that derive conclusions. Think of the original set
as axioms, the rules as inferences and the final word as a 
theorem to be proved.
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Examples of Canonical Forms
• Propositional rules

P, P ⊃ Q  → Q
~P, P ∪ Q → Q
P ∩ Q → P oh, oh a ∩ (b ∩ c) ⇒ a ∩ (b 
P ∩ Q → Q
(P ∩ Q) ∩ R ↔ P ∩ (Q ∩ R) 
(P ∪ Q) ∪ R ↔ P ∪ (Q ∪ R) 
~(~P) ↔ P
P ∪ Q → Q ∪ P 
P ∩ Q → Q ∩ P 

• Some proofs over {a,b,(,),~,⊃,∪,∩}
{a ∪ c, b ⊃ ~c, b} ⇒ {a ∪ c, b ⊃ ~c, b, ~c} ⇒
{a ∪ c, b ⊃ ~c, b, ~c, c ∪ a} ⇒
{a ∪ c, b ⊃ ~c, b, ~c, c ∪ a, a} which proves “a”
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Simplified Canonical Forms
• Each rule of a Semi-Thue system is a canonical rule 

of the form
PαQ → PβQ

• Each rule of a Thue system is a canonical rule of the 
form
PαQ ↔ PβQ

• Each rule of a Post Normal system is a canonical 
rule of the form
αP → Pβ

• Tag systems are just Normal systems where all 
premises are of the same length (the deletion 
number), and at most one can begin with any given 
letter in Σ. That makes Tag systems deterministic.
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Examples of Post Systems
• Alphabet Σ = {a,b,#}. Semi-Thue rules:

aba → b
#b# → λ
For above, #anbam#  ⇒* λ iff n=m

• Alphabet Σ = {0,1,c,#}. Normal rules:
0c → 1
1c → c0
#c → #1 
0 → 0
1 → 1
# → # 
For above, binaryc#  ⇒* binary+1# where binary is 
some binary number.
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Simulating Turing Machines
• This is done in text and will be done in class. 

Basically, we need at least one rule for each 
4-tuple in the Turing machine’s description.

• The rules lead from one instantaneous 
description to another.

• The Turing ID αqaβ is represented by the 
string hαqaβh, a being the scanned symbol.

• The tuple q a b s leads to 
qa → sb

• Moving right and left can be harder due to 
blanks. 
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Details of Halt(TM) ≤ Word(ST)
• Let M = (Q, {0,1}, T), T is Turing table.
• If qabs ∈ T, add rule qa → sb
• If qaRs ∈ T, add rules 

– qab → asb if a≠0 ∀b∈{0,1}
– qah → as0h if a≠0 
– cqab → casb if a=0 ∀b,c∈{0,1}
– hqab → hsb if a=0 ∀b∈{0,1}
– cqah → cas0h if a=0 ∀c∈{0,1}
– hqah → hs0h if a=0 

• If qaLs ∈ T, add rules 
– bqac → sbac ∀a,b,c∈{0,1}
– hqac → hs0ac if ∀a,c∈{0,1}
– bqah → sbah if a≠0 ∀c∈{0,1}
– bqah → sbh if a=0 ∀b∈{0,1}
– hqah → hs0ah if a≠0
– hqah → hs0h if a=0
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Semi-Thue Word Problem

• Construction from TM, M, gets:
• h1xq10h ⇒∑(M)* hq0h iff x∈L(M).
• hq0h ⇒∏(M)* h1xq10h iff x∈L(M).
• hq0h ⇔∑ (M)* h1xq10h iff x∈L(M).
• Can recast both Semi-Thue and Thue

Systems to ones over alphabet {a,b} or 
{0,1}
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Assignment # 6
1. Using reduction from the complement of the Halting Problem, show the 

undecidability of the problem to determine if an arbitrary partial 
recursive function, f, has a summation upper bound. This means that 
there is a M, such that the sum of all values in the range of f (repeats 
are added in and divergence just adds 0) is ≤ M.

2. Use one of the versions of Rice’s Theorem to show the undecidability
of the problem to determine if an arbitrary partial recursive function, f, 
has a summation upper bound. This means that there is a M, such that 
the sum of all values in the range of f (repeats are added in and 
divergence just adds 0) is ≤ M.

3. Show that given a Semi-Thue, S, you can produce a Post Normal 
System, NS, such that x ⇒S* y iff $x ⇒NS* $y. You must give the 
construction of NS from S and a justification of why this meets the 
condition stated above.

Due: October 29



Formal Language Review

Pretty Basic Stuff
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Closure Properties
• Regular (Finite State) Languages

– Union, intersection, complement, substitution, 
quotient (with anything), max, min, cycle, reversal

– Use of Pumping Lemma and Myhill-Nerode
• Context Free

– Union, intersection with regular, substitution, quotient 
with regular, cycle, reversal

– Use of Pumping and Ogden’s Lemma
• Context Sensitive Languages

– Union, intersection, complement, Epsilon-free 
substitution, cycle, reversal
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Non-Closure

• CFLs not closed under
– Intersection, complement, max, min

• CSLs not closed under
– Homomorphism (or substitution with empty 

string), max (similar to homomorphism) 
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Grammars and re Sets

• Every grammar lists an re set.
• Some grammars (regular, CFL and 

CSG) produce recursive sets.
• Type 0 grammars are as powerful at 

listing re sets as Turing machines are 
at enumerating re sets (Proof later).



Formal Language

Undecidability Continued
PCP and Traces
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Post Correspondence Problem
• Many problems related to grammars can be shown 

to be no more complex than the Post 
Correspondence Problem (PCP).  

• Each instance of PCP is denoted: Given n>0, Σ a 
finite alphabet, and two n-tuples of words  
( x1, … , xn ), ( y1, … , yn ) over Σ, 
does there exist a sequence i1, … , ik , k>0, 1 ≤ ij ≤ n, 
such that
xi1 … xik = yi1 … yik ?  

• Example of PCP: 
n = 3, Σ = { a , b }, ( a b a , b b , a ),  ( b a b , b , b a a ).
Solution 2 , 3, 1 , 2    
b b   a   a b a   b b   =   b   b a a   b a b   b
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PCP Example#2

• Start with Semi-Thue System
– aba → ab; a → aa; b → a
– Instance of word problem: bbbb ⇒*? aa

• Convert to PCP
– [bbbb* ab ab aa aa a a ]

[ aba aba a a b b *aa]
– And * * a a b b

* * a a b b



Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 251

How PCP Construction Works?

• Using underscored letters (~ in text) 
avoids solutions that don’t relate to 
word problem instance. E.g.,

aba a
ab aa

• Top row insures start with [W0*
• Bottom row insures end with *Wf]
• Bottom row matches Wi, while top 

matches Wi+1 (one is underscored)
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Ambiguity of CFG
• Problem to determine if an arbitrary 

CFG is ambiguous 
S → A  |  B
A→ xi A [i]  |   xi [i] 1 ≤ i ≤ n
B→ yi B [i]  |   yi [i] 1 ≤ i ≤ n
A ⇒* xi1 … xik [ik] … [i1] k > 0
B ⇒* yi1 … yik [ik] … [i1] k > 0

• Ambiguous if and only if there is a 
solution to this PCP instance. 



Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 253

Intersection of CFLs
• Problem to determine if arbitrary CFG’s

define overlapping languages
• Just take the grammar consisting of all 

the A-rules from previous, and a 
second grammar consisting of all the 
B-rules.  Call the languages generated 
by these grammars, LA and LB. 
LA ∩ LB ≠ Ø, if and only there is a 
solution to this PCP instance.
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CSG Produces Something
S → xi S yi

R | xi T yi
R 1 ≤ i ≤ n

a T a → * T *
* a → a *
a * → * a
T → *

• Our only terminal is *.  We get strings 
of form *2j+1, for some j’s if and only if 
there is a solution to this PCP instance.
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Assignment # 7
1. Present the description of a PDA (in words) that 

accepts LA (see page 253). You may assume that [i] is 
a single symbol.

