University of Central Florida

Department of Electrical Engineering and Computer Science
COT 4500 Numerical Calculus
Quiz 3 - Take home quiz
(Due 3/25/2013)

For all exercises show all your work step by step.
1.- Find the invers of matrix A using determinant and cofactors.(20 points)

$$
\mathrm{A}=\left[\begin{array}{ccc}
1 & 2 & 0 \\
2 & 1 & -1 \\
3 & 1 & -1
\end{array}\right]
$$

2.- Factor the following matrix into the LU decomposition using LU factorization.(20 points)

$$
\mathrm{A}=\left[\begin{array}{ccc}
2 & -1 & 1 \\
3 & 3 & 9 \\
3 & 3 & 5
\end{array}\right]
$$

3.- Solve the following linear system of equations, making use of the LU-factorization of the preceding coefficient matrix.(20 points)

$$
\begin{aligned}
& 2 x_{1}-x_{2}+x_{3}=-1 \\
& 3 x_{1}+3 x_{2}+9 x_{3}=0 \\
& 3 x_{1}+3 x_{2}+5 x_{3}=4
\end{aligned}
$$

4.- Determine whether the matrix A is positive definite using Sylvester's criterion. (20 points)

$$
\mathrm{A}=\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 4 & 2 \\
0 & 2 & 2
\end{array}\right]
$$

5.- Use Cholesky's factorization to find a factorization of the form $A=L L^{T}$ for the following matrix: (20 points)

$$
\mathrm{A}=\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]
$$

Submit a pdf document generated with latex.

