COT 5310 Fall 2006 More Final Exam Samples

Name: KEY

Choosing from among (D) decidable, (U) undecidable, (?) unknown, categorize each of the following decision problems. No proofs are required.

Problem / Language Class	Regular	Context Free	Context Sensitive
$\mathbf{L} = \boldsymbol{\Sigma}^* ?$	D	U	U
$\mathbf{L} = \boldsymbol{\phi}$?	D	D	U
$\mathbf{L} = \mathbf{L}^2 ?$	D	U	U
$x \in L^2$, for arbitrary x?	D	D	D

8 2. Choosing from among (Y) yes, (N) No, (?) unknown, categorize each of the following closure properties. No proofs are required.

Problem / Language Class	Regular	Context Free
Closed under intersection?	Y	N
Closed under quotient?	Y	N
Closed under quotient with Regular languages?	Y	Y
Closed under complement?	Y	N

8 3. Consider the two operations on languages max and min, where max(L) = { x | x ∈ L and, for no y does xy ∈ L } and min(L) = { x | x ∈ L and, for no prefix of x, y, does y ∈ L } Describe the languages produced by max and min. for each of the following:

 $L_1 = \{ \ a^i b^j c^k \ | \ k \le i \ {\rm or} \ k \le j \ \}$

 $\max(\mathbf{L}_1) = \underline{\langle a^{\underline{i}} \underline{b}^{\underline{i}} \underline{c}^{\underline{k}} | \underline{k} = max(\underline{i}, \underline{j}) \rangle}$

 $\min(L_1) = \underbrace{\{\lambda\} (string of length 0)}$

 $L_2 = \{ \; a^i \, b^j \, c^k \; | \; k \geq i \; \text{or} \; k \geq j \; \}$

 $max(L_2) =$ { } (empty)

 $\min(\mathbf{L}_2) = \underline{\langle a^{\underline{i}} \underline{b}^{\underline{i}} \underline{c}^{\underline{k}} | \underline{k} = \min(i, \underline{j}) + 1 \rangle}$

12 4. Prove that any class of languages, C, closed under union, concatenation, intersection with regular languages, homomorphism and substitution (e.g., the Context-Free Languages) is closed under MissingMiddle, where, assuming L is over the alphabet Σ, MissingMiddle(L) = { xz | ∃y ∈ Σ* such that xyz ∈ L }

You must be very explicit, describing what is produced by each transformation you apply.

Define the alphabet $\Sigma' = \{a' \mid a \in \Sigma\}$, where, of course, a' is a "new" symbol, i.e., one not in Σ .

Define homomorphisms g and h, and substitution f as follows: $g(a) = a' \quad \forall a \in \Sigma \qquad h(a) = a ; \quad h(a') = \lambda \quad \forall a \in \Sigma \qquad f(a) = \{a, a'\} \quad \forall a \in \Sigma$

Consider $R = \Sigma^* \bullet g(\Sigma^*) \bullet \Sigma^* = \{x \ y' \ z \ | \ x, \ y, \ z \ \in \Sigma^* \ and \ y' = g(y) \ \in \Sigma'^* \}$ Σ^* is regular since it is the Kleene star closure of a finite set. $g(\Sigma^*)$ is regular since it is the homomorphic image of a regular language. R is regular as it is the concatenation of regular languages.

Now, $f(L) = \{f(w) \mid w \in L\}$ is in C since C is closed under substitution. This language is the set of strings in L with randomly selected letters primed. Any string $w \in L$ gives rise to $2^{|w|}$ strings in f(L).

 $f(L) \cap R = \{x y' z \mid x y z \in L \text{ and } y'=g(y)\}$ is in C since C is closed under intersection with regular languages.

MissingMiddle(L) = h($f(L) \cap R$) = { $x z \mid \exists y \in \Sigma^*$ such that $xyz \in L$ } which is in C, since C is closed under homomorphism. Q.E.D.

