COT4810.02, Fall 2002

November 19, 2002

S. Lang

Partial Solution Keys to Assignments 4 (6

(Additional note added 11/26 for HW6, Q1)

HW4, Q1: (Cook’s Theorem) Given 4 boolean variables x, y, u, v, and the following Boolean expression in product-of-sum form, where the apostrophe notation “’” refers to the negation:

(x + u + v’)(x’ + y + u)(x + y’ + u’)(y + u’ + v)(x’ + y’ + v’)

(a) Is there a truth-value assignment to the boolean variables that results in a true value for the above expression? Yes, for example, by setting x = y = u = v = false.

(b) If so, describe a deterministic algorithm that outputs all such truth-value assignments.

for x = true, false

 for y = true, false

 for u = true, false

 for v = true, false

substitute the values of the 4 variables x, y, u, and v into each of the SUM expressions of the formula and evaluate; output the truth value assignment if the resulting product-of-sum formula is true

(c) What is the time complexity of your algorithm (in the worst case), and how can you improve its efficiency?

(Version one) Suppose there are 4 variables, the maximum length of the SUM expressions is m, and the number of SUM expressions is n. In this case, there are 16 possible truth value assignments to the 4 variables and, for each of these possible assignments, it takes O(mn) additions (OR operations) and O(n) products (multiplications) to find the truth value of a product-of-sum formula. Thus, the total time complexity is 16(O(mn) + O(n)) = O(mn).

(Version two) Suppose there are p variables, the maximum length of the SUM expressions is m, and the number of SUM expressions is n. In this case, there are 2p possible truth value assignments to the p variables. For each of these possible assignments, it takes O(mn) additions (OR operations) and O(n) products (multiplications) to find the truth value of a product-of-sum formula. Thus, the total time complexity is O(mn2p).

In both versions, we could improve the time complexity by shortcutting the evaluation process when a sum expression turns out to be false. In that case, there is no need to evaluate the remaining sum expressions because the overall product-of-sum formula will be false.

HW4, Q4: (Detecting primes)

(a) Give the largest known Mersenne prime (i.e. prime of the form 2p – 1 where p is a prime) and give the source of your quotation.
213,466,917 (1, contains 4,053,946 digits and was discovered November 14th, 2001. See article http://www.mersenne.org/13466917.htm.

(b) Suppose n is a composite (i.e., not a prime). Prove that the number 2n – 1 is not a prime. Equivalently, prove if a number of the form 2m – 1 is a prime, then m must be a prime.
Equivalently, we will prove that if m is not a prime, for example, if m = rs, where 1 < r, s < m, then the expression 2m – 1 is not a prime. Thus can be seen easily by the following algebraic formula:

2m – 1 = (2r)s – 1 = (2r – 1)((2r)s(1 + (2r)s(2 + … + 1)
Since r > 1, the value (2r – 1) > 1; also, since s > 1, the value (2r – 1) < 2m – 1. Thus, the above identity proves that 2m – 1 is not a prime.
HW5, Q3: (Linear Programming) Consider the following LP (linear programming) problem:

Maximize z = x1 + x2, subject to the constraints

–x1 + 2 x2 (4

5 x1 + x2 (20

where the variables x1 and x2 are (0.

(a) Solve the LP problem by first finding all the vertices of the region bounded by the constraints.

HW5, Q4: (Predicate Calculus) Encode each of the following statements using predicate calculus (and its notations such as “for all” (and “there exists” ():

First we define some clauses:

Person(x): x is a person

Likes(x, y): x likes y

Dog(x): x is a dog

Animal(x): x is an animal

Boy(x): x is a boy

Bicycle(x): x is a bicycle

Owns(x, y): x owns y
(a) Nobody likes taxes.

((x (Person(x) and Likes(x, Taxes)); alternately, (x (Person(x) ((Likes(x, Taxes))

(b) Every dog is an animal. (x (Dog(x) (Animal(x))
(c) Every boy has a bicycle. (x(y (Boy(x) and Bicycle(y) and Owns(x, y))
HW6, Q1: (The Word Problem, 3 pts.) A word ladder is recreation in which a given word is transformed into another word of the same length using a sequence of one-letter substitutions where each intermediate word must be a dictionary word. For example, the following sequence of substitutions transform the 5-letter word “giant” into another 5-letter word “plane”:

giant grant grand brand bland blank plank plane

Design an efficient program that takes two 5-letter words and a dictionary as input, and produces a shortest sequence of substitutions that solves the word ladder problem, or produces “No Answer” if such transformation doesn’t exist.
(Solution one)

(1) First scan (read) the dictionary sequentially to extract all words of length 5. The results are stored into an array. This step takes O(n) time assuming the dictionary contains n words. The size of the resulting array is a constant K, K (265 since there are 5 letters in these words and there are 26 possible letters (A through Z assuming case insensitive) for each of the five places. Also, K (n since there are only n words in the dictionary; thus, K (MIN(n, 265).

