University of Central Florida Department of Electrical Engineering and Computer Science COT 4500 Numerical Calculus Assignment 1 (Spring 2013)

Due on February 30th in class. For all exercises show all your work step by step.

1.- Use three-digit rounding arithmetic to perform the following calculations. Compute the absolute and relative error with the exact value determined to at least five digits.(10 points)

a) $\left(\frac{1}{3} - \frac{3}{11}\right) + \frac{3}{20}$ b) $\frac{\frac{13}{2e-54}}{\frac{2e-54}{4}}$

2.- Repeat exercise 1 using three-digit chopping arithmetic.(10 points)

3.- Why do the following functions not possess Taylor series expansions.(10 points)
a) f(x) = √x
b) f(x) = arcsin(x - 1)

4.- Let $f(x) = \cos(x)$ and $x_0 = 0$. Determine the second polynomial, $P_2(x)$ and $R_2(x)$ when x = 0.01, and give a bound for $\cos(x = 0.01)(20 \text{ points})$

5.- Assuming $e^8 = 2980.957987$. Compute e^8 using the e^x series. Develop up to eleven terms and draw out your conclusion.(20 points)

6. Let $f(x) = 2x \cos(2x) - (x-2)^2$ and $x_0 = 0$ a) Find the third Taylor polynomial $P_3(x)$, and use it to approximate f(0.4). b) Use the error formula in Taylor's Theorem to find an upper bound for the error $|f(0.4) - P_3(0.4)$. Compute the actual error.(20 points)

1

7.- The following binary floating-point numbers consist of a sign bit, an excess 64 exponent, and a 16 bit fraction. Normalize them. (10 points)

a) 110000010001010100000001 b) 00111000000000111111111

2