2. Present the description of a PDA (in words) that 
accepts ~LA (see page 253).

3. Use (2) to show that it is undecidable to determine of 
an arbitrary CFL, L, whether or not L = Σ*.

4. Prove that Post Correspondence Systems over {a} 
are decidable.

Due: November 14
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Traces (Valid Computations)
• A trace of a machine M, is a word of the form

# X0 # X1 # X2 # X3 # … # Xk-1 # Xk #

where Xi ⇒ Xi+1 0 ≤ i < k, X0 is a starting configuration and Xk is 
a terminating configuration.  

• We allow some laxness, where the configurations might be 
encoded in a convenient manner.  Many texts show that a 
context free grammar can be devised which approximates 
traces by either getting the even-odd pairs right, or the odd-
even pairs right.  The goal is to then to intersect the two 
languages, so the result is a trace.  This then allows us to 
create CFLs L1 and L2, where L1 ∩ L2 ≠ Ø , just in case the 
machine has an element in its domain.  Since this is 
undecidable, the non-emptiness of the intersection problem is 
also undecidable. This is an alternate proof to one we already 
showed based on PCP.
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Traces of FRS
• I have chosen, once again to use the Factor Replacement 

Systems, but this time, Factor Systems with Residues.  
The rules are unordered and each is of the form
a x + b  → c x + d

• These systems need to overcome the lack of ordering when 
simulating Register Machines.  This is done by
j. INCr[i] pn+j x → pn+i pr x 
j. DECr[s, f] pn+j pr x → pn+s x 

pn+j pr x + k pn+j → pn+f pr x + k pn+f , 1 ≤ k <  pr

We also add the halting rule associated with m+1 of
pn+m+1 x → 0 

• Thus, halting is equivalent to producing 0.  We can also add 
one more rule that guarantees we can reach 0 on both odd and 
even numbers of moves

0 → 0
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Intersection of CFLs
• Let (n, ((a1,b1,c1,d1) , … ,(ak,bk,ck,dk) ) be some factor replacement 

system with residues.  Define grammars G1 and G2 by using the 4k+2 
rules
G : Fi → 1aiFi1ci |  1ai+bi#1ci+di 1 ≤ i ≤ k

S1 → # Fi S1 |  # Fi # 1 ≤ i ≤ k
S2 → # 1x0S11z0# Z0 is 0 for us

G1 starts with S1 and G2 with S2
• Thus, using the notation of writing Y in place of 1Y, 

L1 =  L( G1 ) = { #Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }
where Y2i ⇒ Y2i+1 , 0 ≤ i ≤ j.  
This checks the even/odd steps of an even length computation.
But, L2 =  L( G2 ) = { #X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 # }
where X2i-1 ⇒ X2i , 1 ≤ i ≤ k.  
This checks the odd/steps of an even length computation.
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Intersection Continued
Now, X0 is chosen as some selected input value to 
the Factor System with Residues, and Z0 is the 
unique value (0 in our case) on which the machine 
halts.  But,
L1 ∩ L2  = {#X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 # }
where Xi ⇒ Xi+1 , 0 ≤ i < 2k, and X2k ⇒ Z0 .  This 
checks all steps of an even length computation.  But 
our original system halts if and only if it produces 0 
(Z0) in an even (also odd) number of steps.  Thus the 
intersection is non-empty just in case the Factor 
System with residue eventually produces 0 when 
started on X0, just in case the Register Machine halts 
when started on the register contents encoded by X0.
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Quotients of CFLs
• Let (n, ((a1,b1,c1,d1) , … ,(ak,bk,ck,dk) ) be some factor replacement system 

with residues.  Define grammars G1 and G2 by using the 4k+4 rules
G : Fi → 1aiFi1ci |  1ai+bi#1ci+di 1 ≤ i ≤ k

T1 → # Fi T1 |  # Fi # 1 ≤ i ≤ k
A → 1 A 1 | $ #
S1 → $T1
S2 → A T1 # 1z0 # Z0 is 0 for us

G1 starts with S1 and G2 with S2
• Thus, using the notation of writing Y in place of 1Y, 

L1 =  L( G1 ) = { $ #Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }
where Y2i ⇒ Y2i+1 , 0 ≤ i ≤ j.  
This checks the even/odd steps of an even length computation.
But, L2 =  L( G2 ) = { X $ #X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 # }
where X2i-1 ⇒ X2i , 1 ≤ i ≤ k and X = X0
This checks the odd/steps of an even length computation, and includes 
an extra copy of the starting number prior to its $.  
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Finish Quotient
Now, consider the quotient of L2 / L1 .  The 
only ways a member of L1 can match a final 
substring in L2 is to line up the $ signs.  But 
then they serve to check out the validity and 
termination of the computation.  Moreover, 
the quotient leaves only the starting number 
(the one on which the machine halts.)  Thus,
L2 / L1  = { X | the system F halts on zero }. 
Since deciding the members of an re set is in 
general undecidable, we have shown that 
membership in the quotient of two CFLs is 
also undecidable.
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Traces and Type 0 
• Here, it is actually easier to show a simulation of a Turing machine than of a 

Factor System.  
• Assume we are given some machine M, with Turing table T (using Post 

notation). We assume a tape alphabet of Σ that includes a blank symbol B.
• Consider a starting configuration C0. Our rules will be

S → # C0 # where C0 = Yq0aX is initial ID
q a → s b if q a b s ∈ T
b q a x → b a s x if q a R s ∈ T, a,b,x ∈ Σ
b q a # → b a s B # if q a R s ∈ T, a,b ∈ Σ
# q a x → # a s x if q a R s ∈ T, a,x ∈ Σ, a≠B
# q a # → # a s B # if q a R s ∈ T, a ∈ Σ, a≠B
# q a x → # s x # if q a R s ∈ T, x ∈ Σ, a=B
# q a # → # s B # if q a R s ∈ T, a=B
b q a x → s b a x if q a L s ∈ T, a,b,x ∈ Σ
# q a x → # s B a x if q a L s ∈ T, a,x ∈ Σ
b q a # → s b a # if q a L s ∈ T, a,b ∈ Σ, a≠B
# q a # → # s B a # if q a L s ∈ T, a ∈ Σ, a≠B
b q a # → s b # if q a L s ∈ T, b ∈ Σ, a=B
# q a # → # s B # if q a L s ∈ T, a=B
f → λ if f is a final state
# → λ just cleaning up the dirty linen 
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CSG and Undecidability
• We can almost do anything with a CSG that can be done with a Type 0 

grammar.  The only thing lacking is the ability to reduce lengths, but 
we can throw in a character that we think of as meaning “deleted”.  
Let’s use the letter d as a deleted character, and use the letter e to 
mark both ends of a word.

• Let G = ( V, T, P , S) be an arbitrary Type 0 grammar.
• Define the CSG G’ = (V ∪ {S’, D}, T ∪ {d, e}, S’, P’), where P’ is

S’ → e S e
D x → x D when x ∈ V ∪ T
D e → e d push the delete characters to far right
α → β where α → β ∈ P and |α| ≤ |β|
α → βDk where α → β ∈ P and |α| - |β| = k > 0

• Clearly, L(G’) = { e w e dm | w ∈ L(G) and m≥0 is some integer }
• For each w ∈ L(G), we cannot, in general, determine for which values 

of m, e w e dm ∈ L(G’).  We would need to ask a potentially infinite 
number of questions of the form 
“does e w e dm ∈ L(G’)” to determine if w ∈ L(G).  That’s a semi-
decision procedure.
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Some Consequences
• CSGs are not closed under Init, Final, Mid, quotient 

with regular sets and homomorphism (okay for λ-
free homomorphism)

• We also have that the emptiness problem is 
undecidable from this result.  That gives us two 
proofs of this one result.

• For Type 0, emptiness and even the membership 
problems are undecidable.



