1. Using reduction from the complement of the Halting Problem, show the undecidability of the problem to determine if an arbitrary partial recursive function, f, has a summation upper bound. This means that there is an M, such that the sum of all values in the range of f (repeats are added in and divergence just adds 0) is $\leq M$.
The set HALT $=\{\langle f, x\rangle: f(x) \downarrow\}$, therefore CoHALT $=\{\langle f, x\rangle: f(x) \uparrow\}$. The set of partial functions f with a summation upper bound can be described as

$$
\mathrm{UB}=\{f: \exists x \forall y[y>x \Rightarrow(f(y)=0 \text { or } f(y) \uparrow)]\}
$$

or in other words, only finitely many of the outputs can be non-zero.
To show that CoHALT \leq_{m} UB we define $g(\langle f, x\rangle)=g_{f, x}$ as

$$
g_{f, x}(y)=\mu t[\operatorname{STP}(f, x, t)]+1
$$

Then if $\langle f, x\rangle \in \operatorname{CoHALT}, g_{f, x}(y) \uparrow$ for all $y \in \mathbb{N}$ so $\operatorname{dom}\left(g_{f, x}\right)=\varnothing \Rightarrow g_{f, x} \in \mathrm{UB}$.
If $\langle f, x\rangle \notin \operatorname{CoHALT}, g_{f, x}(y) \geq 1$ for all $y \in \mathbb{N}$. This means that no summation upper bound exists and $g_{f, x} \notin \mathrm{UB}$.
2. Use one of the versions of Rice's Theorem to show the undecidability of the problem to determine if an arbitrary partial recursive function, f, has a summation upper bound. This means that there is an M, such that the sum of all values in the range of f (repeats are added in and divergence just adds 0) is $\leq M$.
We can consider using Rice's Theorem because UB is a set of partial function indices.
UB is non-trivial because if $f(x)=0$ and $g(x)=1$ for all x then $f \in \mathrm{UB}$ but $g \notin \mathrm{UB}$.
Using the version of Rice's Theorem that distinguishes based on exact I/O behavior, for any f, g for which $f(x)=g(x)$ for all x,

$$
\begin{aligned}
f \in \mathrm{UB} & \Leftrightarrow \exists x \forall y>x, f(x)=0 \text { or } f(x) \uparrow \\
& \Leftrightarrow \exists x \forall y>x, g(x)=0 \text { or } g(x) \uparrow \\
& \Leftrightarrow g \in \mathrm{UB}
\end{aligned}
$$

which shows that if two partial functions have the same I/O behavior, they must both be in UB or both be out of UB.
3. Show that given a Semi-Thue system, S, you can produce a Post Normal System, N_{S}, such that $x \underset{S}{\Rightarrow} y$ iff $x{\underset{N_{S}}{\Rightarrow}}_{*}^{*}$. You must give the construction of N_{S} from S and a justification of why this meets the condition stated above.
Given a Semi-Thue system $S=(\Sigma, R)$ where

$$
\begin{aligned}
& R=\left\{\alpha_{1}\right. \rightarrow \beta_{1}, \\
& \alpha_{2} \rightarrow \beta_{2}, \\
& \vdots \\
& \alpha_{k}\left.\rightarrow \beta_{k}\right\}
\end{aligned}
$$

with $\alpha_{i}, \beta_{i} \in \Sigma^{*}$ for $1 \leq i \leq k$, we need to construct a Post Normal System N_{S} such that if $x, y \in \Sigma^{*}$ then $x{\underset{S}{*}}_{*} y$ iff $x \underset{N_{S}}{*} y$.
Our construction will be $N_{S}=\left(\Sigma_{S}, R_{S}\right)$ where

$$
\Sigma_{S}=\Sigma \cup \bar{\Sigma}
$$

and $\bar{\Sigma}$ is everything in Σ but with a line over it. If $w=a_{1} a_{2} \cdots a_{k} \in \Sigma^{*}$ then $\bar{w}=\overline{a_{1}} \overline{a_{2}} \cdots \overline{a_{k}} \in \bar{\Sigma}^{*}$. Then let R_{S} be the union of the following normal rules:

