COT 4500, Numerical Calculus
S. Lang, Spring 2009 Assignment \#3 (30 pts.)

Note: Questions 3 and 4 added 2/0/2009.
Instruction: Write your answers clearly and show all relevant work including details.
You may use a calculator for the work.

Exercise Set for Section 1-3 (pp. 36 - 37):

1. (8 pts.) Find the rate of convergence for each of the following question:
(a) $\lim _{n \rightarrow \infty} n \ln \left(1+\frac{1}{2 n}\right)$, using the big-O notation in terms of the parameter n.
(b) $\lim _{h \rightarrow 0} \frac{1+\sin h-e^{h}}{2 h}$, using the big-O notation in terms of the parameter h.

Exercise Set for Section 2-1 (pp. 51 - 52):

2. (6 pts.) Apply the Bisection method to find a solution accurate to within 10^{-5} for the equation $x^{2} \cos x+x-1=0,1 \leq x \leq 3$, by using the Java program of Algorithm 2.1 posted at the textbook's website (http://www.as.ysu.edu/~faires/Numerical-
Analysis/DiskMaterial/programs/Java/JavaPrograms.htm) for the calculations. In addition, use Theorem 2.1 of the textbook to estimate how many iterations are needed to achieve this level of accuracy.
Exercise Set for Section 2-2 (pp. 61 - 63):
3. (10 pts.) Define $g(x)=1.5+\sin x-x$. Answer all parts given below:
(a) Use Theorem 2.2 to show that $g(x)=1.5+\sin x-x$ has a unique fixed point on [0.5, 1.5].
(b) Sketch the graph for $y=g(x)$ over the interval [0.5, 1.5].
(c) Use fixed-point iteration and the initial approximation $p_{0}=1.0$ to find an approximation to the fixed point that is accurate to within 10^{-7} by using the Java program Algorithm 2.2 posted at the textbook's website http://www.as.ysu.edu/~faires/NumericalAnalysis/DiskMaterial/programs/Java/JavaPrograms.htm.
(d) Use Corollary 2.4 to estimate the number of iterations required to achieve the accuracy of 10^{-7}, and compare this theoretical estimate to the number actually needed from Part (c).
4. (6 pts.) Define $g(x)=\frac{x+2}{x+1}$. Answer all parts given below:
(a) Use Theorem 2.3 to determine an interval $[a, b]$ so that $g(x)$ has a fixed point and that the fixed-point iteration algorithm 2.2 converges. (Hint: Choose an interval around a fixed point found in Part (b).)
(b) Determine the exact value of the fixed point (or points) by solving the equation $g(x)=x$.