Summary of Grammar 
Results
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Decidability

• Everything about regular
• Membership in CFLs and CSLs

– CKY for CFLs

• Emptiness for CFLs



Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 267

Undecidability
• Is L =∅, for CSL, L?
• Is L=Σ*, for CFL (CSL), L?
• Is L1=L2 for CFLs (CSLs), L1, L2?
• Is L1⊆L2 for CFLs (CSLs ), L1, L2?
• Is L1∩L2=∅ for CFLs (CSLs ), L1, L2?
• Is L regular, for CFL (CSL), L?
• Is L1∩L2 a CFL for CFLs, L1, L2?
• Is ~L CFL, for CFL, L?
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More Undecidability

• Is CFL, L, ambiguous?
• Is L=L2, L a CFL?
• Does there exist a finite n, Ln=LN+1?
• Is L1/L2 finite, L1 and L2 CFLs?
• Membership in L1/L2, L1 and L2 CFLs?
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Word to Grammar Problem
• Recast semi-Thue system making all 

symbols non-terminal, adding S and V 
to non-terminals and terminal set Σ={a}
G: S → h1xq10h

hq0h → V
V → aV
V → λ

• x∈L(M) iff L(G) ≠ Ø iff L(G) infinite 
iff a ∈ L(G) iff L(G) = Σ*
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Consequences for Grammar
• Unsolvables

– L(G) = Ø
– L(G) = Σ*
– L(G) infinite
– w ∈ L(G), for arbitrary w
– L(G) ⊇ L(G2)
– L(G) = L(G2)

• Latter two results follow when have
– G2: S → aS | λ a∈Σ
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Turing Machine Traces

• A valid trace
– C1 # C2

R $ C3 # C4
R … $ C2k-1 # C2k

R $, 
where k ≥ 1 and Ci ⇒M Ci+1, for 1 ≤ i < 2k. 
Here, ⇒M means derive in M, and CR means 
C with its characters reversed 

• An invalid trace
– C1 # C2

R $ C3 # C4
R … $ C2k-1 # C2k

R $, 
where k ≥ 1 and for some i, it is false that 
Ci ⇒M Ci+1. 
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What’s Context Free?
• Given a Turing Machine M

– The set of invalid traces of M is Context Free
– The set of valid traces is Context Sensitive
– The set of valid terminating traces is Context 

Sensitive
– The complement of the valid traces is Context 

Free
– The complement of the valid terminating 

traces is Context Free



Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 273

What’s Undecidable?

• We cannot decide if the set of valid 
terminating traces of an arbitrary 
machine M is non-empty.

• We cannot decide if the complement of 
the set of valid terminating traces of an 
arbitrary machine M is everything. In 
fact, this is not even semi-decidable.
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L = Σ*?

• If L is regular, then L = Σ*? is decidable
– Easy – Reduce to minimal deterministic FSA, 
AL accepting L. L = Σ* iff AL is a one-state 
machine, whose only state is accepting

• If L is context free, then L = Σ*? is 
undecidable
– Just produce the complement of a Turing 

Machine’s valid terminating traces



Undecidability of Finite 
Convergence for Operators on 

Formal Languages
Relation to Real-Time 

(Constant Time) Execution
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Simple Operators

• Concatenation
– A • B = { xy | x ∈ A & y ∈ B }

• Insertion
– A B = { xyz |  y ∈ A, xz ∈ B, x, y, z ∈ Σ*}
– Clearly, since x can be λ, A • B ⊆ A B
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K-insertion 

• A [ k ] B = { x1y1x2y2 … xkykxk+1 |  
y1y2 … yk ∈ A, 
x1x2 … xkxk+1 ∈ B, 
xi, yj ∈ Σ*}

• Clearly, A • B ⊆ A [ k ] B , for all k>0
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Iterated Insertion

• A (1) [ n ] B = A [ n ] B

• A (k+1) [ n ] B = A [ n ] (A (k) [ n ] B)
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Shuffle
• Shuffle (product and bounded product)

– A B = ∪ j ≥ 1 A [ j ] B 
– A [ k ] B = ∪ 1≤j≤k A [ j ] B = A [ k ] B 

• One is tempted to define shuffle product as 
A B = A [ k ] B where 

k = μ y [ A [ j ] B = A [ j+1] B ]
but such a k may not exist – in fact, we will 
show the undecidability of determining 
whether or not k exists
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More Shuffles

• Iterated shuffle
– A 0 B = A
– A k +1 B = (A [ k ] B) B 

• Shuffle closure
– A * B = ∪ k ≥ 0 (A [ k ] B)
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Crossover

• Unconstrained crossover is defined by 
A ⊗u B = { wz, yx | wx∈A and yz∈B}

• Constrained crossover is defined by
A ⊗c B = { wz, yx | wx∈A and yz∈B, 

|w| = |y|, |x| = |z| }
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Who Cares?
• People with no real life (me?)
• Insertion and a related deletion operation 

are used in biomolecular computing and 
dynamical systems

• Shuffle is used in analyzing concurrency 
as the arbitrary interleaving of parallel 
events

• Crossover is used in genetic algorithms
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Some Known Results

• Regular languages, A and B
– A • B is regular
– A [ k ] B is regular, for all k>0
– A B is regular
– A * B is not necessarily regular 

• Deciding whether or not A * B is regular is an 
open problem
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More Known Stuff
• CFLs, A and B

– A • B is a CFL
– A B is a CFL
– A [ k ] B is not necessarily a CFL, for k>1

• Consider A=anbn; B = cmdm and k=2
• Trick is to consider (A [ 2 ] B) ∩ a*c*b*d*

– A B is not necessarily a CFL
– A * B is not necessarily a CFL 

• Deciding whether or not A * B is a CFL is an open problem
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Immediate Convergence

• L = L2 ?
• L = L L ?
• L = L L ?
• L = L * L ?
• L = L ⊗c L ?
• L = L ⊗u L ?



Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 286

Finite Convergence
• ∃k>0 Lk = Lk+1

• ∃k≥0 L (k) L = L (k+1) L 
• ∃k≥0 L [ k ] L = L [ k+1 ] L
• ∃k≥0 L k  L = L k +1 L
• ∃k≥0 L (k) ⊗c L = L (k+1) ⊗c L 
• ∃k≥0 L (k) ⊗u L = L (k+1) ⊗u L 

• ∃k≥0 A (k) B = A (k+1) B
• ∃k≥0 A [ k ] B = A [ k+1 ] B 
• ∃k≥0 A k  B = A k +1 B
• ∃k≥0 A (k) ⊗c B = A (k+1) ⊗c B 
• ∃k≥0 A (k) ⊗u B = A (k+1) ⊗u L
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Finite Power of CFG
• Let G be a context free grammar.
• Consider L(G)n

• Question1: Is L(G) = L(G)2?
• Question2: Is L(G)n = L(G)n+1, for some finite 

n>0?
• These questions are both undecidable.
• Think about why question1 is as hard as 

whether or not L(G) is Σ*. 
• Question2 requires much more thought.
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1981 Results
• Theorem 1:

The problem to determine if L = Σ* is Turing 
reducible to the problem to decide if 
L • L ⊆ L, so long as L is selected from a 
class of languages C over the alphabet Σ for 
which we can decide if Σ ∪ {λ} ⊆ L. 

• Corollary 1: 
The problem “is L • L = L, for L context free 
or context sensitive?” is undecidable 
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Proof #1
• Question: Does L • L get us anything new?

– i.e., Is L • L = L?
• Membership in a CSL is decidable.
• Claim is that L = Σ* iff

(1) Σ ∪ {λ} ⊆ L ; and
(2) L • L = L 

• Clearly, if L = Σ* then (1) and (2) trivially hold.
• Conversely, we have Σ* ⊆ L*= ∪ n≥0 Ln ⊆ L

– first inclusion follows from (1); second from (2)  
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Subsuming •

• Let ⊕ be any operation that subsumes 
concatenation, that is A • B ⊆ A ⊕ B. 

• Simple insertion is such an operation, 
since A • B ⊆ A B. 

