12 1. Choosing from among (REC) recursive, (RE) re non-recursive, (CO) co-re non-recursive, (NR) non-re, categorize each of the sets in a) through d). Justify your answer by showing some minimal quantification of some known recursive predicate.

a.) $\{ \langle f, x \rangle f(x) \}$ takes at least x^2 steps to converge $\}$	REC
Justification: ~STP(x,f,x ² -1)	
<pre>b.) { f range(f) contains only even numbers }</pre>	<u> </u>
Justification: $\forall < x, t > [STP(x, f, t) \Rightarrow isEven(x)]$	
c.) { f range(f) is not the set of natural numbers }	NR
Justification: $\exists x \forall \leq y,t \geq [STP(y,f,t) \Rightarrow Value(y,f,t) \neq x]$	
d.) { f f converges on some pair of input, x, 2x }	RE

- Justification: ∃<x,t> [STP(x,f,t) && STP(2x,f,t)]
 9 2. Let A be re, possibly recursive, and B be re non-recursive. Let C = (A ∩ ~B) ∪ (B ∩ ~A). For each part, either show sets A and B with the specified property and justify in detail how these meet the required property, or present a demonstration that this property cannot hold.
 - **a.)** Can **C** be re non-recursive?

YES. Let $A = \phi$. A is clearly re, even recursive since it is trivially decided by $\chi_A(x) = 0$. Then $C = (\phi \cap \neg B) \cup (B \cap \aleph) = B$. B is given to be re, non-recursive.

b.) Can C be co-re non-recursive?

YES. Let $A = \aleph$. A is clearly re, even recursive since it is trivially decided by $\chi_A(x) = 1$. Then $C = (\aleph \cap \sim B) \cup (B \cap \phi) = \sim B$. Since B is given to be re, non-recursive, its complement must be co-re non-recursive, as desired.

- 12 3. Let set A and B be sets, such that $A \leq_m B$ by the total m-1 recursive function f_{AB} . For each of the following, be **complete** by addressing whether or not the specified set can be recursive, re non-recursive and/or non-re.
 - **a.**) Assume A is re, non-recursive and semi-decided by the partial recursive functions g_A. What can we say about the complexity (recursive, re, non-re) of B? Address all three cases.

B is definitely not recursive and may not even be re.

B cannot be Recursive: Assume otherwise, and let B be decided by the characteristic function χ_B , then A would be decided by the characteristic function $\chi_B \circ f_{AB}$. That is, $x \in A$ iff $\chi_B(f_{AB}(x))$.

Since A is non-recursive, this is a contraction, and hence B cannot be recursive.

B can be RE, non-recursive: Let A=B then A \leq mB using the reduction $f_{AB}(x) = x$ since $x \in A$ iff $f_{AB}(x) = x \in B$, which is precisely what we want since A=B.

B can be non-RE: Choose $B = \{ 2f | f \in TOTAL \} \cup \{2f+1 | f \in A\}$. Letting $f_{AB}(x) = 2x+1$, we can see that A \le mB. However, B has at least the complexity of TOTAL, since TOTAL $\le mB$ by the mapping $x \in TOTAL$ iff $2x \in B$. Since TOTAL is non-RE, we have the desired result.

b.) Assume B is re, non-recursive and semi-decided by the partial recursive functions g_B. What can we say about the complexity (recursive, re, non-re) of A? Address all three cases.
A is re and possibly recursive.

A can be Recursive: Let $A=\aleph$; $\chi_A(x) = 1$. Let $b \in B$ (there is some such b since B cannot be empty, else it would be recursive), then $A \le mB$ using the reduction $f_{AB}(x) = b$ since $x \in A$ iff $f_{AB}(x) = b \in B$, which is true for all x and what we desire since $A=\aleph$. A can be RE, non-recursive: Let A=B then $A \le mB$ using the reduction $f_{AB}(x) = x$ since

 $x \in A$ iff $f_{AB}(x) = x \in B$, which is precisely what we want since A=B.

A cannot be non-RE: $x \in A$ iff $g_B(f_{AB}(x)) \downarrow$, and thus is semi-decided by $g_A(x) = g_B(f_{AB}(x))$.

4. Define RANGE_ALL = ($\mathbf{f} | \mathbf{range}(\mathbf{f}) = \aleph$ }.

2 a.) Show some minimal quantification of some known recursive predicate that provides an upper bound for the complexity of this set. (Hint: Look at c.) and d.) to get a clue as to what this must be.)

 $\forall x \exists \leq y,t \geq [STP(y,f,t) \& Value(y,f,t)=x]$

5 b.) Use Rice's Theorem to prove that RANGE_ALL is undecidable. This is non-trivial as I(x) = x ∈ RANGE_ALL and C₀(x) = 0 ∉ RANGE_ALL Let f,g be such that ∀x φ_f(x) = φ_g(x). f∈ RANGE_ALL⇔ range(f) = % ⇔ range(g) = % since g outputs the same value as f for any input ⇔ g ∈ RANGE_ALL

Since the property is non-trivial and is an I/O property, Rice's Theorem says it is undecidable.

