1. Using reduction from the complement of the Halting Problem, show the undecidability of the problem to determine if an arbitrary partial recursive function, \(f \), has a summation upper bound. This means that there is an \(M \), such that the sum of all values in the range of \(f \) (repeats are added in and divergence just adds 0) is \(\leq M \).

The set \(\text{HALT} = \{ \langle f, x \rangle : f(x) \downarrow \} \), therefore \(\text{CoHALT} = \{ \langle f, x \rangle : f(x) \uparrow \} \). The set of partial functions \(f \) with a summation upper bound can be described as

\[
\text{UB} = \{ f : \exists x \forall y \left(y > x \Rightarrow (f(y) = 0 \text{ or } f(y) \uparrow)\right) \}.
\]

or in other words, only finitely many of the outputs can be non-zero.

To show that \(\text{CoHALT} \leq_m \text{UB} \) we define \(g(\langle f, x \rangle) = g_{f,x} \) as

\[
g_{f,x}(y) = \mu t \left[\text{STP}(f, x, t) \right] + 1.
\]

Then if \(\langle f, x \rangle \in \text{CoHALT}, g_{f,x}(y) \uparrow \) for all \(y \in \mathbb{N} \) so \(\text{dom}(g_{f,x}) = \emptyset \Rightarrow g_{f,x} \in \text{UB} \).

If \(\langle f, x \rangle \notin \text{CoHALT}, g_{f,x}(y) \geq 1 \) for all \(y \in \mathbb{N} \). This means that no summation upper bound exists and \(g_{f,x} \notin \text{UB} \).

2. Use one of the versions of Rice’s Theorem to show the undecidability of the problem to determine if an arbitrary partial recursive function, \(f \), has a summation upper bound. This means that there is an \(M \), such that the sum of all values in the range of \(f \) (repeats are added in and divergence just adds 0) is \(\leq M \).

We can consider using Rice’s Theorem because UB is a set of partial function indices.

UB is non-trivial because if \(f(x) = 0 \) and \(g(x) = 1 \) for all \(x \) then \(f \in \text{UB} \) but \(g \notin \text{UB} \).

Using the version of Rice’s Theorem that distinguishes based on exact I/O behavior, for any \(f, g \) for which \(f(x) = g(x) \) for all \(x \),

\[
f \in \text{UB} \iff \exists x \forall y > x, f(x) = 0 \text{ or } f(x) \uparrow
\]

\[
\iff \exists x \forall y > x, g(x) = 0 \text{ or } g(x) \uparrow
\]

\[
\iff g \in \text{UB}
\]

which shows that if two partial functions have the same I/O behavior, they must both be in UB or both be out of UB.

3. Show that given a Semi–Thue system, \(S \), you can produce a Post Normal System, \(N_S \), such that \(x \Rightarrow^* y \) iff \(x \Rightarrow^*_S y \). You must give the construction of \(N_S \) from \(S \) and a justification of why this meets the condition stated above.

Given a Semi–Thue system \(S = (\Sigma, R) \) where

\[
R = \{ \alpha_1 \rightarrow \beta_1, \alpha_2 \rightarrow \beta_2, \ldots, \alpha_k \rightarrow \beta_k \}
\]

with \(\alpha_i, \beta_i \in \Sigma^* \) for \(1 \leq i \leq k \), we need to construct a Post Normal System \(N_S \) such that if \(x, y \in \Sigma^* \) then \(x \Rightarrow^*_S y \) iff \(x \Rightarrow^*_N y \).

Our construction will be \(N_S = (\Sigma_S, R_S) \) where

\[
\Sigma_S = \Sigma \cup \overline{\Sigma}
\]

and \(\overline{\Sigma} \) is everything in \(\Sigma \) but with a line over it. If \(w = a_1 a_2 \cdots a_k \in \Sigma^* \) then \(\overline{w} = \overline{a_1 a_2 \cdots a_k} \in \overline{\Sigma}^* \). Then let \(R_S \) be the union of the following normal rules:
1. \(\{ \alpha P \rightarrow P \beta : \alpha \rightarrow \beta \in R \} \)
2. \(\{ aP \rightarrow P \bar{a} : a \in \Sigma \} \)
3. \(\{ aP \rightarrow Pa : a \in \Sigma \} \).