• Unconstrained crossover also 
subsumes •, 
A ⊗c B = { wz, yx | wx∈A and yz∈B}
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L = L ⊕ L ?

• Theorem 2: 
The problem to determine if L = Σ* is 
Turing reducible to the problem to 
decide if L ⊕ L ⊆ L, so long as 
L • L ⊆ L ⊕ L and L is selected from a 
class of languages C over Σ for which 
we can decide if 
Σ ∪ {λ} ⊆ L. 
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Proof #2
• Question: Does L ⊕ L get us anything new?

– i.e., Is L ⊕ L = L?
• Membership in a CSL is decidable.
• Claim is that L = Σ* iff

(1) Σ ∪ {λ} ⊆ L ; and
(2) L ⊕ L = L 

• Clearly, if L = Σ* then (1) and (2) trivially hold.
• Conversely, we have Σ* ⊆ L*= ∪ n≥0 Ln ⊆ L

– first inclusion follows from (1); second from (1), (2) 
and the fact that L • L ⊆ L ⊕ L 



Exam#2 Review
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Material
• You are responsible for material that 

was covered on Exam#1 and the next 
few days (reducibility and Rice’s 
Theorem). 

• Study notes through page 227.
• Look back at old exam. This one will be 

similar, except that it will include some 
questions as you’ll see on the next few 
pages.
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Sample Question#1

1. Assume A ≤m B and B ≤m C. 
Prove A ≤m C.
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Sample Question#2

2. Let Incr = { f | ∀x, φf(x+1)>φf(x) }. 
Let TOT = { f | ∀x, φf(x)↓ }.
Prove that Incr ≡m TOT.
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Sample Question#3

3. Let Incr = { f | ∀x φf(x+1)>φf(x) }. Use 
Rice’s theorem to show Incr is not 
recursive.
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Sample Question#4

4. Let P = { f | ∃ x [ STP(x, f, x) ] }. Why 
does Rice’s theorem not tell us 
anything about the undecidability of 
P?
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Sample Exam#2 Q1
1. Choosing from among (REC) recursive, (RE) re non-recursive, 

(CO) co-re non-recursive, (NR) non-re, categorize each of the 
sets in a) through d). Justify your answer by showing some 
minimal quantification of some known recursive predicate or by 
another clear and convincing short argument. 

a.) { f | domain(f) is infinite } NR
Justification: ∀x ∃ <y, t> [ STP(y, f, t) && y>x ]

b.) { f  |  f converges in 10 steps for some input x } RE
Justification: ∃ x [ STP(x, f, 10) ]

c.) { f | f converges in 10 steps for some input x<10 } REC
Justification: ∃ x< 10 [ STP(x, f, 10) ]

d.) { f | domain(f) is empty } CO
Justification: ∀ <x, t> [ ~STP(x, f, t) ]
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Sample Exam#2 Q2
2. Let set A and B be each re non-recursive. Consider C = A ∩ B. For 

each part, either show sets A and B with the specified property or 
present a demonstration that this property cannot hold.

a.) Can C be recursive? YES
A = { 2x | x ∈ K} ; B = {2x+1 | x ∈ K} are each 1-1 equivalent to K and so 
are re, non-recursive.
C = A ∩ B = ∅, which is clearly recursive.

b.) Can C be re non-recursive? YES
A = K; B = K; C = A ∩ B = K which is re, non-recursive, 

c.) Can C be non-re? NO
Let fA semi-decide A; fB semi-decide B. 
That is, x∈A ⇔ fA(x)↓ and x∈B ⇔ fB(x)↓
Define fC(x) = fA(x) + fB(x)
fC(x)↓ ⇔ ( fA(x) + fB(x))↓ ⇔ fA(x)↓ &&  fB(x)↓ ⇔ x∈A && x∈B⇔
x∈ A ∩ B⇔ x∈C
Thus, fC is a semi-decision procedure for C, proving that C must be re.
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Sample Exam#2 Q3
3. Let set A and B be sets, such that A ≤m B. Answer the following, 

justifying your answers.

Assume A is non-recursive. What does this say about the complexity 
of B?
B is non-recursive. Assume otherwise. 
Since A ≤m B then ∃ total recursive function f |∀x x∈ A ⇔ f(x)∈ B.
If B were recursive and had a characteristic function (algorithm) χBthen we could solve A by χA(x) =χB(f(x)), but that contradicts B being 
non-recursive.)

Assume B is non-recursive. What does this say about the complexity 
of A?
This says nothing about A’s non-recursiveness. It does say that A is 
no worse that B, but we haven’t even bounded B’s complexity to be re. 
As an example, if A = ℵ and b ∈ B (B must be non-empty) then A ≤m B 
by f(x) = b, ∀x. Of course, A could be non-recursive. For example, if 
A=B, then A ≤m B by f(x) = x, ∀x
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Sample Exam#2 Q4
4. Assume S is the range of some partial recursive function fS. 

Prove that S is the domain and range of some partial recursive 
function gS. To get full credit, you must argue convincingly (not 
formally) that the function you specified is the correct one for
S. You may use common known recursive functions to attack 
this (e.g., STP, VALUE, UNIV), but you may not use known 
equivalent definitions of enumerable or semi-decidable.  
Define gS(x) = (∃ <y,t> [ STP(y, fS, t) && Value(y, fS, t) == x ] ) * x
gS(x) either diverges or equals x.
gS(x) = x ⇔ gS(x)↓

⇔ ∃ <y,t> [ STP(y, fS, t) && Value(y, fS, t) == x ] 
⇔ ∃ y fS(y) == x ⇔ x∈ range( fS )

Therefore x ∈ range(gS ) ⇔ x ∈ domain(gS ) ⇔ x ∈ domain(fS )
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Sample Exam#2 Q5
5. Let INFINITE = { f | domain(f) is infinite } and 

NE = { f | ∃y ϕf(y)↓ }. 
Show that NE ≤m INFINITE. Present the mapping and 
then explain why it works as desired.
Define gf(x) = μ <y,t> STP(y, f, t)
f ∈ NE ⇒ ∃ <y,t> STP(y, f, t)

Let k = μ <y,t> STP(y, f, t)
Then gf(x) = k ∀x and gf ∈ INFINITE

f ∉ NE ⇒ ∀ <y,t> ~STP(y, f, t) ⇒
∀ x gf(x)↑ ⇒ gf ∉ INFINITE

Thus, NE ≤m INFINITE as was required.
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Sample Exam#2 Q6a,b
6. What, if anything, does Rice’s Theorem have to say about the 

following? In each case explain by either showing that all of Rice’s 
conditions are met or convincingly that at least one is not met.

a.) RANGE = { f | ∃ g [ range( ϕg ) = domain( ϕf ) ] }
This is trivial since, as shown in course and assignments and first 
exam, the property holds for all f. The simple thing to do is to define 
g(x) = f(x) – f(x) + x. This means that Rice’s Theorem says nothing 
about RANGE.

b.) PRIMITIVE = { f | f’s description uses no unbounded μ operations }
This is non-trivial – F1(x) = x ∈ PRIMITIVE but 
F2(x) = μ y[x == y] ∉ PRIMITIVE.
However, PRIMITIVE is not an I/O property. Revisiting the two 
functions above, 
∀ x F1(x) = F2(x) = x, but one is in and the other is out of PRIMITIVE. 
Thus, this is not an I/O property and Rice’s Theorem says nothing 
about PRIMITIVE.
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Sample Exam#2 Q6c
c.) FINITE = { f | domain(f) is finite }

Non-Trivial: ↑(x) = μ y[x == x+1] ∈ FINITE; s(x) = x+1 ∉ FINITE.
I/O Property: Let f, g be arbitrary prf's such that ∀ x f(x) = g(x) 
(meaning if one converges, both do and produce the same 
value; but if one diverges, both do).
f ∈ FINITE ⇔ domain(f) is finite Definition of FINITE

⇔ domain(g) is finite Since domain(f) = domain(g)
⇔ g ∈ FINITE Definition of FINITE

Thus, Rice’s Theorem applies, proving that FINITE is non-
recursive.



