## Generally useful information.

- The notation $\mathbf{z}=\langle\mathbf{x}, \mathbf{y}\rangle$ denotes the pairing function with inverses $\mathbf{x}=\langle\mathbf{z}\rangle_{\mathbf{1}}$ and $\mathbf{y}=\langle\mathbf{z}\rangle_{2}$.
- The minimization notation $\mu \mathbf{y}[\mathbf{P}(\ldots, \mathbf{y})]$ means the least $\mathbf{y}$ (starting at $\mathbf{0}$ ) such that $\mathbf{P}(\ldots, \mathbf{y})$ is true. The bounded minimization (acceptable in primitive recursive functions) notation $\mu \mathbf{y}(\mathbf{u} \leq \mathbf{y} \leq \mathbf{v})[\mathbf{P}(\ldots, \mathbf{y})]$ means the least $\mathbf{y}$ (starting at $\mathbf{u}$ and ending at $\mathbf{v}$ ) such that $\mathbf{P}(\ldots, \mathbf{y})$ is true. Unlike the text, I find it convenient to define $\mu \mathbf{y}(\mathbf{u} \leq \mathbf{y} \leq \mathbf{v})[\mathbf{P}(\ldots, \mathbf{y})]$ to be $\mathbf{v}+\mathbf{1}$, when no $\mathbf{y}$ satisfies this bounded minimization.
- The tilde symbol, $\sim$, means the complement. Thus, set $\sim \mathbf{S}$ is the set complement of set $\mathbf{S}$, and predicate $\sim \mathbf{P}(\mathbf{x})$ is the logical complement of predicate $\mathbf{P}(\mathbf{x})$.
- A function $\mathbf{P}$ is a predicate if it is a logical function that returns either $\mathbf{1}$ (true) or $\mathbf{0}$ (false). Thus, $\mathbf{P}(\mathbf{x})$ means $\mathbf{P}$ evaluates to true on $\mathbf{x}$, but we can also take advantage of the fact that true is $\mathbf{1}$ and false is $\mathbf{0}$ in formulas like $\mathbf{y} \times \mathbf{P}(\mathbf{x})$, which would evaluate to either $\mathbf{y}$ (if $\mathbf{P}(\mathbf{x})$ ) or $\mathbf{0}$ (if $\sim \mathbf{P}(\mathbf{x})$ ).
- A set $\mathbf{S}$ is recursive if $\mathbf{S}$ has a total recursive characteristic function $\chi_{\mathrm{s}}$, such that $\mathbf{x} \in \mathbf{S} \Leftrightarrow \chi_{\mathbf{s}}(\mathbf{x})$. Note $\chi_{\mathbf{s}}$ is a predicate. Thus, it evaluates to $\mathbf{0}$ (false), if $\mathbf{x} \notin \mathbf{S}$.
- When I say a set $\mathbf{S}$ is re, unless I explicitly say otherwise, you may assume any of the following equivalent characterizations:

1. $\mathbf{S}$ is either empty or the range of a total recursive function $\mathbf{f}_{\mathbf{S}}$.
2. $\mathbf{S}$ is the domain of a partial recursive function $\mathbf{g}_{s}$.

- If I say a function $\mathbf{g}$ is partially computable, then there is an index $\mathbf{g}$ (I know that's overloading, but that's okay as long as we understand each other), such that $\Phi_{\mathbf{g}}(\mathbf{x})=\Phi(\mathbf{x}, \mathbf{g})=\mathbf{g}(\mathbf{x})$. Here $\Phi$ is a universal partially recursive function.
Moreover, there is a primitive recursive function STP, such that
$\operatorname{STP}(\mathbf{x}, \mathbf{g}, \mathbf{t})$ is $\mathbf{1}$ (true), just in case $\mathbf{g}$, started on $\mathbf{x}$, halts in $\mathbf{t}$ or fewer steps.
$\operatorname{STP}(\mathbf{x}, \mathbf{g}, \mathbf{t})$ is $\mathbf{0}$ (false), otherwise.
Finally, there is another primitive recursive function VALUE, such that
$\operatorname{VALUE}(\mathbf{x}, \mathbf{g}, \mathbf{t})$ is $\mathbf{g}(\mathbf{x})$, whenever $\operatorname{STP}(\mathbf{x}, \mathbf{g}, \mathbf{t})$.
$\operatorname{VALUE}(\mathbf{x}, \mathbf{g}, \mathbf{t})$ is defined but meaningless if $\sim \operatorname{STP}(\mathbf{x}, \mathbf{g}, \mathbf{t})$.
- The notation $\mathbf{f}(\mathbf{x}) \downarrow$ means that $\mathbf{f}$ converges when computing with input $\mathbf{x}$, but we don't care about the value produced. In effect, this just means that $\mathbf{x}$ is in the domain of $\mathbf{f}$.
- The notation $\mathbf{f}(\mathbf{x}) \uparrow$ means $\mathbf{f}$ diverges when computing with input $\mathbf{x}$. In effect, this just means that $\mathbf{x}$ is not in the domain of $\mathbf{f}$.
- The Halting Problem for any effective computational system is the problem to determine of an arbitrary effective procedure $\mathbf{f}$ and input $\mathbf{x}$, whether or not $\mathbf{f}(\mathbf{x}) \downarrow$. The set of all such pairs is a classic re non-recursive one.
- The Uniform Halting Problem is the problem to determine of an arbitrary effective procedure $\mathbf{f}$, whether or not $\mathbf{f}$ is an algorithm (halts on all input). The set of all such function indices is a classic non re one.

