COT 5310 Homework 3 Key

3. Show that prfs are closed under mutual recursion. That is, assuming F_1 , F_2 and G_1 and G_2 are pr, show that H_1 and H_2 are, where

 $\begin{aligned} H_1(0,x) &= F_1(x) \\ H_1(y+1,x) &= G_1(y,x,H_2(y,x)) \\ H_2(0,x) &= F_2(x) \\ H_2(y+1,x) &= G_2(y,x,H_1(y,x)). \end{aligned}$

Define H iteratively as

 $\begin{aligned} H(0,x) &= \langle F_1(x), F_2(x) \rangle \\ H(y+1,x) &= \langle G_1(y,x, \langle H(y,x) \rangle_2), G_2(y,x, \langle H(y,x) \rangle_1) \rangle. \end{aligned}$

H is primitive recursive by construction since pairing, G_1 , G_2 , F_1 , and F_2 are all primitive recursive. The claim we need to prove (via induction) is that $H(y, x) = \langle H_1(y, x), H_2(y, x) \rangle$ for all $y \ge 0$.

Base : $H(0,x) = \langle F_1(x), F_2(x) \rangle = \langle H_1(0,x), H_2(0,x) \rangle$. **Hypothesis** : $H(y,x) = \langle H_1(y,x), H_2(y,x) \rangle$ for all $y \ge 0$. **Step** : Let $y \ge 0$. Then

$$\begin{split} H(y+1,x) &= \langle G_1(y,x,\langle H(y,x)\rangle_2), G_2(y,x,\langle H(y,x)\rangle_1) \rangle & \dots \text{ by definition} \\ H(y+1,x) &= \langle G_1(y,x,H_2(y,x)), G_2(y,x,H_1(y,x)) \rangle & \dots \text{ by hypothesis} \\ H(y+1,x) &= \langle H_1(y+1,x), H_2(y+1,x) \rangle & \dots \text{ definition of } H_1 \text{ and } H_2. \end{split}$$

Now, $H_1(y,x) = \langle H(y,x) \rangle_1$ so H_1 is primitive recursive, and $H_2(y,x) = \langle H(y,x) \rangle_2$ so H_2 is primitive recursive.