
 

 

COT 5310 Fall 2006 More Final Exam Samples Name:           KEY          

12 1. , (?) unknown, categorize each of the 
following decision problems. No proofs are required.  

 

Problem / Language Class Regular Context Free Context Sensitive 

Choosing from among (D) decidable, (U) undecidable

L = Σ* ? D U U 

L = φ D D U  ? 

L = L2 ? D U U 

x  ∈ L2, for arbitrary x ? D D D 

8 2. , (?) unknown, categorize each of the following closure 
properties. No proofs are required.  

 

Problem / Language Class Regular Context Free 

Choosing from among (Y) yes, (N) No

Closed under intersection? Y N 

Closed under quotient? Y N 

Closed under quotient with Regular languages? Y Y 

Closed under complement? Y N 
 

Consider the two operations on languages max and min
max(L) = { x | x ∈ L and, for no y does xy ∈ L } and  
min(L) = { x | x ∈ L and, for no prefix of x, y, does y ∈ L }  
D
 
L1
 
m

8 3. , where 

escribe the languages produced by max and min. for each of the following: 

 = { ai bj ck | k ≤ i or k ≤ j } 

ax(L1) =  { ai bj ck | k =max(i, j)  }  

in(L ) =   { λ } (string of length 0) 
 
m 1  

 = { ai bj ck | k > i or k > j } 

ax(L2) =  {  } (empty)   

 
L2
 
m  

min(L2) =   { a
 

i bj ck | k =min(i, j)+1  }  
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12 4. Prove that any class of languages, C, closed under union, concatenation, intersection with regular 

languages, homomorphism and substitution (e.g., the Context-Free Languages) is closed under 
MissingMiddle, where, assuming L is over the alphabet Σ, 
MissingMiddle(L) = { xz | ∃y ∈ Σ* such that xyz ∈ L } 
You must be very explicit, describing what is produced by each transformation you apply. 

Define the alphabet Σ’ = { a’ | a∈Σ }, where, of course, a’ is a “new” symbol, i.e., one not in Σ. 

Define homomorphisms g and h, and substitution f as follows: 
g(a) = a’  ∀a∈Σ  h(a) = a  ;   h(a’) = λ ∀a∈Σ  f(a) = {a, a’ } ∀a∈Σ 
 
Consider R = Σ* •  g(Σ*) • Σ* = { x y’ z | x, y, z  ∈Σ*  and  y’=g(y) ∈Σ’* } 
Σ* is regular since it is the Kleene star closure of a finite set. 
g(Σ*) is regular since it is the homomorphic image of a regular language. 
R is regular as it is the concatenation of regular languages. 
 
Now, f(L) = { f(w) | w ∈ L } is in C since C is closed under substitution. This language is the set of 
strings in L with randomly selected letters primed. Any string w∈L gives rise to 2|w| strings in f(L). 
 
f(L) ∩ R = { x y’ z | x y z ∈ L and y’=g(y) } is in C since C is closed under intersection with regular 
languages. 
 
MissingMiddle(L) = h(  f(L) ∩ R ) = { x z | ∃y ∈ Σ* such that xyz ∈ L } which is in C, since C is 
closed under homomorphism. Q.E.D. 

10 5. Use PCP to show the undecidability of the problem to determine if the intersection of two context 
free languages is non-empty. That is, show how to create two grammars GA and GB based on some 
instance P = <<x1,x2,…,xn>, <y1,y2,…,yn>> of PCP, such that L(GA) ∩ L(GB) ≠ φ iff P has a 
solution. Assume that P is over the alphabet Σ.You should discuss what languages your grammars 
produce and why this is relevant, but no formal proof is required. 

GA = ( { A } , Σ ∪ { [ i ]  | 1≤i≤n } , A , PA }  GB = ( { B } , Σ ∪ { [ i ]  | 1≤i≤n } , B , PB } 

PA : A → xi A [ i ]  |  xi [ i ]    PB : A → yi B [ i ]  |  yi [ i ] 

L(GA) = { xi1  xi2 … xip  [ip] … [i2] [i1]   | p ≥ 1, 1 ≤ it ≤ n, 1 ≤ t  ≤ p  } 

L(GB) = { yj1  yj2 … yjq  [jq] … [j2] [j1]   | q ≥ 1, 1 ≤ ju ≤ n, 1 ≤ u  ≤ q  } 

L(GA)  ∩  L(GB) = { w  [kr] … [k2] [k1]   | r ≥ 1, 1 ≤ kv ≤ n, 1 ≤ v  ≤ r  }, where 

w = xk1 xk2 … xkr  =  yk1 yk2 … ykr  

If L(GA)  ∩  L(GB) ≠ φ then such a w exists and thus k1 , k2 , … , kr is a solution to this instance of 
PCP. This shows that a decision procedure for the non-emptiness of the intersection of CFLs 
implies a decision procedure for PCP, which we have already shown is undecidable. Hence, the 
non-emptiness of the intersection of CFLs is undecidable.  Q.E.D. 
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10 6. Consider the set of indices CONSTANT = { f | ∃K ∀y [ ϕf(y) = K ] }. Use Rice’s Theorem to show 
that CONSTANT is not recursive. Hint: There are two properties that must be demonstrated. 

 
First, show CONSTANT is non-trivial. 
 C0(x) = 0, one of the base functions, is in CONSTANT 
 S(x) = x+1, one of the base functions, is not in CONSTANT 
 Thus, CONSTANT is non-trivial 
 
Second, let f, g be two arbitrary partial recursive functions with the same I/O behavior. 
 That is, ∀x  if f(x) is defined, then f(x) = g(x); otherwise both diverge, i.e., f(x)↑ and g(x)↑ 
 Now, f ∈ CONSTANT  

⇔ ∃K ∀x  [ f(x) = K ]   by definition of CONSTANT 
⇔ ∀x [ g(x) = C ]  where C is the instance of K above, since ∀x [  f(x) = g(x) ] 
⇔ ∃K ∀x [ g(x) = K ]  from above 
⇔ g ∈ CONSTANT by definition of CONSTANT 

 
Since CONSTANT meets both conditions of Rice’s Theorem, it is undecidable.  Q.E.D. 
 

