- 16 1. Choosing from among (REC) recursive, (RE) re non-recursive, (NR) non-re, categorize each of the sets in a) through d). Justify your answer by showing some minimal quantification of some known recursive predicate or by another clear and convincing short argument.
 - a.) { <f,x>| ∀(t>x) STP(x,f,t) } <u>REC</u> Justification: This is equivalent to STP(x, f, x+1). That's because STP(x, f, s) implies that STP(x, f, t), where t ≥ s.
 b.) { f | ∀x f(x) is a prime number } <u>NR</u> Justification: This is ∀x ∃t [STP(x, f, t) && isPrime(Value(x, f, t))] Some of you thought it was REC because primality is recursive, but that's not enough since we are looking at all x, and divergence is necessary.
 c.) { f | ∃x f(x)↓ } <u>RE</u> Justification: This is ∃<t,x> [STP(x, f, t)]. It's just L_{ne}.
 d.) { x | ∀f f(x)↑ } <u>REC</u> Justification: No x has this property. An easy way to see this is by f(x) = x (a base primitive

recursive function). This shows that all x are included in the domain of some function.

15 2. Let set A be recursive, B be re non-recursive and C be non-re. Choosing from among (REC) recursive, (RE) re non-recursive, (NR) non-re, categorize the set D in each of a) through e) by listing all possible categories. No justification is required.

$a.) D = \sim A \cup B$	REC, RE
b.) $\mathbf{D} = \mathbf{A} \cap \mathbf{\sim} \mathbf{C}$	REC, RE, NR
$\mathbf{c.)} \ \mathbf{D} = \mathbf{B} - \mathbf{A}$	REC, RE
$\mathbf{d.)} \mathbf{D} = \mathbf{C} \cup \mathbf{\sim} \mathbf{C}$	REC
e.) A \subseteq D \subseteq B	REC, RE, NR

7 3. Using the definition that S is semi-decidable iff S is the domain of some procedure g_S (partial recursive function), prove that if both S and its complement ~S are semi-decidable then S is

decidable. Note: To get full credit, you must show the characteristic function for S, χ_S , and argue convincingly (not formally) that the function you specified is the correct one for S. Hint: The **STP** predicate is useful here. You may also use any other known total recursive functions to attack this.

 $\chi_{S}(x) = STP(x, g_{S}, \mu t [STP(x, g_{S}, t] || STP(x, g_{\sim S}, t)]$

Since x is either in S or its complement, then x is either in the domain of g_S or of $g_{\sim S}$, then there is some t such that either $STP(x, g_S, t)$ or $STP(x, g_{\sim S}, t)$. Of course, x can only be in the domain of one of these. Now, once we get t, we can just see if $STP(x, g_S, t)$. If so, $x \in S$, else $x \notin S$.

10 **4.** Prove that the **Uniform Halting Problem** (the set **TOTAL**) is not recursively enumerable within any formal model of computation. You may assume the existence of a universal machine. (Hint: A diagonalization proof is required and the most direct approach is via recursive functions.)

Assume TOTAL is re, then it is the range of some total function, T. Define C by C(x) = Univ(T(x), x) + 1. Now, since T(x) enumerates the indices of total functions, then for each x, Univ(T(x), x) is defined (converges). Thus, C is total. Thus, there is some c, C's index in the enumeration T, such that C(x) = Univ(T(c), x). Consider C(c). By the definition of C, C(c) = Univ(T(c), c) + 1 by the definition of C. But then C(c) = Univ(T(c), c) + 1 = C(c) + 1 by the meaning of Univ (see above). This means that C(c) = C(c) + 1 this is a contradiction since C is total. Since the only non-constructive step was assuming that TOTAL is re, we can conclude that TOTAL is not re, as was desired. 6 5. Using reduction from the known undecidable Non-Empty Problem, NE = { $\mathbf{f} \mid \exists \mathbf{x} \mathbf{f}(\mathbf{x}) \downarrow$ }, show the non-recursiveness (undecidability) of the problem to decide if an arbitrary effective procedure \mathbf{g} has a fixed point; that is, whether or not $\mathbf{g}(\mathbf{x}) = \mathbf{x}$, for some \mathbf{x} .

Let f be an arbitrary effective procedure (actually the index of one). Define $g_f(x) = x + f(x) - f(x)$ or more formally $g_f(x) = G(f, x) = x + Univ(f, x) - Univ(f, x)$. If f converges somewhere then g_f has a fixed point since it is the identity function. Otherwise, g_f diverges everywhere and has no fixed point. This can also be approached with $g_f(x) = signum(\mu t [STP(x, f, t)] + 1) * x$. Think about it.

9 6. Let S be an re non-recursive set, and let T be an infinite recursive set. Define E = { z | z = x - y, where x ∈ S and y ∈ T and x - y = 0 if x<y }. You may assume that S is the range of a total recursive function f_S, and domain of a partial recursive function g_S. You may also assume T has a total characteristic function χ_T. Can E be re non-recursive?

Consider $S = \{ 2^*x | x \in HALT \}$. This set is re, non-recursive since a decision procedure for either the Halt or S implies one for the other.

Let $T = \{0\} \cup \{2x+1 \mid x \in \aleph\}$. T is infinite and recursive – it's the union of the odd numbers and 0. $E = S \cup \{0\} \cup \{2x+1 \mid x \in \aleph\}$. The reason all odd numbers are in E is that S is infinite and hence has no largest number and every odd number is the difference between an even number and an odd number. $\{0\}$ is there because all we have to do is subtract a larger odd number from some even number to get 0. Now $x \in S$ iff x is even and $(x==0 \text{ or } x \in E)$.

Domination (x, y, z) = 1 if (x+y) > z; 0 otherwise.

6 7. Assuming only the recursiveness of the base functions

 $C_a(x_1,...,x_n) = a$: constants; $I_i^n(x_1,...,x_n) = x_i$: identity (projection); S(x) = x+1: increment and the standard arithmetic operators +, -, * and // and that the recursive functions are closed under composition, primitive recursion and minimization, show the recursiveness of **Domination**

$Non-Zero(0) = C_0; Non-Zero(x+1) = C_1(x, Non-Zero(x))$: Primitive Recursion
>(x, y) = Non-Zero(-(x, y))	: Composition
$Add3(x, y, z) = +(I_1^{3}(x, y, z), I_2^{3}(x, y, z))$: Composition
$Domination(x, y, z) = > (Add3(x, y, z), I_3^{3}(x, y, z))$: Composition

- 6 8. Demonstrate a Register Machine where the numbers x, y and z are in registers R2, R3 and R4, respectively, all other registers being zero. Domination (x, y, z) = (1 if (x+y) > z; 0) otherwise ends up in register R1. The final contents of all registers except R1 are unimportant.
 - 1. DEC₂(2, 3) 2. DEC₄(1, 5) 3. DEC₃(4, 6) 4. DEC4(3, 5) 5. INC₁(6) 6.
- 6 9. Present a Factor Replacement System (ordered rules of form $ax \rightarrow bx$) that, when started on the number $3^x 5^y 7^z$, terminates on the number $2=2^1$, if x + y > z, and on $1=2^0$, otherwise (Domination encoded). When you end, no prime factor other than perhaps 2 appears in the final number.
 - $3 \bullet 7 x \to x$ $5 \bullet 7 x \to x$ $3 x \to 2x$ $5 x \to 2x$ $4 x \to 2x$ $7 x \to x$