COT 5310 Homework 2 Key

(a) Present a Register Machine that computes FIB. Assume R1 $=x$; at termination set $\mathrm{R} 2=1$ if x is a member of the Fibonacci sequence and 0 if not.

1. $\mathrm{INC}_{4}[2] \quad / /$ set up $\mathrm{R} 3=0=l$ and $\mathrm{R} 4=1=h$ as the first two Fibonacci numbers
2. $\mathrm{DEC}_{1}[3,14]$ // move input R1 and R3 ($=l$) to R5, finish if can't decrement
3. $\mathrm{DEC}_{3}[4,5]$
4. $\mathrm{INC}_{5}[2]$
5. $\mathrm{INC}_{1}[6]$
// R1 is now $x-l-1$, make it equal $x-l$, this implies $\mathrm{R} 3=0$ now
6. $\mathrm{DEC}_{4}[7,9] \quad / /$ move $\mathrm{R} 4(=h)$ into R 3 and copy to R6
7. $\mathrm{INC}_{3}[8]$
8. $\mathrm{INC}_{6}[6]$
9. $\mathrm{DEC}_{5}[10,12] \quad / /$ now $\mathrm{R} 5=l$, move to R 4 and R 1 , thus restoring R 1 to x
10. $\operatorname{INC}_{1}[11]$
11. INC_{4} [9]
12. $\mathrm{DEC}_{6}[13,2] \quad / /$ move copy of h in R 6 to R 4 which contains h right now
13. INC_{4} [12]
14. $\mathrm{DEC}_{3}[16,15] \quad / /$ if R3 $=0$ then $x \in \mathrm{FIB}$
15. INC $_{2}$ [16]
16. $\mathrm{DEC}_{3}[16,17]$
// begin cleanup to make things look pretty
17. $\mathrm{DEC}_{4}[17,18]$
18. $\operatorname{DEC}_{5}[18,19]$
(b) Present a Factor Replacement System that computes FIB. Assume starting number is $3^{x} \cdot 5$; at termination, result is $2=2^{1}$ if x is a member of the Fibonacci sequence; $1=2^{0}$ otherwise. Actually, it can be done without the 5 , but that may make it easier.

The following FRS computes FIB. It uses the primes $2,3,5,7,11,13$, and 17 . The first prime 2 stores the result, 3 stores the input, 5 represents the state, 7 is used to hold the current low Fibonacci number called $l, 11$ is used to hold the current high Fibonacci number called h, finally 13 and 17 are temporary variables. State 5^{2} compares the input to the low Fibonacci number and 5^{3} computes the next in the series. The list of values to the right of a rule represent the input before that rule is applied.

$$
\begin{aligned}
& 5^{4} \cdot 7 x \rightarrow 5^{4} x \\
& 5^{4} \cdot 11 x \rightarrow 5^{4} x \\
& 5^{4} \cdot 13 x \rightarrow 5^{4} x \\
& 5^{4} x \rightarrow x \\
& \\
& 5^{3} \cdot 11 \cdot 13 x \rightarrow 5^{3} \cdot 7 \cdot 13 \cdot 17 x \\
& 5^{3} \cdot 13 x \rightarrow 3 \cdot 5^{3} \cdot 17 x \\
& 5^{3} \cdot 17 x \rightarrow 5^{3} \cdot 11 x \\
& 5^{3} x \rightarrow 5^{2} x \\
& \\
& 3 \cdot 5^{2} \cdot 7 x \rightarrow 5^{2} \cdot 13 x \\
& 3 \cdot 5^{2} x \rightarrow 3 \cdot 5^{3} x \\
& 5^{2} \cdot 7 x \rightarrow 5^{4} x \\
& 5^{2} x \rightarrow 2 \cdot 5^{4} x \\
& 3 \cdot 5 x \rightarrow 3 \cdot 5^{2} \cdot 7 \cdot 11 x \\
& 5 x \rightarrow 2 x
\end{aligned}
$$