Term Rewriting
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Types of Rewriting
• String rewriting is just grammars and the variety of 

rewriting systems posed by Post. In fact. L-systems 
are a form of concurrent string rewriting.

• Graph rewriting systems are often used in various 
forms of analyzers and optimizers, e.g., compiler 
optimizers.

• Some rewriting systems have a knowledge base 
underlying them, e.g., about operations on numbers. 
Such systems often are used as programming 
languages in systems that seek to simplify 
expressions, e.g., in Mathematica.
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Term Rewriting Systems

• These have equations as rules, but they 
are intended to be be rewritten in one 
direction only (lhs matches subterm
which is replaced by rhs).

• Matching is a form of unification (as in 
theorem proving and Prolog).
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TRS (Ackerman’s Function)
R1: f(0,y) → y+1
R2: f(x+1,0) → f(x,1)
R3: f(x+1,y+1) → f(x,f(x+1,y))
For all x, y in ℵ.
f(0,y) ⇒ y+1 by R1
f(1,y) ⇒ f(0,f(1,y-1)) if y>0

⇒ f(1,y-1)+1 ⇒ … ⇒ f(1,0) + y ⇒ f(0,1) + y ⇒ y+2
f(2,y) ⇒ f(1,f(2,y-1)) if y>0

⇒ … ⇒ f(2,y-1)+2 ⇒ … ⇒ 2y+3
Thus, f(2,3) ⇒ 9
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Process

• Each element is a term
• Each term is rewritten by an equation
• Each application of an equation is 

based on a substitution, e.g.,
f(1,2) [x→0, y→1 in f(x+1,y+1) → f(x,f(x+1,y))] 
⇒ f(0,f(1,1))

• Equations are only applied left to right
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Sort by Rewriting
max(0,x) → x
max(x,0) → x
max(s(x),s(y)) → s(max(x,y))
min(0,x) → x
min(x,0) → x
min(s(x),s(y)) → s(min(x,y))
sort(λ) → λ
sort(x : y) → insert(x, sort(y))
insert(x,λ) → x : λ
insert(x,y : z) → max(x,y) : insert(min(x,y), z)
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Example Sort
• sort(5:2:3:e) →
• insert(5,sort(2:3:e)) →
• insert(5,insert(2,sort(3:e))) →
• insert(5,insert(2,insert(3:e))) →
• insert(5,insert(2,3:e)) →
• insert(5,max(2,3):insert(min(2,3),e)) → …
• insert(5,3:insert(2,e)) →
• insert(5,3:2:e))) →
• 5:insert(3,2:e) → …
• 5:3:insert(2:e) → …
• 5:3:2:e 
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Simplification
0 + X = X
succ(X) + Y = succ(X + Y) 
0 * X = 0 
succ(X) * Y = X * Y + Y
2 * 3 = 

succ(succ(0)) * 3 = 
(succ(0)*3) + 3 = 0*3 + 3 + 3 =
0 + 3 + 3 = 3 + 3 =
… = succ(succ(succ(3))) = 6

Assumes knowledge of simple counting by 1.
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Differentiation
Consider the rewriting rules
1. x + 0 → x
2. 0 + x → x
3. x × 0 → 0
4. 0 × x → 0
5. x × 1 → x
6. 1 × x → x
7. P(x, 1) → x
8. P(x, 0) → 1
9. D(n, x) → 0 where n is any constant
10. D(x, x) → 1
11. D(y + z, x) → D(y, x) + D(z, x) 
12. D(y × z, x) → y × D(z, x) + z × D(y, x) 
13. D(P(x, n), x) → n × P(x, n-1) where n is any constant
14. D(y, x, k) → D(D(y, x, k-1), x) provided k is a constant and k>1
15. D(y, x, 1) → D(y, x)
Rewrite D(P(x, 2) + P(x, 1), x, 2) until it terminates. 
Assume normal precedence of arithmetic operators.
This is non-deterministic.
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Canonical Systems
• A terminating TRS is one where all starting terms t 

lead eventually to a term t’ for which no equations 
apply

• A confluent TRs is one where, 
if t⇒*t1 and t ⇒*t2 then there is a t’ such that t1⇒*t’
and t2 ⇒*t’

• A terminating, confluent trs is called canonical
• Canonical systems are useful in computation 

because they always halt and always produce a 
single result

• Neither confluence nor termination is decidable, but 
they are for some restricted systems, e.g., ones 
where the rhs of all equations have no variables 



Lindenmayer systems

Grammars and Biology
Modeling Plants

Massively inspired by 
Prusinkiewicz & Lindenmayer

The algorithmic beauty of plants, 1990, Springer - Verlag
Available online at:

http://algorithmicbotany.org/papers/
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Aristid Lindenmayer 
(biologist and botanist)

• Worked on the growth patterns of 
yeast, filamentous fungi and algae

• Formal description of the development 
of such simple multicellular organisms

• Extended to describe complex 
branching structures and plants
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What are L-systems?

• String-rewriting systems
• Parallel application of the rules

– Reflects the biological motivation
– Captures cell divisions occurring at the same 

time
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The first L-system?
• Lindenmayer's original L-system for 

modeling the growth of algae. 
– variables : A B
– Axiom ω : B 
– productions : (A → AB), (B → A)

• which produces: 
– n=0 : B → A
– n=1 : A → AB
– n=2 : AB → ABA
– n=3 : ABA → ABAAB
– n=4 : ABAAB → ABAABABA
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Turtle Interpretation
State of the turtle: (x, y, α)

(x, y): Cartesian position of the turtle
α: heading of the turtle, i.e. the direction in which it is heading

Also
d: step size
δ: angle increment

Commands:
F move forward a step of length d drawing a line segment.
f the same without drawing.
+ turn left by angle δ.
- turn right.
[ Push state
] Pop state
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Koch island

• ω: F-F-F-F
• p:

F F-F+F+FF-F-F+F

• δ=90°
• d is decreased 4 

times between each 
derivation step
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Branching structures
ω: F
p1: F → F[+F]F[−F]F : .33 
p2: F → F[+F]F : .33 
p3: F → F[−F]F : .34
• [ and ] create a branching structure
• Probabilities of application are

Added at the end of the rules
• A single L-system creates a 

variety of plants

p1 p2 p3
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L-Systems for trees

ω: FA(1)

p1: A(k) → /(ϕ) [+(α) FA(k+1)] 
–(β) FA(k + 1): 

min{1, (2k + 1)/k2}

p2: A(k) → /(ϕ) –(β) FA(k + 1): 
max{0, 1 – (2k + 1)/k2}
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Interpretation
axiom ω
Module F is a branch segment  
Module A(k) is an apex. 

This module grows the tree
k is the generation step

Modules +, – denotes turn
Module / denotes twist
The mean angles for the rotations are specified for a 

given class of trees (α = 32°, β =20°, ϕ = 90°).  
Module A(k) can be rewritten non-deterministically

p1 produces 2 branches; prob1 = min{1, (2k + 1)/k2}
p2 produces a single branch segment; probability = 1- prob1



Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 325

Generations of a Single Tree
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Tree LOD

• Hierarchical
– geometry is replaced by productions

• for example, all geometry due to the symbols 
introduced in the 10th iteration is replaced

– geometry is replaced with textured impostors
• cross polygons
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Environment-sensitive
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The creation of urban 
environments
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Halting vs Mortality
• The Halting Problem (Set Halt)

– Given an arbitrary machine M and starting 
configuration C, does M halt eventually when started 
on C

• The Uniform Halting Problem (Set Total)
– Given an arbitrary machine M does M halt eventually 

no matter what finite configuration it is started on?
• The Mortality Problem (Set Mortal)

– Given an arbitrary machine M does M halt eventually 
no matter what configuration (finite or infinite) it is 
started on?
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Finite vs Infinite?

• Consider the machine that computes 
x+1, given input x, leaving its input 
unaltered.

