12 1. Choosing from among (REC) recursive, (RE) re non-recursive, (CO) co-re non-recursive, (NR) non-re, categorize each of the sets in a) through d). Justify your answer by showing some minimal quantification of some known recursive predicate.
a.) $\{<\mathbf{f}, \mathbf{x}\rangle \mid f(x)$ takes at least x^{2} steps to converge \}

Justification: $\sim \operatorname{STP}\left(x, f, \mathbf{x}^{2}-1\right)$
b.) $\{\mathbf{f} \mid \operatorname{range}(f)$ contains only even numbers $\}$

Justification: $\forall<x, t>[S T P(x, f, t) \Rightarrow$ isEven(x)]
c.) $\{f \mid \operatorname{range}(f)$ is not the set of natural numbers $\}$

Justification: $\exists \mathbf{x} \forall<\mathbf{y}, \mathrm{t}>[\operatorname{STP}(\mathbf{y}, \mathbf{f}, \mathrm{t}) \Rightarrow \operatorname{Value}(\mathbf{y}, \mathbf{f}, \mathrm{t}) \neq \mathbf{x}]$
d.) $\{f \mid f$ converges on some pair of input, $x, 2 x\}$

REC
$\mathbf{C O}$

\qquad
NR

RE

Justification: $\exists<\mathbf{x}, \mathbf{t}>$ [STP(x,f,t) \&\& STP(2x,f,t)]
9 2. Let \mathbf{A} be re, possibly recursive, and \mathbf{B} be re non-recursive. Let $\mathbf{C}=(\mathbf{A} \cap \sim \mathbf{B}) \cup(\mathbf{B} \cap \sim \mathbf{A})$. For each part, either show sets \mathbf{A} and \mathbf{B} with the specified property and justify in detail how these meet the required property, or present a demonstration that this property cannot hold.
a.) Can \mathbf{C} be re non-recursive?

YES. Let $A=\phi$. A is clearly re, even recursive since it is trivially decided by $\chi_{A}(x)=0$. Then $\mathbf{C}=(\phi \cap \sim \mathbf{B}) \cup(\mathbf{B} \cap \aleph)=\mathbf{B}$. \mathbf{B} is given to be re, non-recursive.
b.) Can \mathbf{C} be co-re non-recursive?

YES. Let $A=\aleph$. A is clearly re, even recursive since it is trivially decided by $\chi_{A}(x)=1$.
Then $C=(\aleph \cap \sim B) \cup(B \cap \phi)=\sim B$. Since B is given to be re, non-recursive, its complement must be co-re non-recursive, as desired.
12 3. Let set \mathbf{A} and \mathbf{B} be sets, such that $\mathbf{A} \leq_{m} \mathbf{B}$ by the total m-1 recursive function $\mathbf{f}_{\mathbf{A B}}$. For each of the following, be complete by addressing whether or not the specified set can be recursive, re nonrecursive and/or non-re.
a.) Assume \mathbf{A} is re, non-recursive and semi-decided by the partial recursive functions $\mathbf{g}_{\mathbf{A}}$. What can we say about the complexity (recursive, re, non-re) of B? Address all three cases.
B is definitely not recursive and may not even be re.
B cannot be Recursive: Assume otherwise, and let B be decided by the characteristic function χ_{B}, then A would be decided by the characteristic function $\chi_{B}{ }^{\circ} f_{A B}$. That is, $x \in A$ iff $\chi_{B}\left(f_{A B}(x)\right)$.
Since A is non-recursive, this is a contraction, and hence B cannot be recursive.
B can be $R E$, non-recursive: Let $A=B$ then $A \leq m B$ using the reduction $f_{A B}(x)=x$ since $x \in A$ iff $f_{A B}(x)=x \in B$, which is precisely what we want since $A=B$.
B can be non-RE: Choose $B=\{2 f \mid f \in$ TOTAL $\} \cup\{2 f+1 \mid f \in A\}$. Letting $f_{A B}(x)=2 x+1$, we can see that $A \leq m B$. However, B has at least the complexity of TOTAL, since TOTAL $\leq m B$ by the mapping $x \in$ TOTAL iff $2 x \in B$. Since TOTAL is non-RE, we have the desired result.
b.) Assume \mathbf{B} is re, non-recursive and semi-decided by the partial recursive functions $\mathbf{g}_{\mathbf{B}}$. What can we say about the complexity (recursive, re, non-re) of A? Address all three cases.
A is re and possibly recursive.
A can be Recursive: Let $A=\aleph ; \chi_{A}(x)=1$. Let $b \in B$ (there is some such b since B cannot be empty, else it would be recursive), then $A \leq m B$ using the reduction $f_{A B}(x)=b$ since $x \in A$ iff $f_{A B}(x)=b \in B$, which is true for all x and what we desire since $A=\aleph$.
A can be $R E$, non-recursive: Let $A=B$ then $A \leq m B$ using the reduction $f_{A B}(x)=x$ since $x \in A$ iff $f_{A B}(x)=x \in B$, which is precisely what we want since $A=B$.
A cannot be non-RE: $x \in A$ iff $g_{B}\left(f_{A B}(x)\right) \downarrow$, and thus is semi-decided by $g_{A}(x)=g_{B}\left(f_{A B}(x)\right)$.
4. Define RANGE_ALL $=(\mathbf{f} \mid$ range $(\mathbf{f})=\boldsymbol{\aleph}\}$.