1. $\{\alpha P \rightarrow P \bar{\beta}: \alpha \rightarrow \beta \in R\}$
2. $\{a P \rightarrow P \bar{a}: a \in \Sigma\}$
3. $\{\bar{a} P \rightarrow P a: a \in \Sigma\}$.
 need to show that $x \underset{S}{\Rightarrow} y$ implies $x{\underset{N_{S}}{*}}_{\Rightarrow^{*}}$. If $x \underset{S}{\Rightarrow} y$ then $x=u \alpha v$ and $y=u \beta v$ where $\alpha \rightarrow \beta \in R$.

$$
\begin{array}{lc}
u \alpha v \underset{N_{S}}{\Rightarrow} \alpha v \bar{u} & \ldots|u| \text { applications of type } 2 . \text { rules } \\
\alpha v \bar{u} \underset{N_{S}}{\Rightarrow} v \bar{u} \bar{\beta} & \ldots \text { application of a rule of type } 1 . \\
v \bar{u} \bar{\beta} \underset{N_{S}}{\Rightarrow} \bar{u} \bar{\beta} \bar{v} & \ldots|v| \text { applications of type } 2 . \text { rules } \\
\bar{u} \bar{\beta} \bar{v} \underset{N_{S}}{\Rightarrow} u \beta v . & \ldots|u \beta v| \text { applications of } 3 . \text { rules }
\end{array}
$$

Now we need that for $x, y \in \Sigma^{*}, x \underset{N_{S}}{{\underset{S}{s}}^{*}} y$ implies $x \underset{S}{{\underset{S}{x}}^{*} y \text {. We can't use the same technique as for the }}$ other direction since any application of a rule in the post normal system brings us out of Σ^{*}. Observe that we can move from any string of the form $u \bar{v} w$ to a string $w u v$ by some number of applications of rules of type 2 . or 3 . where $u, v, w \in \Sigma^{*}$.
We will do induction on the number of times a rule of type 1. is applied in a derivation. We want to show that for $x, y \in \Sigma^{*}$ if a derivation $x \underset{N_{S}}{{\underset{N}{s}}^{*} y \text { uses } n \text { applications of rules of type } 1 \text {. for any } n \geq 0}$ then $x \underset{S}{\Rightarrow}{ }^{*} y$.

Base: $n=0$ and $x \underset{N_{S}}{\Rightarrow^{*}} y$ implies $x=y$ so $x{\underset{S}{*}}^{*} x$.

IS: If $x \underset{N_{S}}{{\underset{N}{s}}^{*}} y$ using $n \geq 1$ applications of rules of type 1 . then let γ_{i} be the form after applying the i th rule of type 1 , so

$$
x \underset{N_{S}}{\Rightarrow} \gamma_{1} \underset{N_{S}}{{\underset{N}{N}}^{*}} \gamma_{2} \underset{\vec{N}_{S}}{*} \cdots{\overrightarrow{N_{S}}}^{*} \gamma_{n-1} \underset{\vec{N}_{S}}{*} \gamma_{n}{\overrightarrow{N_{S}}}^{*} y
$$

Now $\gamma_{n-1}=u \bar{v} \bar{\beta}$ which we can derive $v \beta u \in \Sigma^{*}$ from by a some applications of rules of type 2 . or 3. So we have that $x \underset{N_{S}}{\overrightarrow{7}} \gamma_{n-1} \underset{N_{S}}{\vec{~}} z$ where $z=v \beta u$ using $n-1$ type 1. rules. Apply the induction hypothesis to $x \underset{N_{S}}{\Rightarrow} z$ so we have that $x \underset{S}{*} z$. Let $\gamma_{n}^{\prime} \underset{N_{S}}{\Rightarrow} \gamma_{n}$ then $z{\underset{N_{S}}{*}}_{*}^{\left(\gamma_{n}^{\prime}\right.}$ through some applications of type 2 . and 3 . rules. Now let $\alpha \rightarrow \beta \in R$ be the rule applied from γ_{n}^{\prime} to get γ_{n} which leads to y. Then $z \underset{S}{\Rightarrow} y$ by the production $\alpha \rightarrow \beta \in R$ and thus $x{\underset{S}{A}}_{*}^{z} \underset{S}{\Rightarrow} y$ implies $x \underset{S}{\Rightarrow_{S}^{*}} y$.

So combining we have if $x, y \in \Sigma^{*}$ then $x \underset{S}{*} y$ iff $y \underset{N_{S}}{\Rightarrow} y$.

