COT 4500, Numerical Calculus
Assigned: March 30, 2009
S. Lang, Spring 2009 Assignment \#6 (30 pts.) Due: Wednesday, April 8 in class Instruction: Write your answers clearly and show all relevant work including details. You may use a calculator for the work.
Note: Show your answers using 8 significant digits with chopping arithmetic.
Question 7 added on 4/1/2009. New due date changed on 4/3/2009.
Exercise Set for Section 3-4 (pp. 153 -154):

1. (6 pts.) Construct the free cubic splines for the following data:
(a)

x	$f(x)$
-0.15	-0.19449375
0.15	0.10550625

(b)

x	$f(x)$
-1.0	1.1987661
-0.5	1.5322807
0.0	2.0000000
0.5	2.4468890

2. (4 pts.) Use the cubic splines generated from Question 1 for the given values of x to approximate $f(x)$ and $f^{\prime}(x)$, and calculate the actual error:
(a) $f(x)=x^{4}-2 x^{2}+x$, approximate $f(0)$ and $f^{\prime}(0)$
(b) $f(x)=e^{x} \cos x+1$, approximate $f(0.25)$ and $f^{\prime}(0.25)$
3. (6 pts.) Construct the clamped cubic splines using the data of Question 1 and the fact that:
(a) $f^{\prime}(-0.15)=1.5865$ and $f^{\prime}(0.15)=0.4135$
(b) $f^{\prime}(-1.0)=0.50832598$ and $f^{\prime}(0.5)=0.65644995$

Exercise Set for Section 4-1 (p.176):
4. (4 pts.) Use the two-point forward-difference and backward-difference formulas (Eq. 4.1) to determine each missing entry in the following table (for $x=1.2$ use both forward and backward-difference formulas to approximate $f^{\prime}(1.2)$):

x	$f(x)$	$f^{\prime}(x)$
1.0	1.5403023	
1.2	1.4348293	(give two approximations)
1.4	1.2379540	

5. (4 pts.) Compute the actual errors in Question 4 and find the error bounds using the error formulas assuming the function $f(x)=x \cos x+1$.

Exercise Set for Section 4-2 (p.185):

6. (3 pts.) Apply the extrapolation process described in Example 1 of the Notes to determine $N_{4}(\mathrm{~h})$, an approximation to $f^{\prime}\left(x_{0}\right)$, for the function $f(x)=x \cos x+1, x_{0}=$ 1.0 and $h=0.4$.

Exercise Set for Section 4-3 (p.195):

7. (3 pts) Approximate the integral $\int_{-0.2}^{0.2}(\cos x)^{2} d x$ using (a) the Trapezoidal rule, and (b) Simpson's rule.