(2) By treating these K words as nodes in a graph, use a 2-dimensional array D[1..K, 1..K] to represent the graph where two nodes (words) i and j are connected by an edge if the words differ by a single letter; that is, define D[i, j] = 1 if words i and j differ by a single letter; otherwise, define D[i, j] = ((a large positive number). This step takes O(K2) amount of time (and space).

(3) Start with one input word as the source node, apply Dijkstra’s (single-source) shortest paths algorithm to find a shortest path from the source node (word) to the other input word (the destination). Output such a path if its total length is ((; output “No Answer” otherwise. This step takes time O(K2).

Thus, the total time complexity is O(n + K2), where K (MIN(n, 265).

(Note added 11/26: Instead of using the adjacency matrix and Dijkstra’s algorithm, we could apply a breadth-first search (BFS) starting from input word W1, traversing a tree linking 5-letter words that are distinct by one letter. A shortest sequence of substitutions is found as soon as the other input word W2 is located on a search path. More precisely, replace the above steps (2) and (3) with the following steps (2’) and (3’):

(2’) Set up an adjacency list structure that consists of an array A[1..K] corresponding to the 5-letter words, such that A[i] points to the list of 5-lettter words that are different from word i by one letter. (This step takes O(K2) time and O(K) space using a simple implementation.)

(3’)
Apply the BFS strategy starting with input word W1, traversing and searching for word W2 until either it is located or the entire tree is traversed. It is well known that the BFS has a time complexity of O(#of nodes + #of edges) = O(K2) in the worst case.

Thus, the overall time consisting of steps (1), (2’), and (3’) is O(n + K2), where K (MIN(n, 265).)

(Solution two)

The basic idea behind this solution is to build and traverse a search tree leading from the root (one input word) to a goal node (the other input word) using an efficient search strategy by pruning unnecessary paths. At any given time a list named current contains a sequence of word substitutions which is expanded to find an answer (or a better answer than what already being found). The two input words are called W1 and W2; the length of the current best sequence is maintained in variable minLength, initialized to (; the corresponding shortest sequence of words is maintained in a list named answer, initialized to the empty list. Call the following function Search(W1, 0, empty-list) to start the search process:

Search (root, length, current)

 /* start searching for words that can be found via a sequence of one-letter substitutions from root, where parameter length indicates the number of substations made from W1, with the corresponding list of substitutions maintained in current */

 for each word w in the dictionary that differs from root by one letter {

 if (w is not on the list current) { // build path but avoid repeating same nodes

if (w == W2) { // found an answer

 if (++length < minLength) { // reset the best answer

 minLength = length

 copy list current to answer

 }

}

else if (++length < minLength) { // continue searches if profitable

 append w to the list current

 call Search(w, length, current)

}

 } // end of if

 } // end of for

After the call Search(W1, 0, empty-list), output “No Answer” if minLength = (; output the list of nodes in answer otherwise.
A (very) rough analysis of the worst-case time complexity assumes the search tree has a fan-out of p at each level (i.e., each node has p child nodes), and assumes the height of the tree is K, K (265. Thus, the algorithm will run O(pK) steps. In practice, this estimate may be too conservative because the algorithm prunes the tree (stop expanding further) when no better answers will be found. This technique is based on the idea of “branch and bound” which traverses a search space by expanding on unexplored nodes (“branch”) but also pruning non-profitable regions (“bound”). Useful web resources include http://mat.gsia.cmu.edu/orclass/integer/node13.html, http://benli.bcc.bilkent.edu.tr/~omer/research/bb.html, and http://solon.cma.univie.ac.at/~neum/glopt/techniques.html.

The region defined by the inequalities is the quadrilateral with the four vertices given in the figure. The values of z(x1, x2) = x1 + x2 at each of the four vertices are, respectively,

z(0, 0) = 0; z(0, 2) = 2;

z(36/11, 40/11) = 76/11; and z(4, 0) = 4.

Thus, the maximum is z = 76/11, at the vertex x1 = 36/11, x2 = 40/11.

 (0, 0)

(

(0, 2)

(

(4, 0)

 (

(

 (36/11, 40/11)

5 x1 + x2 = 20

–x1 + 2 x2 = 4

x2

x1

(

