COT 5310 Homework 3 Key

3. Show that prfs are closed under mutual recursion. That is, assuming F_{1}, F_{2} and G_{1} and G_{2} are pr, show that H_{1} and H_{2} are, where
$H_{1}(0, x)=F_{1}(x)$
$H_{1}(y+1, x)=G_{1}\left(y, x, H_{2}(y, x)\right)$
$H_{2}(0, x)=F_{2}(x)$
$H_{2}(y+1, x)=G_{2}\left(y, x, H_{1}(y, x)\right)$.

Define H iteratively as
$H(0, x)=\left\langle F_{1}(x), F_{2}(x)\right\rangle$
$H(y+1, x)=\left\langle G_{1}\left(y, x,\langle H(y, x)\rangle_{2}\right), G_{2}\left(y, x,\langle H(y, x)\rangle_{1}\right)\right\rangle$.
H is primitive recursive by construction since pairing, G_{1}, G_{2}, F_{1}, and F_{2} are all primitive recursive. The claim we need to prove (via induction) is that $H(y, x)=\left\langle H_{1}(y, x), H_{2}(y, x)\right\rangle$ for all $y \geq 0$.

Base : $H(0, x)=\left\langle F_{1}(x), F_{2}(x)\right\rangle=\left\langle H_{1}(0, x), H_{2}(0, x)\right\rangle$.
Hypothesis : $H(y, x)=\left\langle H_{1}(y, x), H_{2}(y, x)\right\rangle$ for all $y \geq 0$.
Step : Let $y \geq 0$. Then

$$
\begin{array}{rlr}
H(y+1, x) & =\left\langle G_{1}\left(y, x,\langle H(y, x)\rangle_{2}\right), G_{2}\left(y, x,\langle H(y, x)\rangle_{1}\right)\right\rangle & \ldots \text { by definition } \\
H(y+1, x) & =\left\langle G_{1}\left(y, x, H_{2}(y, x)\right), G_{2}\left(y, x, H_{1}(y, x)\right)\right\rangle & \ldots \text { by hypothesis } \\
H(y+1, x) & =\left\langle H_{1}(y+1, x), H_{2}(y+1, x)\right\rangle & \ldots \text { definition of } H_{1} \text { and } H_{2} .
\end{array}
$$

Now, $H_{1}(y, x)=\langle H(y, x)\rangle_{1}$ so H_{1} is primitive recursive, and $H_{2}(y, x)=\langle H(y, x)\rangle_{2}$ so H_{2} is primitive recursive.