(c) Prove that non-deterministic FRS's are no more powerful than non-deterministic VAS. This means you need only show that any non-deterministic FRS can be simulated by a non-deterministic VAS. Note: To do this most effectively, you need to first develop the notion of an instantaneous description (ID) of an FRS (that's a point in 1-space) and of a VAS (that's a point in n-space). You then need a mapping from an FRS ID to a corresponding VAS ID, and this mapping needs to be some function (many-one into), f. Next, there must be a mapping from the rules of the FRS to create those of the VAS, such that a single step of the FRS from x to y is mimicked by some finite number of of steps of the VAS from $f(x)$ to $f(y)$, where $f(y)$ is the first ID derived from the $f(x)$ that is a mapping from some ID of the VAS.

An instantaneous description of an FRS is a positive integer $x \in \mathbb{N}^{+}$. An instantaneous description of a VAS of n dimensions is a vector $v \in \mathbb{N}^{n}$. We will give the mapping and then argue its correctness.

Any non-deterministic FRS R can be represented as a set of 2-tuples over \mathbb{N}^{+}where (a, b) corresponds to the rule $a x \rightarrow b x$. Let m be the index of the largest prime used in any side of any rule, and $k=|R|$. Then define the mapping $f: \mathbb{N}^{+} \rightarrow \mathbb{N}^{m+k+1}$ by

$$
f(x)=f\left(p_{1}^{x_{1}} \cdot p_{2}^{x_{2}} \cdots p_{m}^{x_{m}}\right)=\langle\underbrace{x_{1}, x_{2}, \ldots, x_{m}}_{m}, \underbrace{0, \ldots, 0}_{k}, 1\rangle .
$$

The first m dimensions contain the exponents for the prime decomposition of x, the next k dimensions will be used to specify which rule is being simulated, and the last dimension specifies which side of the rule to simulate (left if equal to 1 or right if equal to 0).
The vectors of the non-deterministic VAS will each have dimension $n=m+k+1$. For the rule $a \rightarrow b$ with index r where $0 \leq r \leq k-1$ add the following two vectors to the VAS:

$$
\begin{array}{rlrllllllll}
v_{a} & =\left\langle\begin{array}{rrrrrr}
-a_{1}, & -a_{2}, & \ldots, & -a_{m}, & 0, & \ldots, \\
v_{b} & =\left\langle\begin{array}{rrrr}
1, & \ldots, & 0, & -1 \\
b_{1}, & b_{2}, & \ldots, & -a_{m},
\end{array} 0,\right. & \ldots, & \overbrace{-}^{-1,} & \ldots, & 0, \\
1
\end{array}\right\rangle
\end{array}
$$

The -1 in the last position ensures that some b-vector must be chosen after using v_{a}, and the fact that only v_{b} has -1 at position $m+r$ ensures that it's the only b-vector that can be used.
To show the simulation is correct, it suffices to show that given two FRS ID's $x, y \in \mathbb{N}^{+}$then $x \Rightarrow^{*} y$ if and only if $f(x) \Rightarrow^{*} f(y)$. The $x \Rightarrow^{*} y$ part is obtained by observing that $x \Rightarrow y$ implies $f(x) \Rightarrow^{2} f(y)$, meaning that any application of an FRS rule can be simulated in two steps by the VAS. On the other hand, given an FRS ID $x, f(x) \Rightarrow^{2} f(y)$ implies that $x \Rightarrow y$ because any two steps in the VAS because first some v_{a} must be chosen where a matches x, and as noted before this must be followed by its unique v_{b}. Finally, if $f(x) \Rightarrow z$ in a single step, then $f^{-1}(z)$ is empty and therefore cannot be an FRS ID because its last position is 0 . Therefore $f(x) \Rightarrow^{*} f(y)$ implies $x \Rightarrow y$, and the simulation is correct.