• Unary notation. Copy x 1’s. Append a 1.
– On finite input x, machine eventually halts
– But, given a tape with an infinite number of 

1’s, this never stops.
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Turing Machine Real-Time Set
• CTime = RT = { M | ∃K [ M halts in at most K steps 

independent of its starting configuration ] }
• RT cannot be shown undecidable by Rice’s Theorem 

as it breaks property 2
– Choose M1 and M2 to each Standard Turing Compute (STC) 

ZERO
– M1 is R (move right to end on a zero)
– M2 is L R R (time is dependent on argument)
– M1 is in RT; M2 is not in RT but they have same I/O behavior, so

RT does not adhere to property 2
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Analyzing with Quantifiers
• CTime = RT = { M | ∃K ∀C [ STP(C, M, K) ] }
• This would appear to imply that RT is not even re. 

However, a TM that only runs for K steps can only 
scan at most K distinct tape symbols. Thus, if we 
use unary notation, RT can be expressed

• CTime = RT = { M | ∃K ∀C|C|≤K [ STP(C, M, K) ] }
• We can dovetail over the set of all TMs, M, and all K, 

listing those M that halt in constant time.



Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 334

Immortality Problem

• The immortality problem for Turing 
machines is the problem to determine 
of an arbitrary TM, M, if there exist a 
configuration (not necessarily finite) 
that causes M to run forever.

• Its complement, the mortality problem 
is re, non-recursive and this is the 
basis of our proof.
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Infinite Configurations

• Consider the Turing machine
– L R R

• This is just our ZERO machine of a few 
pages ago.

• On a finitely marked tape, this machine 
is mortal, but on an infinitely marked 
one it can be immortal.
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Hooper’s Result
• Theorem 3 (Hooper 1966):

Mortal is re undecidable 
• Note, the seemingly related problem of 

determining if a Turing machine has 
any finite immortal configurations is 
the complement of TOT and is not even 
re.

• Unfortunately, Hoopers’ proof is quite 
complex, so we’ll just accept the result.
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Mortal and RT
Theorem 4: The set of mortal TMs is exactly the same 

as the set of TM in RT.
Proof: If M∈RT then M∈MORTAL, so RT ⊂ MORTAL.

Let M∉RT. If any finite ID does not lead to a halt, then 
M∉MORTAL. Assume then that all finite IDs cause M 
to halt. Let D be the set of IDs such that, if M starts 
on d∈D, it will eventually scan all of d, before 
scanning any other square of the tape. Let {q1,…,qm} 
be the states of M. We define a forest of m trees, one 
for each state, such that the jth tree has root qj. If d0,d1∈D and qj is a symbol of d0 and d1 and d1=σd0 or 
d1=d0σ where σ is a tape symbol, then d0 is a parent 
of d1 in the jth tree.
(Continued)
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Mortal and RT (continued)
Note that when M starts in d1, the square 
containing σ is scanned after every other square of 
d1, but before any square not in d1. Since M is not in 
RT but every finite ID causes it to halt, at least one of 
the trees of the forest must be infinite. Since the 
degree of each vertex is finite (bounded by the 
number of tape symbols), at least one tree must 
have an infinite branch. Therefore, there exists an 
infinite ID that causes M to travel an infinite distance 
on the tape. It follows that M∉MORTAL, and so if 
M∉RT then M∉MORTAL. Hence, MORTAL ⊂ RT.

Combining the two parts, RT = MORTAL.
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Consequences

• We cannot decide if the set of valid 
terminating traces of an arbitrary 
machine M are finite.

• Put differently, we cannot decide if 
there is an upper bound on the length 
of any valid trace.
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1981, Again

• Theorem 5:
The problem to determine, for an 
arbitrary context free language L, if 
there exist a finite n such that Ln = Ln+1

is undecidable. 
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L for Machine M

• L1 = { C1# C2
R $ | 

C1, C2 are configurations },
• L2 = { C1#C2

R$C3#C4
R … $C2k-1#C2k

R$ | 
where k ≥ 1 and, for some i, 1 ≤ i < 2k, 
Ci ⇒M Ci+1 is false },

• L = L1 ∪ L2 ∪ {λ}.
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Finite Power Property
• L is context free. 
• Any product of L1 and L2, which contains L2 at least 

once, is L2. For instance, L1 • L2 = L2 • L1 = L2 • L2 = 
L2.  

• This shows that (L1 ∪ L2)n = L1
n ∪ L2. 

• Thus, Ln = {λ} ∪ L1 ∪ L1
2 … ∪ L1

n ∪ L2. 
• Analyzing L1 and L2 we see that L1

n ∩ L2 ≠ Ø just in 
case there is a word C1 # C2

R $ C3 # C4
R … $ C2n-1 # 

C2n
R $ in L1

n that is not also in L2. 
• But then there is some valid trace of length 2n. 
• L has the finite power property iff M is in RT (CTime). 
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Another View of Finite Power
• Create CFGs for the following

– L1 = { #C | C is a configuration of M, a FRS with Residue }
– L2 = { #C1#C2#…#Cn | ~(Ci ⇒ Ci+1), for some I }
– Consider L = (λ ∪ L1 ∪ L2)
– Now, consider L2.

• This is λ ∪ L1 ∪ L2 ∪ L1
2 ∪ L2

2 ∪ L1L2 ∪ L2L1
• But, L2

2 ∪ L1L2 ∪ L2L1 ⊂ L2
• So, L2 = L ∪ L1

2 = L ∪ { #C1#C2 | C1 ⇒ C2 }
• And, Lk = L ∪ L1

k = L ∪ { #C1#C2#…#Ck | Ci ⇒ Ci+1, 1≤i<k}

• L has the finite power property if and only if M halts 
in k or fewer steps, for some finite k, independent of 
its starting configuration. Thus, Finite Power for 
CFLs is undecidable. Or is this a false proof????
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Finite Convergence
• Theorem 6:

The problem to determine, for an 
arbitrary regular language R and 
context free language L, either of the 
following predicates is undecidable 

∃k≥0 R (k) L = R (k+1) L 
∃k≥0 R [ k ] L = R [ k+1 ] L  
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The Magic R and L
• Let L’ be any arbitrary CFL
• It is undecidable if L’ = Σ*
• We can check if λ is in L’. If not, L’ ≠ Σ*
• Let L = (L’ #)* L’ and R = Σ*
• L’ = Σ* iff R (0) L = R (1) L 

iff ∃k≥0 R (k) L = R (k+1) L 
• L’ = Σ* iff R [0] L = R [1] L 

iff ∃k≥0 R [ k ] L = R [ k+1 ] L 
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Propositional Calculus

Axiomatizable Fragments
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Propositional Calculus

• Mathematical of unquantified logical 
expressions

• Essentially Boolean algebra
• Goal is to reason about propositions
• Often interested in determining

– Is a well-formed formula (wff) a tautology?
– Is a wff refutable (unsatisfiable)?
– Is a wff satisfiable? (classic NP-complete)
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Tautology and Satisfiability

• The classic approaches are:
– Truth Table
– Axiomatic System (axioms and inferences)

• Truth Table
– Clearly exponential in number of variables

• Axiomatic Systems Rules of Inference
– Substitution and Modus Ponens
– Resolution / Unification
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Proving Consequences
• Start with a set of axioms (all 

tautologies)
• Using substitution and MP 

(P, P ⊃Q ⇒ Q)
derive consequences of axioms (also 
tautologies, but just a fragment of all)

• Can create complete sets of axioms
• Need 3 variables for associativity, e.g., 

(p1 ∨ p2) ∨ p3   ⊃ p1 ∨ (p2 ∨ p3)
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Some Undecidables

• Given a set of axioms,
– Is this set complete?
– Given a tautology T, is T a consequent?

• The above are even undecidable with 
one axiom and with only 2 variables. I 
will show this result shortly.
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Refutation

• If we wish to prove that some wff, F, is 
a tautology, we could negate it and try 
to prove that the new formula is 
refutable (cannot be satisfied; contains 
a logical contradiction).

