University of Central Florida Department of Electrical Engineering and Computer Science COT 4500 Numerical Calculus Assignment 1 (Spring 2013)

Due on February 30th in class.
For all exercises show all your work step by step.
1.- Use three-digit rounding arithmetic to perform the following calculations. Compute the absolute and relative error with the exact value determined to at least five digits.(10 points)
a) $\left(\frac{1}{3}-\frac{3}{11}\right)+\frac{3}{20}$
b) $\frac{\frac{13}{14}-\frac{6}{7}}{2 e-5.4}$
2.- Repeat exercise 1 using three-digit chopping arithmetic.(10 points)
3.- Why do the following functions not possess Taylor series expansions.(10 points)
a) $f(x)=\sqrt{x}$
b) $f(x)=\arcsin (x-1)$
4.- Let $f(x)=\cos (x)$ and $x_{0}=0$. Determine the second polynomial, $P_{2}(x)$ and $R_{2}(x)$ when $x=0.01$, and give a bound for $\cos (x=0.01)$ (20 points)
5.- Assuming $e^{8}=2980.957987$. Compute e^{8} using the e^{x} series. Develop up to eleven terms and draw out your conclusion.(20 points)
6. Let $f(x)=2 x \cos (2 x)-(x-2)^{2}$ and $x_{0}=0$
a) Find the third Taylor polynomial $P_{3}(x)$, and use it to approximate $f(0.4)$.
b) Use the error formula in Taylor's Theorem to find an upper bound for the error $\mid f(0.4)-P_{3}(0.4)$. Compute the actual error.(20 points)
7.- The following binary floating-point numbers consist of a sign bit, an excess 64 exponent, and a 16 bit fraction. Normalize them. (10 points)
a) 110000010001010100000001
b) 001110000000001111111111

