# University of Central Florida Department of Electrical Engineering and Computer Science COT 4500 Numerical Calculus Assignment 2 (Spring 2013) 

Due on February $18^{t h}$ in class.<br>For all exercises show all your work step by step.

1.- Using the Bisection method, find the largest root of $f(x)-x^{6}-x-1=0$, accurate to within $\epsilon=0.001$. Assume $a=1, b=2$, and $f(a)=-1, f(b)=61$. Compute the numbers of iteration required and for each iteration, present a table showing: $\mathrm{n}, \mathrm{a}, \mathrm{b}, \mathrm{c}, b-c$, and $f(c)$. (20 points)
2.- Apply Newton's method to solve the same problem of question one (1), $f(x)-x^{6}-x-1=0$. Present a table showing: n , $\mathrm{a}, x_{n}, f\left(x_{n}\right), x_{n}-x_{n-1}$, and $r-x_{n-1}$., for $n=0,1,2,3,4,5$, and 6 . ( 20 points)
3.- Use the Secant method to solve the same problem of question one(1), $f(x)-x^{6}-x-1=0$, and present a table showing: $n, x_{n}, f\left(x_{n}\right), x_{n}-x_{n-1}$, and $r-x_{n-1}$, for $n=0,1,, 2,3,4,5,6,7$, and8. (20 points).
4.- Write an algorithm, using pseudocode or C-like notation, to implement the Secant method.(20 points)
5.- Show that when Newtons method is applied to the equation $x^{2}-a=0$, the resulting iteration function is $g(x)=\frac{1}{2}\left(x+\frac{a}{x}\right) \cdot(20$ points $)$

