Generally useful information.

- The notation \(z = \langle x, y \rangle \) denotes the pairing function with inverses \(x = \langle z \rangle_1 \) and \(y = \langle z \rangle_2 \).

- The minimization notation \(\mu y \left[P(\ldots, y) \right] \) means the least \(y \) (starting at 0) such that \(P(\ldots, y) \) is true. The bounded minimization (acceptable in primitive recursive functions) notation \(\mu y \left(u \leq y \leq v \right) \left[P(\ldots, y) \right] \) means the least \(y \) (starting at \(u \) and ending at \(v \)) such that \(P(\ldots, y) \) is true. Unlike the text, I find it convenient to define \(\mu y \left(u \leq y \leq v \right) \left[P(\ldots, y) \right] \) to be \(v + 1 \), when no \(y \) satisfies this bounded minimization.

- The tilde symbol, \(~\), means the complement. Thus, set \(\sim S \) is the set complement of set \(S \), and predicate \(\sim P(x) \) is the logical complement of predicate \(P(x) \).

- A function \(P \) is a predicate if it is a logical function that returns either 1 (true) or 0 (false). Thus, \(P(x) \) means \(P \) evaluates to true on \(x \), but we can also take advantage of the fact that true is 1 and false is 0 in formulas like \(y \times P(x) \), which would evaluate to either \(y \) (if \(P(x) \)) or 0 (if \(\sim P(x) \)).

- A set \(S \) is recursive if \(S \) has a total recursive characteristic function \(\chi_S \), such that \(x \in S \iff \chi_S(x) \). Note \(\chi_S \) is a predicate. Thus, it evaluates to 0 (false), if \(x \not\in S \).

- When I say a set \(S \) is re, unless I explicitly say otherwise, you may assume any of the following equivalent characterizations:
 1. \(S \) is either empty or the range of a total recursive function \(f_S \).
 2. \(S \) is the domain of a partial recursive function \(g_S \).

- If I say a function \(g \) is partially computable, then there is an index \(g \) (I know that’s overloading, but that’s okay as long as we understand each other), such that \(\Phi(g)(x) = \Phi(x, g) = g(x) \). Here \(\Phi \) is a universal partially recursive function.

 Moreover, there is a primitive recursive function \(STP \), such that \(STP(x, g, t) = 1 \) (true), just in case \(g \), started on \(x \), halts in \(t \) or fewer steps.

 Finally, there is another primitive recursive function \(VALUE \), such that \(VALUE(x, g, t) = g(x) \), whenever \(STP(x, g, t) \).

- The notation \(f(x)\downarrow \) means that \(f \) converges when computing with input \(x \), but we don’t care about the value produced. In effect, this just means that \(x \) is in the domain of \(f \).

- The notation \(f(x)\uparrow \) means \(f \) diverges when computing with input \(x \). In effect, this just means that \(x \) is not in the domain of \(f \).

- The **Halting Problem** for any effective computational system is the problem to determine of an arbitrary effective procedure \(f \) and input \(x \), whether or not \(f(x)\downarrow \). The set of all such pairs is a classic re non-recursive one.

- The **Uniform Halting Problem** is the problem to determine of an arbitrary effective procedure \(f \), whether or not \(f \) is an algorithm (halts on all input). The set of all such function indices is a classic non re one.