• This is often done using resolution.
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Resolution
• Put formula in Conjunctive Normal 

Form (CNF)
• If have terms of conjunction

(P ∨ Q), (R  ∨ ~Q)
then can determine that (P ∨ R)

• If we ever get a null conclusion, we 
have refuted the proposition

• Resolution is not complete for 
derivation, but it is for refutation
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Axioms

• Must be tautologies
• Can be incomplete
• Might have limitations on them and on 

WFFs, e.g.,
– Just implication
– Only n variables
– Single axiom
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Simulating Machines

• Linear representations require 
associativity, unless all operations can 
be performed on prefix only (or suffix 
only)

• Prefix and suffix based operations are 
single stacks and limit us to CFLs

• Can simulate Post normal Forms with 
just 3 variables.
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Diadic PIPC

• Diadic limits us to two variables
• PIPC means Partial Implicational 

Propositional Calculus, and limits us to 
implication as only connective

• Partial just means we get a fragment
• Problems

– Is fragment complete?
– Can F be derived by substitution and MP?
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Living without Associativity

• Consider a two-stack model of a TM
• Could somehow use one variable for 

left stack and other for right
• Must find a way to encode a sequence 

as a composition of forms – that’s the 
key to this simulation
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Composition Encoding

• Consider (p ⊃ p), (p ⊃ (p ⊃ p) ), 
(p ⊃ (p ⊃ (p ⊃ p) ) ), …
– No form is a substitution instance of any of the 

other, so they can’t be confused
– All are tautologies

• Consider ((X ⊃ Y) ⊃ Y)
– This is just X ∨ Y
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Encoding
• Use (p ⊃ p) as form of bottom of stack
• Use (p ⊃ (p ⊃ p)) as form for letter 0
• Use (p ⊃ (p ⊃ (p ⊃ p))) as form for 1
• Etc.
• String 01 (reading top to bottom of stack) is

– (   ( (p ⊃ p) ⊃ ( (p ⊃ p) ⊃ ( (p ⊃ p) ⊃ (p ⊃ p) ) ) ) ⊃
( ( (p ⊃ p) ⊃ ( (p ⊃ p) ⊃ ( (p ⊃ p) ⊃ (p ⊃ p) ) ) ) ⊃
( (p ⊃ p) ⊃ ( (p ⊃ p) ⊃ ( (p ⊃ p) ⊃ (p ⊃ p) ) ) ) ) )
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Encodings
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Creating Terminal IDs
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Reversing Print and Left
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Reversing Right 
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The Rest of the Story

• It’s in the paper
• Result is that word decision problem 

for membership in the theorems of a 
diadic pipc is undecidable



First Order Predicate 
Calculus

Undecidability and Reduction 
Classes
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First Order Primitive Symbols
• Universe of discourse: U
• Variables: x, x1, x2, …, y, y1, y2, …, etc. over U
• Functions: f, f1, …, g, g1, …, etc. from Un to U, where n is the 

arity of the given function
• A set of constants denoted a, a1, …, etc. These can be viewed 

as 0-ary functions.
• Predicates: P, P1, …, etc. from Un to {T,F}. 
• The logical constants T and F. These can be viewed as 0–ary

predicates.
• Boolean operators: 

∧ (and), ∨ (or), ¬ (not), ⊃ (implies), ≡ (equivalence)
• Quantifiers over elements of U: ∃ (there exists), ∀ (for all)
• Braces ([,]) to disambiguate bindings
• If we wish, we can also add equality to obtain a first order logic 

with equality
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First Order Terms
• Any constant is a term (with no free 

variables). 
• Any variable is a term (whose only free 

variable is itself). 
• Any expression f(t1,...,tn) of n≥1 arguments 

(where each argument ti is a term and f is a 
function symbol of arity n) is a term. Its free 
variables are the free variables of any of the 
terms ti. 

• Nothing else is a term. 
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Well-Formed Formulas (WFFs)
• If P is a relation of valence n ≥ 1 and the ti are terms then P(t1,...,tn) 

is well-formed. Its free variables are the free variables of any of the 
terms ti. All such formulas are said to be atomic. 

• If φ is a wff, then ¬φ is a wff. Its free variables are the free variables 
of φ. 

• If φ and ψ are wffs, then [φ ∧ ψ], [φ ∨ ψ], [φ ⊃ ψ], [φ ≡ ψ] are wffs. Its 
free variables are the free variables of φ or ψ. 

• If φ is a wff, then ∀x[φ] and ∃x[φ] are wffs (and similarly for any 
other variable in place of x). Its free variables are the free variables 
of φ or ψ other than x. Any instance of x (or other variable replacing 
x in this construction) is said to be bound — not free — in ∀x[φ] and 
∃x[φ]. 

• Nothing else is a wff. 
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Substitution
• If t is a term and φ(x) is a formula possibly containing x as a 

free variable, then φ(t) is defined to be the result of replacing all 
free instances of x by t, provided that no free variable of t
becomes bound in this process. 

• If some free variable of t becomes bound, then to substitute t
for x it is first necessary to change the names of bound 
variables of φ to something other than the free variables of t. 
To see why this condition is necessary, consider the formula 
φ(x) given by ∀y y≤x ("x is maximal"). If t is a term without y as 
a free variable, then φ(t) just means t is maximal. However if t is 
y the formula φ(y) is ∀y y≤y which does not say that y is 
maximal. The problem is that the free variable y of t (=y) 
became bound when we substituted y for x in φ(x). So to form 
φ(y) we must first change the bound variable y of φ to 
something else, say z, so that φ(y) is then ∀z z≤y. Forgetting 
this condition is a notorious cause of errors. 
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Inference (Deduction)
• We can denote deduction by the symbol ├
├ φ means that φ can be proven with no axioms 
(pre-suppositions)
π├ φ means φ can be proven assuming π
π├ φ is equivalent to ├ π ⊃ φ

• Modus Ponens
If φ and φ ⊃ ψ are proved, then one can deduce ψ.

• Universal Generalization
If φ(x) is proved then one can deduce ∀x[φ(x)]

• Universal Instantiation
If ∀x[φ(x)] is proved then one can deduce φ(t) where 
all free occurrences of variable x are replaced by the 
term t. Of course, we can make t = x, and just remove 
the universal quantifier.
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First Order Theories

• A first-order theory consists of a finite 
set of axioms and the statements 
deducible from them. 

• In general, it not decidable if a given 
proposition is deducible within an 
arbitrary first-order theory. That was 
proven by Gödel in his famous 
incompleteness theorem.
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Restricted Forms

• Prenex: 
Starts with all quantifiers followed by a 
quantifier free part, called the matrix

• Conjunctive Normal Form (CNF):
Conjunction (ands) of disjuncts (ors)
The terms in each disjunct are 
predicates and negations of predicates
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Reduction Classes
• A Reduction Class is a restricted set of wff, 

R, such that there exists a total recursive 
procedure, f, that maps an arbitrary first 
order wff, w, to a wff, f(w), in R, such that ├ w 
iff ├ f(w).

• I will give you a paper that shows that the set 
of prenex formulas with two universals and 
no existentials, and in conjunctive normal 
form with just two variables, x and y, one 
binary function, f, and one unary predicate, 
T, is a reduction class.
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Sketch of Proof
• We first encode variables p1 and p2 as 

variables x and y.
• We then encode  b ⊃ c  as  f ( b, c)
• We then declare that a formula, P, is a 

theorem by stating T(P)
• A1 is the first axiom. For examples, if axiom 

A1 is ((p1 ⊃p2) ⊃p2) ⊃ ((p2 ⊃p1) ⊃p1) then we 
encode this as A1*=T(f(f(f(x,y),y),f(f(y,x),x)))

• We encode the entire system as D as 
A1*&…&An*&∀x∀y [T(x) & T(f(x,y)) ⊃ T(y)]
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General Idea

• Get axioms easily from A1*&…&An*
• Get substitution based on rules from 

first order such as universal 
generalization and instantiation

• Get MP from the last part 
∀x∀y [T(x) & T(f(x,y)) ⊃ T(y)]
which in effect mirrors propositional 
MP using f as a substitute for implies
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Inductive Steps

• k=1: This can only be an axiom. We can 
clearly deduce Ai* from D.

