
COT 5310 Fall 2006 More Sample Final Exam Questions

Generally useful information.

• When I say a set S is re, unless I explicitly say otherwise, you may assume any of the following
equivalent characterizations:
1. S is either empty or the range of a total recursive function fS.
2. S is the domain of a partial recursive function gS.

• If I say a function g is partially computable, then there is an index g (I know that’s overloading,
but that’s okay as long as we understand each other), such that Φg(x) = Φ(x, g) = g(x). Here Φ is
a universal partially recursive function.
Moreover, there is a primitive recursive function STP, such that
STP(x, g, t) is 1 (true), just in case g, started on x, halts in t or fewer steps.
STP(x, g, t) is 0 (false), otherwise.
Finally, there is another primitive recursive function VALUE, such that
VALUE(x, g, t) is g(x), whenever STP(x, g, t).
VALUE(x, g, t) is defined but meaningless if ~STP(x, g, t).

• The notation f(x)↓ means that f converges when computing with input x, but we don’t care about
the value produced. In effect, this just means that x is in the domain of f.

• The notation f(x)↑ means f diverges when computing with input x. In effect, this just means that
x is not in the domain of f.

• The Post Correspondence problem is known to be undecidable. This problem is characterized by
instances that are described by two n-ary sequences of non-empty words
<x1,x2,…,xn>, <y1,y2,…,yn>. The question is whether or not there exists a sequence, i1,i2,…,ik,
such that xi1xi2

…xik = yi1yi2
…yik

• The language {ww | w is a word in some alphabet with more than one letter} is not a CFL.
The language {anbncn | n≥0 } is not a CFL. The language {anbn | n≥0 } is not Regular.

• When I ask for a reduction of one set of indices to another, the formal rule is that you must
produce a function that takes an index of one function and produces the index of another having
whatever property you require. However, I allow some laxness here. You can start with a
function, given its index, and produce another function, knowing it will have a computable
index. For example, given f, a unary function, I might define gf, another unary function, by
gf(0) = f(0)
gf(y+1) = gf(y) + f(y+1)
This would get gf(x) as the sum of the values of f(0)+f(1)+…+f(x), which could be useful.

COT 5310 Formal Languages and Automata Theory – 2 –

 1. Choosing from among (D) decidable, (U) undecidable, (?) unknown, categorize each of the
following decision problems. No proofs are required.

Problem / Language Class Regular Context Free Context Sensitive

L = Σ* ?

L = φ ?

L = L2 ?

x ∈ L2, for arbitrary x ?

 2. Choosing from among (Y) yes, (N) No, (?) unknown, categorize each of the following closure
properties. No proofs are required.

Problem / Language Class Regular Context Free

Closed under intersection?

Closed under quotient?

Closed under quotient with Regular languages?

Closed under complement?

 3. Consider the two operations on languages max and min, where
max(L) = { x | x ∈ L and, for no y does xy ∈ L } and
min(L) = { x | x ∈ L and, for no prefix of x, y, does y ∈ L }
Describe the languages produced by max and min. for each of the following:

L1 = { ai bj ck | k ≤ i or k ≤ j }

max(L1) =

min(L1) =

L2 = { ai bj ck | k > i or k > j }

max(L2) =

min(L2) =

COT 5310 Formal Languages and Automata Theory – 3 –

 4. Prove that any class of languages, C, closed under union, concatenation, intersection with regular
languages, homomorphism and substitution (e.g., the Context-Free Languages) is closed under
MissingMiddle, where, assuming L is over the alphabet Σ,
MissingMiddle(L) = { xz | ∃y ∈ Σ* such that xyz ∈ L }
You must be very explicit, describing what is produced by each transformation you apply.

 5. Use PCP to show the undecidability of the problem to determine if the intersection of two context
free languages is non-empty. That is, show how to create two grammars GA and GB based on some
instance P = <<x1,x2,…,xn>, <y1,y2,…,yn>> of PCP, such that L(GA) ∩ L(GB) ≠ φ iff P has a
solution. Assume that P is over the alphabet Σ.You should discuss what languages your grammars
produce and why this is relevant, but no formal proof is required.

COT 5310 Formal Languages and Automata Theory – 4 –

 6. Consider the set of indices CONSTANT = { f | ∃K ∀y [ϕf(y) = K] }. Use Rice’s Theorem to show
that CONSTANT is not recursive. Hint: There are two properties that must be demonstrated.

 7. Show that CONSTANT ≡m TOT, where TOT = { f | ∀y ϕf(y)↓ }.

COT 5310 Formal Languages and Automata Theory – 5 –

 8. Why does Rice’s Theorem have nothing to say about each of the following? Explain by showing
some condition of Rice’s Theorem that is not met by the stated property.
 a.) AT-LEAST-LINEAR = { f | ∀y ϕf(y) converges in no fewer than y steps }.

 b.) HAS-IMPOSTER = { f | ∃ g [g≠f and ∀y [ϕg(y) = ϕf(y)]] }.

 9. The trace language of a computational device like a Turing Machine is a language of the form
Trace = { C1#C2# … Cn# | Ci ⇒ Ci+1, 1 ≤ i < n }
Trace is Context Sensitive, non-Context Free. Actually, a trace language typically has every other
configuration word reversed, but the concept is the same. Oddly, the complement of such a trace is
Context Free. Explain what makes its complement a CFL. In other words, describe the
characteristics of this complement and why these characteristics are amenable to a CFG description.
Note: Reversing the second word in a pair is important here if you’re thinking about Turing
Machines but is irrelevant for FRS with Residue. Thus, don’t make reversal an issue in your
discussion. Also, here’s a start for you, assuming Σ is the alphabet of configuration words.

Let R = (Σ + #)*##(Σ + #)* + Σ* + #(Σ + #)* + (Σ + #)*Σ+

R is a regular expression that describes all words that do not look like sequences of configurations.
Your job now is to describe BadTrace, the rest of the complement of Trace and discuss why it’s a
CFL.

	L = (* ?
	Closed under intersection?

