S. Lang, Spring 2009 Assignment \#5 (30 pts.) Due: Monday, March 23 in class

Instruction: Write your answers clearly and show all relevant work including details.
You may use a calculator for the work.

Section 3.1:

1. (6 pts.) For each of the following functions let $x_{0}=1.0, x_{1}=1.5$ and $x_{2}=1.8$. Construct Lagrange interpolating polynomials of degree (at most) two using x_{0}, x_{1}, and x_{2}, to approximate $f(1.4)$, and find the absolute error in each case using 6-digit chopping for the final answer:
(a) $f(x)=\sin x+\cos x$
(b) $f(x)=x \ln x$
2. (4 pts.) Use the error bound formula of Theorem 3.3 to estimate the errors for the approximations used in both (a) and (b) of Question \#1.

Section 3.2:

3. (4 pts.) Use the divided-difference formula of Equation 3.10 to construct interpolating polynomials of degree three for the following data, and find the approximate values using the interpolating polynomials in each case: Approximate $f(0.25)$ if $f(0.0)=0.00000, f(0.20)=$ $0.202710, f(0.40)=0.422793$, and $f(0.60)=0.684136$ assuming 6 -digit chopping arithmetic is used.
4. (6 pts.) Repeat Question \#3 by using the Newton forward-difference formula (Equation 3.12, or equivalently, Equation 3.11) and Newton backward-difference formula (Equation 3.13) to construct the interpolating polynomial.

Section 3.3:

5. (5 pts.) Use Theorem 3.9 to construct the Hermite polynomial of degree three using the following data with 6-digit chopping:

x	$f(x)$	$f^{\prime}(x)$
1.1	1.96475	4.86028
1.2	2.57215	7.61596

6. (5 pts.) Use the following Hermite interpolating polynomial formula of the textbook (p. 133)

$$
H_{2 n+1}(x)=f\left[z_{0}\right]+\sum_{k=1}^{2 n+1} f\left[z_{0}, \ldots, z_{k}\right]\left(x-z_{0}\right)\left(x-z_{1}\right) \cdots\left(x-z_{k-1}\right)
$$

and the data from Question \#5 to approximate $f(1.16)$, and compute the absolute error assuming the function $f(x)=\tan x$ and using 6-digit chopping arithmetic.