5 c.) Show that TOTAL \leq_m RANGE_ALL, where TOTAL = { f | $\forall y \varphi_f(y) \downarrow$ }.

Let f be the index of an arbitrary effective procedure φ_f . Define g such that g(f), denoted g_f , is the index of the function φ_{g_e} defined by $\forall x \varphi_{g_e}(x) = \varphi_f(x) - \varphi_f(x) + x$.

 $f \in TOTAL \Leftrightarrow \forall x \ \phi_f(x) \downarrow \Leftrightarrow \forall x \ \phi_{g_f}(x) = x \Rightarrow \forall x \ x \in range(g_f) \Rightarrow g_f \in RANGE_ALL$

 $f \notin TOTAL \Leftrightarrow \exists x \ \phi_f(x) \uparrow \Leftrightarrow \exists x \ \phi_{g_f}(x) \uparrow \Rightarrow \exists x \ x \notin range(g_f) \Rightarrow g_f \notin RANGE_ALL$

This shows that TOTAL \leq_m RANGE_ALL, as was desired.

5 d.) Show that **RANGE_ALL** \leq_m **TOTAL**.

Let f be the index of an arbitrary effective procedure φ_f . Define g such that g(f), denoted g_f, is the index of the function φ_g defined by $\forall x \varphi_{g_f}(x) = \exists \langle y,t \rangle [STP(y,f,t) \& VALUE(y,f,t)==x)]$

This is $\forall x \phi_{g_f}(x) = \exists y \phi_f(y) = =x$, but it avoids the potential problem that $\phi_f(y')\uparrow$, y'<y.

 $f \in RANGE_ALL \Leftrightarrow \forall x \; \exists y \; \phi_f(y) = x \Leftrightarrow \forall x \; \phi_{g_f}(x) \downarrow \Leftrightarrow g_f \in TOTAL$

This shows that RANGE_ALL \leq_m TOTAL, as was desired.

- 2 e.) From a.) through d.) what can you conclude about the complexity of RANGE_ALL?
 a) shows that RANGE_ALL is no more complex than others that must use the alternating qualifiers ∀∃. b) shows the problem is non-recursive. c) and d) combine to show that the problem is in fact of equal complexity with the non-re problem TOTAL, so the result in a) was optimal.
 - 5. This is a simple question concerning Rice's Theorem.
- 4 a.) State the strong form of Rice's Theorem. Be sure to cover all conditions for it to apply.
 Let P be a property of indices of partial recursive function such that the set
 S_P = { f | f has property P } has the following two restrictions
 - (1) S_P is non-trivial. This means that SP is neither empty nor is it the set of all indices.
 - (2) P is an I/O behavior. That is, if f and g are two partial recursive functions whose I/O behaviors are indistinguishable, ∀x f(x)=g(x), then either both of f and g have property P or neither has property P.

Then P is undecidable.

2 b.) Describe a set of partial recursive functions whose membership cannot be shown undecidable through Rice's Theorem. What condition is violated by your example?

There are many possibilities here. For example { $f | \exists x \sim STP(x,f,x)$ } is not an I/O property and { $f | \exists x f(x) \neq f(x)$ } is trivial (empty).

8 6. Using the definition that S is recursively enumerable iff S is either empty or the range of some algorithm f_S (total recursive function), prove that if both S and its complement ~S are recursively enumerable then S is decidable. To get full credit, you must show the characteristic function for S, χ_S , in all cases. Be careful to handle the extreme cases (there are two of them). Hint: This is not an empty suggestion.

Let S = ϕ then \sim S = \aleph . Both are re and $\forall x \chi_S(x) = 0$ is S's characteristic function.

Let S = \aleph then \sim S = ϕ . Both are re and $\forall x \chi_S(x) = 1$ is S's characteristic function.

Assume then that $S \neq \phi$ and $S \neq \aleph$ then each of S and $\sim S$ is enumerated by some total recursive function. Let S be enumerated by f_s and $\sim S$ by $f_{\sim S}$. Define

 $\chi_{S}(x) = f_{S}(\mu y [f_{S}(y) = x || f_{\neg S}(y) = x]) = x.$

Note first that f_S and f_{-S} are total and so the above is well-defined. Note also that x must be in the range of one and only one of f_S or f_{-S} . Thus, $\exists y f_S(y) == x \text{ or } \exists y f_{-S}(y) == x.$

The min operator (μy) finds the smallest such y and the predicate

 $f_{S}(\mu y [f_{S}(y)=x || f_{S}(y)=x]) == x$ checks that x is in the range of f_{S} .

If it is, then $\chi_S(x) = 1$ else $\chi_S(x) = 0$, as desired.