12 1. Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re non-recursive, (NR) non-re/non-co-re, categorize each of the sets in a) through d). Justify your answer by showing some minimal quantification of some known recursive predicate.

 a.) \{ f | \text{ whenever } x>y \text{ and } f(x)\downarrow \text{ and } f(y)\downarrow \text{ then } f(x)>f(y) \} \text{ coRE}

 Justification: \(\forall x \forall y \forall t \left(\text{STP}(x,f,t) \land \text{STP}(y,f,t) \land (x>y) \implies (\text{VALUE}(x,f,t)>\text{VALUE}(y,f,t)) \right) \)

 b.) \{ f | \text{ size of range}(f) \text{ is at most 1} \} \text{ coRE}

 Justification: \(\forall x \forall y \forall t \left(\text{STP}(x,f,t) \land \text{STP}(y,f,t) \implies (\text{VALUE}(x,f,t) = \text{VALUE}(y,f,t)) \right) \)

 I allowed \(\exists K \forall x \forall t \left[\text{STP}(x, f, t) \implies (\text{VALUE}(x, f, t) = K) \right], \text{ which is NR} \)

 c.) \{ <f,x> | f(x) \text{ converges in at most } x^2 \text{ steps} \} \text{ REC}

 Justification: \(\text{STP}(x, f, x^2) \)

 d.) \{ f | \text{ domain}(f) \text{ contains the value 0} \} \text{ RE}

 Justification: \(\exists t \text{STP}(0, f, t) \)

12 2. Let set \(A \) be recursive, and both \(B \) and \(C \) be re non-recursive. Choosing from among (REC) recursive, (RE) re non-recursive, (NR) non-re, categorize the set \(D \) in each of a) through d) by listing all possible categories. No justification is required. You may find it useful to know that, if \(E \) is recursive (re, non-re) then so is \(E \) even = \{ 2x | x \in E \} and \(E \) odd = \{2x+1 | x \in E\}.

 a.) \(D \supseteq B \) \text{ REC, RE, NR}

 b.) \(D = \sim A \) \text{ RE}

 c.) \(D = B \cup C \) \text{ REC, RE}

8 3. Let \(S \) be an arbitrary non-empty re set. Furthermore, let \(S \) be the range of some partial recursive function \(f_s \). Show that \(S \) is the range of some primitive recursive function, call it \(h_s \).

 Let \(h_s(<x,t>) = a \ast (1 - \text{STP}(x, f_s, t)) + \text{VALUE}(x, f_s, t) \ast \text{STP}(x, f_s, t) \)

 where \('a' \) is some arbitrary element of \(S \). Such an \('a' \) exists since \(S \) is non-empty.

 First, \(h_s \) is primitive since the constants \(C_a \) and \(C_1 \), \(\text{STP} \), \(\text{VALUE} \), \(+ \), \(\ast \) and \(– \) are all primitive recursive and the primitive recursive functions are closed under composition.

 Now, given any element \(y \) of \(S \), there must exist some \(x \) such that \(f_s(x) = y \). For such an \(x \), there must exist a \(t \) such that \(\text{STP}(x, f_s, t) \) and \(\text{VALUE}(x, f_s, t) = y \). Of course, if such an \(<x,t> \) exists, there are an infinite number of these \(<x,t'> \) for \(t' > t \). Clearly, for each such \(<x,t> \), \(h_s(<x,t>) = y \).

 If, on the other hand, \(\sim \text{STP}(x, f_s, t) \), then \(h_s(<x,t>) = a \). Thus, all and only the elements in \(S \) are enumerated by \(h_s \), exactly what we need.

8 4. Prove that the Halting Problem (the set \(\text{HALT} = K_0 = L_0 \)) is not recursive (decidable) within any formal model of computation. (Hint: A diagonalization proof is required here.)

 Look at notes.

8 5. Using reduction from the known undecidable set \(\text{HasZero}, HZ = \{ f | \exists x f(x) = 0 \} \), show the non-recursiveness (undecidability) of the problem to decide if an arbitrary partial recursive function is in the set \(\text{Identity}, ID = \{ f | \forall x f(x) = x \} \).

 \(HZ = \{ f | \exists x \exists t \left[\text{STP}(x, f, t) \land \text{VALUE}(x, f, t) = 0 \right] \} \)

 Let \(f \) be the index of an arbitrary effective procedure.

 Define \(g_f(y) = y \ast \exists x \exists t \left[\text{STP}(x, f, t) \land \text{VALUE}(x, f, t) = 0 \right] \)

 If \(\exists x f(x) = 0 \), we will find an \(x \) and a run-time \(t \), and so we will return \(y \ast 1 \)

 If \(\forall x f(x) \neq 0 \), we will diverge in the search process and never return a value.

 Thus, \(f \in HZ \) iff \(g_f \in ID \).

7 6. Assuming only the primitive recursiveness of \(C_a(x_1,\ldots,x_n) = a : \text{constants} \), \(\Pi_1^P (x_1,\ldots,x_n) = x_i : \text{projection} \), and \(S(x) = x+1 : \text{increment} \), and that the prf’s are closed under composition and primitive recursion (iteration), show the primitive recursiveness of the function \(\text{Max}(x,y,z) \).

 \(\text{pred}(0) = 0, \text{pred}(y+1) = y; -x(0) = x, -(x,y+1) = \text{pred}(-x,y); \text{signum}(0) = 0, \text{signum}(y+1) = 1; > (x,y) = \text{signum}(-x,y); +(x,0) = x, +(x,y+1) = S(x,y); \text{Max}(x,y) = x > (x,y) + y > (y,x) \)
7. Demonstrate a **Register Machine** where the numbers \(x \), \(y \) and \(z \) are in registers \(R2 \), \(R3 \) and \(R4 \), respectively, all other registers being zero. \(\text{Max}(x, y, z) \) ends up in register \(R1 \). The final contents of all registers except \(R1 \) are unimportant.

1. \(\text{DEC2}[2,5] \)
2. \(\text{DEC3}[3,3] \)
3. \(\text{DEC4}[4,4] \)
4. \(\text{INC1}[1] \)
5. \(\text{DEC3}[6,8] \)
6. \(\text{DEC4}[7,7] \)
7. \(\text{INC1}[5] \)
8. \(\text{DEC4}[9,10] \)
9. \(\text{INC1}[8] \)
10.

5. Present an ordered **Factor Replacement System** (ordered rules of form \(ax \rightarrow bx \)) that, when started on the number \(3^x 5^y 7^z \), terminates on the number \(2^{\text{Max}(x,y,z)} \). When you end, no prime factor other than perhaps 2 should appear in the final number.

\[
\begin{align*}
3 \cdot 5 \cdot 7 \cdot x &\rightarrow 2 \cdot x \\
3 \cdot 5 \cdot x &\rightarrow 2 \cdot x \\
3 \cdot 7 \cdot x &\rightarrow 2 \cdot x \\
5 \cdot 7 \cdot x &\rightarrow 2 \cdot x \\
3 \cdot x &\rightarrow 2 \cdot x \\
5 \cdot x &\rightarrow 2 \cdot x \\
7 \cdot x &\rightarrow 2 \cdot x
\end{align*}
\]