 
 
10 7. Show that CONSTANT ≡m TOT, where TOT = { f | ∀y ϕf(y)↓ }. 

 
 CONSTANT ≤m TOT  
Let f be an arbitrary partial recursive function. 
 Define gf using composition, primitive recursion and minimization by 

gf (0) = f(0) 
gf (y+1) = f(y+1) + μ z  [f(y+1) = f(y) ] 

 Now, if f ∈ CONSTANT then ∀y [ f(y)↓  and  [ f(y+1) = f(y) ] ].  
Under this circumstance, μ z [f(y+1) = f(y) ] is 0 for all y and gf (y) = f(y) for all y.  
Clearly, then gf ∈ TOT 

 If, however, f ∉ CONSTANT then ∃y [ f(y)↑  or  [f(y+1) ≠ f(y) ] ].  
 Choose the least y meeting this condition.  

If f(y)↑  then gf (y)↑ since f(y) is in gf (y)’s definition (the 1st  term). 
If f(y)↓  but  [f(y+1) ≠ f(y) ] ] then gf (y)↑ since μ z [ f(y+1) = f(y) ]↑ (the 2nd  term). 
Clearly, then gf ∉ TOT 

Combining these, f ∈ CONSTANT ⇔  gf ∈ TOT and thus CONSTANT ≤m TOT 
 
TOT  ≤m CONSTANT  
Let f be an arbitrary partial recursive function. 
 Define gf using composition by 

gf (y) = f(y) – f(y) 
 Now, if f ∈ TOT then ∀y [ f(y)↓  ] and thus ∀y gf (y) = 0 . Clearly , then gf ∈ CONSTANT 
 If, however, f ∉ TOT then ∃y [ f(y)↑  ] and thus, ∃y [ gf (y)↑  ]. Clearly , then gf ∉ CONSTANT 
Combining these, f ∈ TOT ⇔  gf ∈ CONSTANT and thus TOT  ≤m CONSTANT 
 
Hence, CONSTANT ≡m TOT.  Q.E.D. 
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8 8. Why does Rice’s Theorem have nothing to say about each of the following? Explain by showing 

some condition of Rice’s Theorem that is not met by the stated property.  
  a.) AT-LEAST-LINEAR = { f | ∀y ϕf(y) converges in no fewer than y steps }. 
 

We can deny the 2nd condition of Rice’s Theorem since 
S, where S(x) = x+1, converges in one step and hence is not in AT-LEAST-LINEAR 
S’, defined by primitive recursion, is in AT-LEAST-LINEAR, where  

S’(x) = C1
S’(y+1) = S(S’(y)) 

However, ∀x [ S(x) = S’(x) ], so they have the same I/O behavior and yet one is in and the 
other is out of -LEAST-LINEAR, denying the 2nd condition of Rice’s Theorem 

 
  b.) HAS-IMPOSTER = { f | ∃ g [ g≠f  and ∀y [ ϕg(y) = ϕf(y) ] ] }. 
 

We can deny the 1st condition of Rice’s Theorem since all functions have an imposter. To see 
this, consider for any function f, the equivalent but distinct function g(x) = f(x) + C0(x). Thus, 
HAS-IMPOSTER is trivial since it is equal to ℵ, the set of all indices. 

8 9. The trace language of a computational device like a Turing Machine is a language of the form 
Trace = { C1#C2# … Cn#  |  Ci ⇒ Ci+1, 1 ≤ i < n } 
Trace is Context Sensitive, non-Context Free. Actually, a trace language typically has every other 
configuration word reversed, but the concept is the same. Oddly, the complement of such a trace is 
Context Free. Explain what makes its complement a CFL. In other words, describe the 
characteristics of this complement and why these characteristics are amenable to a CFG description. 
Note: Reversing the second word in a pair is important here if you’re thinking about Turing 
Machines but is irrelevant for FRS with Residue. Thus, don’t make reversal an issue in your 
discussion. Also, here’s a start for you, assuming Σ is the alphabet of configuration words. 

Let R = (Σ + #)*##(Σ + #)* + Σ* + #(Σ + #)* + (Σ + #)*Σ+

R is a regular expression that describes all words that do not look like sequences of configurations. 
Your job now is to describe BadTrace, the rest of the complement of Trace and discuss why it’s a 
CFL. 

 
It is possible to create a Context Free Grammar for the language L = { C#C’# | ~ C ⇒ C’  }   
  Here,  ~ C ⇒ C’  means C’ is not derived directly from C. 

The reason this is Context Free is that it checks just one pair, meaning we can push the first 
onto a stack and then compare the second to be sure it is not a consequence of the first.  
Assume that the grammar for L is GL = ( V, N, T, PL ) 

 
We can then extend this grammar to another CFG, GBAD = ( V ∪ {S, U, C}, N, S, PBAD ), where 

PBAD contains all of PL plus 
 S →  U T U 
 U →  C # U  |  λ 
And C is a non-terminal that generates an arbitrary configuration in our machine notation. 

 
The language BadTrace generated by GBAD is then the strings that look like traces but have at 
least one error, i.e., one pair of configurations that does not reflect a correct step of computation. 
R ∪ BadTrace is the complement of Trace and is a CFL since it is the union of two CFLs (one is 
actually regular).  Q.E.D. 
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