
COT 5310 Homework 2 Key

(a) Present a Register Machine that computes FIB. Assume R1 = x; at termination set R2 = 1 if x is a
member of the Fibonacci sequence and 0 if not.

1. INC4[2] // set up R3 = 0 = l and R4 = 1 = h as the first two Fibonacci numbers
2. DEC1[3, 14] // move input R1 and R3 (= l) to R5, finish if can’t decrement
3. DEC3[4, 5]

4. INC5[2]

5. INC1[6] // R1 is now x − l − 1, make it equal x − l, this implies R3=0 now
6. DEC4[7, 9] // move R4(= h) into R3 and copy to R6

7. INC3[8]

8. INC6[6]

9. DEC5[10, 12] // now R5 = l, move to R4 and R1, thus restoring R1 to x

10. INC1[11]

11. INC4[9]

12. DEC6[13, 2] // move copy of h in R6 to R4 which contains h right now
13. INC4[12]

14. DEC3[16, 15] // if R3 = 0 then x ∈ FIB
15. INC2[16]

16. DEC3[16, 17] // begin cleanup to make things look pretty
17. DEC4[17, 18]

18. DEC5[18, 19]

(b) Present a Factor Replacement System that computes FIB. Assume starting number is 3x · 5; at termi-
nation, result is 2 = 21 if x is a member of the Fibonacci sequence; 1 = 20 otherwise. Actually, it can
be done without the 5, but that may make it easier.

The following FRS computes FIB. It uses the primes 2, 3, 5, 7, 11, 13, and 17. The first prime 2
stores the result, 3 stores the input, 5 represents the state, 7 is used to hold the current low Fibonacci
number called l, 11 is used to hold the current high Fibonacci number called h, finally 13 and 17 are
temporary variables. State 52 compares the input to the low Fibonacci number and 53 computes the
next in the series. The list of values to the right of a rule represent the input before that rule is applied.

54 · 7x → 54x

54 · 11x → 54x

54 · 13x → 54x

54x → x

cleanup

53 · 11 · 13x → 53 · 7 · 13 · 17x

53 · 13x → 3 · 53 · 17x

53 · 17x → 53 · 11x

53x → 52x

2 3 5 7 11 13 17

0 x − l 3 0 h l 0
0 x − l 3 h 0 l h

0 x 3 h 0 0 h + l

0 x 3 h h + l 0 0

3 · 52 · 7x → 52 · 13x

3 · 52x → 3 · 53x

52 · 7x → 54x

52x → 2 · 54x

2 3 5 7 11 13 17

0 x 2 l h 0 0
0 x − l 2 0 h l 0
0 0 2 l − x h x 0
0 0 2 0 h l 0

3 · 5x → 3 · 52 · 7 · 11x

5x → 2x
initialize and check for 0

1

(c) Prove that non-deterministic FRS’s are no more powerful than non-deterministic VAS. This means you
need only show that any non-deterministic FRS can be simulated by a non-deterministic VAS. Note:
To do this most effectively, you need to first develop the notion of an instantaneous description (ID) of
an FRS (that’s a point in 1-space) and of a VAS (that’s a point in n-space). You then need a mapping
from an FRS ID to a corresponding VAS ID, and this mapping needs to be some function (many-one
into), f . Next, there must be a mapping from the rules of the FRS to create those of the VAS, such
that a single step of the FRS from x to y is mimicked by some finite number of of steps of the VAS
from f(x) to f(y), where f(y) is the first ID derived from the f(x) that is a mapping from some ID of
the VAS.

An instantaneous description of an FRS is a positive integer x ∈ N
+. An instantaneous descrip-

tion of a VAS of n dimensions is a vector v ∈ N
n. We will give the mapping and then argue its

correctness.

Any non-deterministic FRS R can be represented as a set of 2-tuples over N
+ where (a, b) corresponds

to the rule ax → bx. Let m be the index of the largest prime used in any side of any rule, and k = |R|.
Then define the mapping f : N

+ → N
m+k+1 by

f(x) = f(px1

1 · px2

2 · · · · pxm

m
) = 〈 x1, x2, . . . , xm

︸ ︷︷ ︸

m

, 0, . . . , 0
︸ ︷︷ ︸

k

, 1 〉 .

The first m dimensions contain the exponents for the prime decomposition of x, the next k dimensions
will be used to specify which rule is being simulated, and the last dimension specifies which side of the
rule to simulate (left if equal to 1 or right if equal to 0).

The vectors of the non-deterministic VAS will each have dimension n = m + k + 1. For the rule a → b

with index r where 0 ≤ r ≤ k − 1 add the following two vectors to the VAS:

va = 〈 −a1, −a2, . . . , −am, 0, . . . , 1, . . . , 0, −1 〉
vb = 〈 b1, b2, . . . , −am, 0, . . . , −1, . . . , 0, 1 〉

︷ ︸︸ ︷

m + r .

The −1 in the last position ensures that some b-vector must be chosen after using va, and the fact that
only vb has −1 at position m + r ensures that it’s the only b-vector that can be used.

To show the simulation is correct, it suffices to show that given two FRS ID’s x, y ∈ N
+ then x ⇒∗ y if

and only if f(x) ⇒∗ f(y). The x ⇒∗ y part is obtained by observing that x ⇒ y implies f(x) ⇒2 f(y),
meaning that any application of an FRS rule can be simulated in two steps by the VAS. On the other
hand, given an FRS ID x, f(x) ⇒2 f(y) implies that x ⇒ y because any two steps in the VAS because
first some va must be chosen where a matches x, and as noted before this must be followed by its
unique vb. Finally, if f(x) ⇒ z in a single step, then f−1(z) is empty and therefore cannot be an FRS
ID because its last position is 0. Therefore f(x) ⇒∗ f(y) implies x ⇒ y, and the simulation is correct.

2