10 5. Use PCP to show the undecidability of the problem to determine if the intersection of two context free languages is non-empty. That is, show how to create two grammars G_A and G_B based on some instance $P = \langle x_1, x_2, ..., x_n \rangle$, $\langle y_1, y_2, ..., y_n \rangle >$ of PCP, such that $L(G_A) \cap L(G_B) \neq \phi$ iff P has a solution. Assume that P is over the alphabet Σ . You should discuss what languages your grammars produce and why this is relevant, but no formal proof is required.

$$G_{A} = (\{A\}, \Sigma \cup \{[i] \mid 1 \le i \le n\}, A, P_{A}\} \qquad G_{B} = (\{B\}, \Sigma \cup \{[i] \mid 1 \le i \le n\}, B, P_{B}\}$$

$$P_{A} : A \to x_{i} A [i] \mid x_{i} [i] \qquad P_{B} : A \to y_{i} B [i] \mid y_{i} [i]$$

$$L(G_{A}) = \{x_{i_{1}} x_{i_{2}} \dots x_{i_{p}} [i_{p}] \dots [i_{2}] [i_{1}] \mid p \ge 1, 1 \le i_{t} \le n, 1 \le t \le p \}$$

$$L(G_{B}) = \{y_{j_{1}} y_{j_{2}} \dots y_{j_{q}} [j_{q}] \dots [j_{2}] [j_{1}] \mid q \ge 1, 1 \le j_{u} \le n, 1 \le u \le q \}$$

$$L(G_{A}) \cap L(G_{B}) = \{w [k_{r}] \dots [k_{2}] [k_{1}] \mid r \ge 1, 1 \le k_{v} \le n, 1 \le v \le r \}, where$$

$$w = x_{k_{1}} x_{k_{2}} \dots x_{k_{r}} = y_{k_{1}} y_{k_{2}} \dots y_{k_{r}}$$

If $L(G_A) \cap L(G_B) \neq \phi$ then such a w exists and thus $k_1, k_2, ..., k_r$ is a solution to this instance of PCP. This shows that a decision procedure for the non-emptiness of the intersection of CFLs implies a decision procedure for PCP, which we have already shown is undecidable. Hence, the non-emptiness of the intersection of CFLs is undecidable. Q.E.D.

10 6. Consider the set of indices CONSTANT = { $f | \exists K \forall y [\phi_f(y) = K]$ }. Use Rice's Theorem to show that CONSTANT is not recursive. Hint: There are two properties that must be demonstrated.

First, show CONSTANT is non-trivial. $C_0(x) = 0$, one of the base functions, is in CONSTANT S(x) = x+1, one of the base functions, is not in CONSTANT Thus, CONSTANT is non-trivial

Second, let f, g be two arbitrary partial recursive functions with the same I/O behavior. That is, $\forall x$ if f(x) is defined, then f(x) = g(x); otherwise both diverge, i.e., $f(x) \uparrow$ and $g(x) \uparrow$ Now, $f \in CONSTANT$ $\Leftrightarrow \exists K \forall x \mid f(x) = K \mid by$ definition of CONSTANT

 $\Rightarrow \exists K \forall x [j(x) = K]$ by definition of CONSTANT $\Rightarrow \forall x [g(x) = C]$ where C is the instance of K above, since $\forall x [f(x) = g(x)]$ $\Rightarrow \exists K \forall x [g(x) = K]$ from above $\Rightarrow g \in CONSTANT$ by definition of CONSTANT

Since CONSTANT meets both conditions of Rice's Theorem, it is undecidable. Q.E.D.

10 7. Show that CONSTANT \equiv_m TOT, where TOT = { f | $\forall y \phi_f(y) \downarrow$ }.

 $CONSTANT \leq_m TOT$ Let f be an arbitrary partial recursive function. $Define g_f using composition, primitive recursion and minimization by
g_f(0) = f(0)
g_f(y+1) = f(y+1) + \mu z [f(y+1) = f(y)]
Now, if f \in CONSTANT then \forall y [f(y) \downarrow and [f(y+1) = f(y)]].
Under this circumstance, <math>\mu z [f(y+1) = f(y)]$ is 0 for all y and $g_f(y) = f(y)$ for all y. $Clearly, then g_f \in TOT$ If, however, $f \notin CONSTANT$ then $\exists y [f(y) \uparrow or [f(y+1) \neq f(y)]].$ Choose the least y meeting this condition. $If f(y) \uparrow then g_f(y) \uparrow since f(y) \text{ is in } g_f(y) \uparrow since \mu z [f(y+1) = f(y)] \uparrow (the 2^{nd} term).$ $If f(y) \downarrow but [f(y+1) \neq f(y)] | then g_f(y) \uparrow since \mu z [f(y+1) = f(y)] \uparrow (the 2^{nd} term).$ $Clearly, then g_f \notin TOT$ $Combining these, f \in CONSTANT \Leftrightarrow g_f \in TOT and thus CONSTANT \leq_m TOT$

