University of Central Florida Department of Electrical Engineering and Computer Science COT 4500 Numerical Calculus Assignment 4 (Spring 2013)

Due on April $7^{t h}$.
$\underline{\text { For all exercises show all your work step by step. }}$

Given the following sparse matrix A, and vectors y and x :

$$
\mathrm{A}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 2 & 0 \\
3 & 4 & 0 & 0 & 0 \\
0 & 5 & 6 & 0 & 0 \\
7 & 0 & 8 & 9 & 0 \\
0 & 0 & 10 & 0 & 11
\end{array}\right], \mathrm{y}=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5}
\end{array}\right], \mathrm{x}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5
\end{array}\right]
$$

1.- Write the algorithm to compute $y=A x$ using the CSR format. Show the data structures and the trace for each iteration. (25 points)
2.- Write the algorithm to compute $y=A x$ using the JDS format. Show the data structures and the trace for each iteration. (25 points)
3.- Write the algorithm to compute $y=A x$ using the CCS format. Show the data structures and the trace for each iteration. (25 points).
4.- Write the algorithm to compute $y=A x$ using the TJDS format. Show the data structures and the trace for each iteration.(25 points)

You can read on JDS and TJDS on this URL:
http://www.cs.ucf.edu/ eurip/publications/Incs.publication.iscis03.pdf

How to submit: Sent an email (before 11:59 p.m.) to Frank Plochan with an attachment containing the Latex file and the PDF file (fplochan @ gmail.com file).

Do not forget:

a) Handwritten assignment will to be accepted.
b) show all the steps (all the work). Submissions with only the final result will not be accepted. c) Submit a latex file along with the pdf file.