• k>1: 
– if axiom, no problem;
– if substitution of already proved theorem, then 

do some instantiation and generalization (see 
paper for details)

– If MP, also see paper, but it’s really easy; you 
just must be precise



Final Exam Topics

Exclusions as well as Inclusions
Material is from 111 on.
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Exclusions

• No explicit Turing Machines to write
• No explicit FRSs to write
• No explicit Register Machines to write
• No Rice-Shapiro (but Rice is definitely 

in)
• No explicit S-m-n, recursion or fixed 

point theorems
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Inclusions (Guarantees)
• Repeat of material from Exam#2
• A question about quantification
• A question about Real-Time and/or Finite Power Property
• Closure of recursive/re sets
• A question about K and/or K0
• Various re and recursive equivalent definitions
• A reduction or two; a proof by diagonalization
• Use of STP/VALUE
• A question about some simple concepts associated with 

propositional logic
• A question about monoids, Post Normal Systems and/or Semi-

Thue Systems
• More on next page
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Guarantees – More
• Application of Rice’s Theorem
• Many-one reduction
• Some CFG that you must write
• Closure question(s)
• Decision problems for languages
• Trace related question
• PCP related question
• Term rewriting question
• L-system question
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Sample#1
1. For each of the following sets, write a set 

description that involves the use of a minimum 
sequence of alternating quantifiers in front of a 
totally computable predicate (typically formed from 
STP and/or VALUE). Choosing from among (REC) 
recursive, (RE) re non-recursive, (CO-RE) 
complement of re non-recursive, (HU) non-re/non-
co-re, categorize each of the sets based on the 
quantified predicate you just wrote. No proofs are 
required. 
a.)S = { f | f(x) ↑ for all x }
b.)A = { <f,x> | f(x) = 0 }
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Sample#2
2.Let set A be recursive, B be re non-

recursive and C be non-re. Choosing 
from among (REC) recursive, (RE) re 
non-recursive, (NR) non-re, categorize 
each of the sets in a) through b) by 
listing all possible categories. Briefly, 
but convincingly, justify each answer.
a.) A * B = { x*y | x ∈ A and y ∈ B }
b.) B ∩ C = { x | x ∈ B and x ∈ C }
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Sample#3

3.Let S be an arbitrary set. 

Show that S is infinite recursive if and 
only if it can be enumerated by a 
monotonically increasing function fS.
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Sample#4

4.Prove that the Halting Problem 
(the set K0) is not decidable within any 
formal model of computation. 

(Hint: A diagonalization proof is 
required.) 
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Sample#5

5.Consider the set of indices 
UNDEFINED = { f |∀<x,t> [~STP(x, f, t)]}. 
Use Rice’s Theorem to show that 
UNDEFINED is not recursive. Hint: 
There are two properties that must be 
demonstrated.
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Sample#6

6.Show that ~K0 ≤m UNDEFINED, where 
~K0 = { <f ,x> | ϕf(x)↑=∀t [~STP(x, f, t)] }.
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Sample Question#7

7. Present a Context-Free Grammar, G, 
such that L(G) = { aibjck | i<k or j<k }.

What is max(L(G))?

What is min(L(G))?



Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 388

Sample Question#8

8. Assuming the undecidability of PCP, 
show that the ambiguity problem for 
Context-Free Grammars is 
undecidable. 
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Sample Question#9
9. Prove that if L is a Context-Free Language 

then so is Mid(L) = { y | ∃ x,z [ xyz ∈ L ] }. 
You may assume that CFLs are closed 
under substitution, homomorphism, 
concatenation, and intersection with 
regular languages.
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Sample Question#10

10.Let R be regular and L1,L2 be context 
free. What can you say about the 
complexity of the languages S?

a) S = L1/R
b) S = L1/L2
c) S = L1∪R
d) S = L1∩L2
e) S, where S⊂R
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Sample Question#11

11.Present an outline of the proof that 
the CSL’s are not closed under 
homomorphism. You may assume 
that the phrase structured grammars 
can produce non-CSL languages.
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Sample Question#12

12.Why are traces of computation hard 
(non-CFLs) but the complements of 
traces are easy (CFLs)?
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Sample Question#13

13.Categorize the language L as to 
whether it is a CFL or not. If it is a 
CFL, show a grammar; if not use the 
Pumping Lemma to prove this.
L ={ aibjck | k≥i and k≥j }
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Sample#14
14. Choosing from among (D) decidable, (U) 

undecidable, (?) unknown, categorize the 
problem “L is infinite?” for each of the 
following classes of languages. In each case, 
justify your answer. You need not provide a 
proof, but your justification should 
demonstrate you could do so.
L is Regular:
L is Context Free:
L is Context Sensitive:
L is Recursively Enumerable:
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Sample#15
15. Define each of the following:

Satisfiability of a proposition
Immortality Problem for Turing 
Machines
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Sample#16
16. Differentiate Chomsky grammars 

from Lindenmayer Systems by 
providing two ways in which they 
operate differently.
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Extra Promises

• I will create a term rewriting system and 
an expression that you must rewrite in 
accordance with the system’s rules.

• I will create an L-System with an axiom 
and have you apply the axiom and a 
second generation. The answer may be 
in the form of a graphical drawing 
based on F, + and - operations.
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Fibonacci Numbers
If we define the following simple Lindenmayer system (grammar):

non-terminals : A B
constants : none
ω (start symbol) : A
rules : (A → B), (B → AB)

then this L-system produces the following sequence of strings:
n=0 : A
n=1 : B
n=2 :
n=3 :
n=4 :
n=5 :
n=6 :
n=7 :

What is the relation of these strings to Fibonacci numbers?
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Variant of Koch Curve
A variant of the Koch curve which uses only right-angles.

non-terminals : F
constants : + −
start : F
rules : (F → F+F−F−F+F)

Here, F means "draw forward", + means "turn left 90°", and −
means "turn right 90°“. Write the strings and draw the images 
associated with the following numbers of iterations. I did n=0.
n=0: 

F −
n=1: 

n=2: 



Recursion Theorem

Self Reproducibility
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Simple Form

Theorem: There is an index e, such that
∀x φe(x) = e

• This means that we have a function that 
always produces its own description 
(index) no matter what input you give it.

• People used to have fun trying to find 
the smallest self-reproducing Lisp 
program or Turing machine. 



Fixed Point Theorem

A property of all indexing 
schemes
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The Fixed Point Theorem

Theorem: Let f(z) be any computable 
function. Then there is an index e such 
that
∀x φf(e)(x) = φe(x)

• There are many forms of computation 
that seek a fixed point. Correctness 
proofs are often of this sort. 



Classifying Unsolvable 
Problems

Rice-Shapiro Theorem
Minimum Quantification
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Rice-Shapiro Theorem

• Properties of a set of indices P that are 
required if P is re:
– If L is in (has property) P and L ⊆ L’, for some 

re set L’, then L’ is in P.
– If L is an infinite set in P, then there is some 

finite subset L’ of L that is in P.
– The set of finite languages in P is 

enumerable.



Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 406

Using Extended Rice
• Violate Condition # 1

– L = ∅
– L is recursive
– L is a singleton set
– L is a regular set

• Violates Condition # 2
– L = Σ*

• Violates Condition # 3
– L – Lu ≠ ∅
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RE Sets

• L ≠ ∅

• L contains at least 3 numbers

• W is in L, for a fixed W

• L ∩ Lu ≠ ∅
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Minimum Quantification

• Recursive: unquantified total predicate
• RE: existentially quantified
• ~ RE: universally quantified
• Recursive:  Can express as RE & ~RE
• TOT: universal/existential 
• ~TOT: existential/universal
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