We now need to show that this construction is correct. To show that \(x \Rightarrow^* y \) implies \(x \Rightarrow^* y \) we only need to show that \(x \Rightarrow y \) implies \(x \Rightarrow^* y \). If \(x \Rightarrow y \) then \(x = uav \) and \(y = u\beta v \) where \(\alpha \rightarrow \beta \in R \).

Here is why \(uav \Rightarrow^* u\beta v \):

\[
\begin{align*}
 & uav \Rightarrow_{N_S} \alpha v\bar{u} & \text{...}|u| \text{ applications of type 2. rules} \\
 & \alpha v\bar{u} \Rightarrow_{N_S} v\bar{u}\bar{\beta} & \text{...application of a rule of type 1.} \\
 & v\bar{u}\bar{\beta} \Rightarrow_{N_S} u\bar{\beta}v & \text{...}|v| \text{ applications of type 2. rules} \\
 & u\bar{\beta}v \Rightarrow_{N_S} u\beta v & \text{...} |u\beta v| \text{ applications of 3. rules}
\end{align*}
\]

Now we need that for \(x, y \in \Sigma^* \), \(x \Rightarrow^* y \) implies \(x \Rightarrow^* y \). We can’t use the same technique as for the other direction since any application of a rule in the post normal system brings us out of \(\Sigma^* \). Observe that we can move from any string of the form \(u\alpha v \) to a string \(wuv \) by some number of applications of rules of type 2. or 3. where \(u, v, w \in \Sigma^* \).

We will do induction on the number of times a rule of type 1. is applied in a derivation. We want to show that for \(x, y \in \Sigma^* \) if a derivation \(x \Rightarrow^* y \) uses \(n \) applications of rules of type 1. for any \(n \geq 0 \) then \(x \Rightarrow^* y \).

Base: \(n = 0 \) and \(x \Rightarrow^* y \) implies \(x = y \) so \(x \Rightarrow^* y \).

IH: If \(x, y \in \Sigma^* \) and \(x \Rightarrow^* y \) and uses \(n \geq 0 \) applications of rules of type 3. then \(x \Rightarrow^* y \).

IS: If \(x \Rightarrow^* y \) using \(n \geq 1 \) applications of rules of type 1. then let \(\gamma_i \) be the form after applying the \(i \)th rule of type 1, so

\[
x \Rightarrow_{N_S}^* \gamma_1 \Rightarrow_{N_S}^* \gamma_2 \Rightarrow_{N_S}^* \cdots \Rightarrow_{N_S}^* \gamma_{n-1} \Rightarrow_{N_S}^* \gamma_n \Rightarrow_{N_S}^* y.
\]

Now \(\gamma_{n-1} = uv\bar{\beta} \) which we can derive \(v\beta u \in \Sigma^* \) from by some applications of rules of type 2. or 3. So we have that \(x \Rightarrow_{N_S}^* \gamma_n \Rightarrow_{N_S}^* z \) where \(z = v\beta u \) using \(n - 1 \) type 1. rules. Apply the induction hypothesis to \(x \Rightarrow_{N_S}^* z \) so we have that \(x \Rightarrow_{N_S}^* z \). Let \(\gamma'_n \Rightarrow_{N_S} \gamma_n \) then \(z \Rightarrow_{N_S}^* \gamma'_n \) through some applications of type 2. and 3. rules. Now let \(\alpha \rightarrow \beta \in R \) be the rule applied from \(\gamma'_n \) to get \(\gamma_n \) which leads to \(y \). Then \(z \Rightarrow_{N_S} y \) by the production \(\alpha \rightarrow \beta \in R \) and thus \(x \Rightarrow_{N_S}^* z \Rightarrow_{N_S}^* y \).

So combining we have if \(x, y \in \Sigma^* \) then \(x \Rightarrow_{N_S}^* y \) iff \(y \Rightarrow_{N_S}^* y \).