2 a.) Show some minimal quantification of some known recursive predicate that provides an upper bound for the complexity of this set. (Hint: Look at c.) and d.) to get a clue as to what this must be.)
$\forall \mathbf{x} \exists<\mathbf{y}, \mathbf{t}>$ [STP $(\mathbf{y}, \mathbf{f}, \mathbf{t}) \& \operatorname{Value}(\mathbf{y}, \mathbf{f}, \mathbf{t})=\mathbf{x}]$
b.) Use Rice's Theorem to prove that RANGE_ALL is undecidable.

This is non-trivial as $I(x)=x \in$ RANGE_ALL and $C_{0}(x)=0 \notin$ RANGE_ALL
Let f, g be such that $\forall x \varphi_{f}(x)=\varphi_{g}(x)$.
$f \in$ RANGE_ALL \Leftrightarrow range $(\mathbf{f})=\boldsymbol{\aleph}$
\Leftrightarrow range $(\mathbf{g})=\aleph \quad$ since g outputs the same value as f for any input
$\Leftrightarrow \mathbf{g} \in$ RANGE_ALL
Since the property is non-trivial and is an I/O property, Rice's Theorem says it is undecidable.
e.) From a.) through d.) what can you conclude about the complexity of RANGE_ALL?
a) shows that RANGE_ALL is no more complex than others that must use the alternating qualifiers $\forall \exists$. b) shows the problem is non-recursive. c) and d) combine to show that the problem is in fact of equal complexity with the non-re problem TOTAL, so the result in a) was optimal.
5. This is a simple question concerning Rice's Theorem.
a.) State the strong form of Rice's Theorem. Be sure to cover all conditions for it to apply.

Let P be a property of indices of partial recursive function such that the set $S_{P}=\{f \mid f$ has property $P\}$ has the following two restrictions
(1) S_{P} is non-trivial. This means that $S P$ is neither empty nor is it the set of all indices.
(2) P is an I / O behavior. That is, if f and g are two partial recursive functions whose I / O behaviors are indistinguishable, $\forall \mathbf{x} f(x)=g(x)$, then either both of f and g have property P or neither has property P.
Then P is undecidable.
b.) Describe a set of partial recursive functions whose membership cannot be shown undecidable through Rice's Theorem. What condition is violated by your example?
There are many possibilities here. For example $\{f \mid \exists x \sim \operatorname{STP}(\mathbf{x}, \mathbf{f}, \mathbf{x})\}$ is not an I/O property and $\{f \mid \exists x f(x) \neq f(x)\}$ is trivial (empty).

8 6. Using the definition that \mathbf{S} is recursively enumerable iff \mathbf{S} is either empty or the range of some algorithm $\mathbf{f}_{\mathbf{S}}$ (total recursive function), prove that if both \mathbf{S} and its complement $\sim \mathbf{S}$ are recursively enumerable then \mathbf{S} is decidable. To get full credit, you must show the characteristic function for \mathbf{S}, $\chi_{\mathbf{s}}$, in all cases. Be careful to handle the extreme cases (there are two of them). Hint: This is not an empty suggestion.
Let $S=\phi$ then $\sim S=\aleph$. Both are re and $\forall x \chi_{S}(x)=0$ is S 's characteristic function.
Let $S=\aleph$ then $\sim S=\phi$. Both are re and $\forall x \chi_{S}(x)=1$ is S 's characteristic function.
Assume then that $S \neq \phi$ and $S \neq \boldsymbol{\aleph}$ then each of S and $\sim S$ is enumerated by some total recursive function. Let S be enumerated by f_{S} and $\sim S$ by $f_{\sim S}$. Define
$\chi_{\mathbf{S}}(\mathbf{x})=\mathbf{f}_{\mathbf{S}}\left(\mu_{\mathbf{y}}\left[\mathbf{f}_{\mathbf{S}}(\mathbf{y})==\mathbf{x} \| \mathbf{f}_{\sim}(\mathbf{y})==\mathbf{x}\right]\right)=\mathbf{x}$.
Note first that f_{S} and $f_{\sim S}$ are total and so the above is well-defined.
Note also that x must be in the range of one and only one of f_{S} or f_{\sim}. Thus,
$\exists y f_{S}(y)==x$ or $\exists y f_{\sim}(y)=x$.
The min operator ($\mu \mathrm{y}$) finds the smallest such y and the predicate
$f_{s}\left(\mu_{y}\left[f_{s}(y)==x \| f_{\sim}(y)=x\right]\right)=x$ checks that x is in the range of f_{S}.
If it is, then $\chi_{S}(x)=1$ else $\chi_{S}(x)=0$, as desired.