 $\begin{array}{l} TOT \leq_m CONSTANT\\ Let f be an arbitrary partial recursive function.\\ Define g_f using composition by\\ g_f(y) = f(y) - f(y)\\ Now, if f \in TOT then \ \forall y \ [f(y) \not\downarrow \] and thus \ \forall y \ g_f(y) = 0 \ . \ Clearly \ , then \ g_f \in CONSTANT\\ If, however, f \not\in TOT then \ \exists y \ [f(y) \uparrow \] and thus, \ \exists y \ [g_f(y) \uparrow \] \ . \ Clearly \ , then \ g_f \not\in CONSTANT\\ Combining these, f \in TOT \Leftrightarrow g_f \in CONSTANT \ and thus \ TOT \ \leq_m CONSTANT \end{array}$

Hence, CONSTANT $=_m$ TOT. Q.E.D.

8 8. Why does Rice's Theorem have nothing to say about each of the following? Explain by showing some condition of Rice's Theorem that is not met by the stated property.

a.) AT-LEAST-LINEAR = { $f \mid \forall y \ \varphi_f(y)$ converges in no fewer than y steps }.

We can deny the 2^{nd} condition of Rice's Theorem since S, where S(x) = x+1, converges in one step and hence is not in AT-LEAST-LINEAR S', defined by primitive recursion, is in AT-LEAST-LINEAR, where $S'(x) = C_I$ S'(y+1) = S(S'(y))However, $\forall x [S(x) = S'(x)]$, so they have the same I/O behavior and yet one is in and the other is out of -LEAST-LINEAR, denying the 2^{nd} condition of Rice's Theorem

b.) HAS-IMPOSTER = { $\mathbf{f} \mid \exists g [g \neq f \text{ and } \forall y [\varphi_g(y) = \varphi_f(y)]]$ }.

We can deny the 1st condition of Rice's Theorem since all functions have an imposter. To see this, consider for any function f, the equivalent but distinct function $g(x) = f(x) + C_0(x)$. Thus, HAS-IMPOSTER is trivial since it is equal to \aleph , the set of all indices.

8 9. The trace language of a computational device like a Turing Machine is a language of the form Trace = { C₁#C₂# ... C_n# | C_i ⇒ C_{i+1}, 1 ≤ i < n }

Trace is Context Sensitive, non-Context Free. Actually, a trace language typically has every other configuration word reversed, but the concept is the same. Oddly, the complement of such a trace is Context Free. Explain what makes its complement a CFL. In other words, describe the characteristics of this complement and why these characteristics are amenable to a CFG description. Note: Reversing the second word in a pair is important here if you're thinking about Turing Machines but is irrelevant for **FRS with Residue**. Thus, don't make reversal an issue in your discussion. Also, here's a start for you, assuming Σ is the alphabet of configuration words.

Let $\mathbf{R} = (\Sigma + \#)^* \# \# (\Sigma + \#)^* + \Sigma^* + \# (\Sigma + \#)^* + (\Sigma + \#)^* \Sigma^+$

R is a regular expression that describes all words that do not look like sequences of configurations. Your job now is to describe **BadTrace**, the rest of the complement of **Trace** and discuss why it's a **CFL**.

It is possible to create a Context Free Grammar for the language $L = \{ C \# C' \# | \sim C \Rightarrow C' \}$ Here, $\sim C \Rightarrow C'$ means C' is not derived directly from C.

The reason this is Context Free is that it checks just one pair, meaning we can push the first onto a stack and then compare the second to be sure it is not a consequence of the first. Assume that the grammar for L is $G_L = (V, N, T, P_L)$

We can then extend this grammar to another CFG, $G_{BAD} = (V \cup \{S, U, C\}, N, S, P_{BAD})$, where P_{BAD} contains all of P_L plus

$$\begin{array}{ccc} S & \rightarrow & UTU \\ U & \rightarrow & C \# U \mid \lambda \end{array}$$

And C is a non-terminal that generates an arbitrary configuration in our machine notation.

The language BadTrace generated by G_{BAD} is then the strings that look like traces but have at least one error, i.e., one pair of configurations that does not reflect a correct step of computation. $R \cup BadTrace$ is the complement of Trace and is a CFL since it is the union of two CFLs (one is actually regular). Q.E.D.