
COT 5310 Fall 2006 Midterm#1 Sample Name:_____________________

Generally useful information.

• The notation z = <x,y> denotes the pairing function with inverses x = <z>1 and y = <z>2.

• The minimization notation μ y [P(…,y)] means the least y (starting at 0) such that P(…,y) is
true. The bounded minimization (acceptable in primitive recursive functions) notation
μ y (u≤y≤v) [P(…,y)] means the least y (starting at u and ending at v) such that P(…,y) is true.
Unlike the text, I find it convenient to define μ y (u≤y≤v) [P(…,y)] to be v+1, when no y
satisfies this bounded minimization.

• The tilde symbol, ~, means the complement. Thus, set ~S is the set complement of set S, and
predicate ~P(x) is the logical complement of predicate P(x).

• A function P is a predicate if it is a logical function that returns either 1 (true) or 0 (false). Thus,
P(x) means P evaluates to true on x, but we can also take advantage of the fact that true is 1 and
false is 0 in formulas like y × P(x), which would evaluate to either y (if P(x)) or 0 (if ~P(x)).

• A set S is recursive if S has a total recursive characteristic function χS, such that x ∈ S ⇔ χS(x).
Note χS is a predicate. Thus, it evaluates to 0 (false), if x ∉ S.

• When I say a set S is re, unless I explicitly say otherwise, you may assume any of the following
equivalent characterizations:
1. S is either empty or the range of a total recursive function fS.
2. S is the domain of a partial recursive function gS.

• If I say a function g is partially computable, then there is an index g (I know that’s overloading,
but that’s okay as long as we understand each other), such that Φg(x) = Φ(x, g) = g(x). Here Φ is
a universal partially recursive function.
Moreover, there is a primitive recursive function STP, such that
STP(x, g, t) is 1 (true), just in case g, started on x, halts in t or fewer steps.
STP(x, g, t) is 0 (false), otherwise.
Finally, there is another primitive recursive function VALUE, such that
VALUE(x, g, t) is g(x), whenever STP(x, g, t).
VALUE(x, g, t) is defined but meaningless if ~STP(x, g, t).

• The notation f(x)↓ means that f converges when computing with input x, but we don’t care about
the value produced. In effect, this just means that x is in the domain of f.

• The notation f(x)↑ means f diverges when computing with input x. In effect, this just means that
x is not in the domain of f.

• The Halting Problem for any effective computational system is the problem to determine of an
arbitrary effective procedure f and input x, whether or not f(x)↓. The set of all such pairs is a
classic re non-recursive one.

• The Uniform Halting Problem is the problem to determine of an arbitrary effective procedure f,
whether or not f is an algorithm (halts on all input). The set of all such function indices is a
classic non re one.

COT 5310 Formal Languages and Automata Theory – 2 – Fall 2006: Midterm#1 Sample – Hughes

16 1. Choosing from among (REC) recursive, (RE) re non-recursive, (NR) non-re, categorize each of
the sets in a) through d). Justify your answer by showing some minimal quantification of some
known recursive predicate or by another clear and convincing short argument.

a.) { <f,x>| ∀(t>x) STP(x,f,t) }
 Justification:

b.) { f | ∀x f(x) is a prime number }
 Justification:

c.) { f | ∃x f(x)↓ }
 Justification:

d.) { x | ∀f f(x)↑ }
 Justification:

15 2. Let set A be recursive, B be re non-recursive and C be non-re. Choosing from among (REC)
recursive, (RE) re non-recursive, (NR) non-re, categorize the set D in each of a) through e) by
listing all possible categories. No justification is required.

a.) D = ~A ∪ B

b.) D = A ∩ ~C

c.) D = B – A

d.) D = C ∪ ~C

e.) A ⊆ D ⊆ B

COT 5310 Formal Languages and Automata Theory – 3 – Fall 2006: Midterm#1 Sample – Hughes

7 3. Using the definition that S is semi-decidable iff S is the domain of some procedure gS (partial
recursive function), prove that if both S and its complement ~S are semi-decidable then S is
decidable. Note: To get full credit, you must show the characteristic function for S, χS, and argue
convincingly (not formally) that the function you specified is the correct one for S. Hint: The STP
predicate is useful here. You may also use any other known total recursive functions to attack this.

10 4. Prove that the Uniform Halting Problem (the set TOTAL) is not recursively enumerable within
any formal model of computation. You may assume the existence of a universal machine. (Hint: A
diagonalization proof is required and the most direct approach is via recursive functions.)

COT 5310 Formal Languages and Automata Theory – 4 – Fall 2006: Midterm#1 Sample – Hughes

6 5. Using reduction from the known undecidable Non-Empty Problem, NE = { f | ∃x f(x)↓ }, show the
non-recursiveness (undecidability) of the problem to decide if an arbitrary effective procedure g has
a fixed point; that is, whether or not g(x) = x, for some x. Hint: there is a very simple construction to
do this. Just giving that construction is not sufficient; you must also explain why it satisfies the
desired properties of the reduction.

9 6. Let S be an re (recursively enumerable) non-recursive set, and let T be an infinite recursive
(decidable) set. Define
E = { z | z = x - y, where x ∈ S and y ∈ T and x – y = 0 if x<y }.
You may assume that S is the range of a total recursive function fS, and domain of a partial recursive
function gS. You may also assume T has a total characteristic function χT.

Can E be re non-recursive? (Note: if your answer is yes, you must show a non-recursive re set S, an
infinite decidable set T and a resulting known re non-recursive set E; if your answer is no, you must
prove this by either showing that E is always non-re or by demonstrating how to construct a
characteristic function based on any arbitrary non-recursive re set S and infinite decidable set T.)
Hint: Consider making S = { 2*x | x ∈ HALT }.

COT 5310 Formal Languages and Automata Theory – 5 – Fall 2006: Midterm#1 Sample – Hughes

The following is the basis for questions 7 through 9. Show that the predicate Domination is
computable, using three different models of computation, recursive functions, register machines and
factor replacement systems, where Domination (x , y, z) = 1 if (x+y) > z; 0 otherwise.

6 7. Assuming only the recursiveness of the base functions
Ca(x1,…,xn) = a : constants; i

nI (x1,…,xn) = xi : identity (projection); S(x) = x+1 : increment
and the standard arithmetic operators +, -, * and //
and that the recursive functions are closed under composition, primitive recursion (iteration) and
minimization, show the recursiveness of Domination
You may not take advantage of any additional closure properties with which you are familiar. Thus,
you will need to show the recursiveness of any other operators you require in your demonstration.

6 8. Demonstrate a Register Machine where the numbers x, y and z are in registers R2, R3 and R4,
respectively, all other registers being zero. Domination (x , y, z) = (1 if (x+y) > z; 0) otherwise
ends up in register R1. The final contents of all registers except R1 are unimportant.

6 9. Present a Factor Replacement System (ordered rules of form ax → bx) that, when started on the
number 3x 5y 7z, terminates on the number 2=21, if x + y > z, and on 1=20, otherwise (Domination
encoded). When you end, no prime factor other than perhaps 2 appears in the final number.

