COT 4500, Numerical Calculus
S. Lang, Spring 2009 Assignment \#2 (30 pts.)

Note that Question 6 added on 1/30/2008.
Instruction: Write your answers clearly and show all relevant work including details. You may use a calculator for the work.
Exercise Set for Section 1-2 (pp. 26 - 29):

1. (4 pts.) Find the value for $p=\sqrt[5]{242}$ using 5-digit rounding arithmetic. Find the (largest) interval in which an approximation p^{*} to p lies if (a) the absolute error is within 10^{-5}; and (b) the relative error is within 10^{-5}. Use 5 -digit rounding arithmetic for this question.
2. (3 pts.) Perform the following calculation (a) exactly; (b) using 3-digit chopping arithmetic; (c) using 3-digit rounding arithmetic: $\frac{2}{11} \cdot \frac{11}{17}$. For Parts (b) and (c), calculate each fraction separately then multiply the results, using chopping or rounding arithmetic, respectively, in each step.
3. (3 pts.) The value e^{-1} can be computed by the formula: $e^{-1}=\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-+\ldots=\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n!}$. (This can be verified by using the Taylor series for $f(x)=e^{x}$ about the point $x_{0}=0$ then substituting $x=-1$.) Compute the absolute and relative error if e^{-1} is approximated by $e^{-1}=\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\frac{1}{5!}$ where all calculations are done using 5-digit chopping arithmetic.
4. (8 pts.) Let $f(x)=\frac{e^{-2 x}-1}{x}$ for $x \neq 0$; and $f(0)=-2$. (It can be proven that $f(x)$ is infinitely differentiable for all x.) Answer each of the following questions:
(a) Find $\lim _{x \rightarrow 0} f(x)$. (Hint: Use L'Hopital's rule.)
(b) Use 3-digit chopping arithmetic to calculate $f(0.05)$. That is, use a calculator to calculate $e^{-2(0.05)}-1$ using 3-digit chopping, then divide the result by 0.05 and report the answer using 3-digit chopping.
(c) Replace $f(x)$ by its third-degree Maclaurin polynomial and redo Part (b).
(d) The exact value for $f(0.05)$ is -1.90325 using 6 -digit chopping. Find the absolute errors for the values computed in Parts (b) and (c).
5. (6 pts.) Given the following 64-bit floating-point value in IEEE 754-1985 format: 100000110011010101 (followed by 46 zeros).
(a) Find the decimal value (and show the steps of your work).
(b) Conversely, convert the answer of Part (a) back to the 64-bit floating-point format (and show the steps of your work).
6. (6 pts.) Suppose $f \in C^{4}[a-h, a+h]$ where $h>0$ is a small number. An approximation formula for $f^{\prime}(a)$ is $f^{\prime}(a) \approx \frac{f(a+h)-f(a-h)}{2 h}$ when h is sufficiently small.
(a) Use Taylor's Theorem to find the error term in the above approximation. Hint: Apply Taylor's Theorem to find the second-degree Taylor polynomial plus the error term, $P_{2}(x)$ $+R_{2}(x)$ for $f(x+h)$, about the point $x_{0}=a$. Similarly, find the second-degree Taylor polynomial plus the error term, $Q_{2}(x)+S_{2}(x)$ for $f(x-h)$, about the point $x_{0}=a$. Calculate $\frac{f(a+h)-f(a-h)}{2 h}$ then show that $f^{\prime}(a)=\frac{f(a+h)-f(a-h)}{2 h}-\frac{h^{2}}{6} f^{(3)}(\xi)$ where $a-h$ $<\xi<a+h$. Note that the Intermediate Value Theorem of the text is useful in the last step of formula derivation.
(b) If $h=10^{-5}$ and $f(x)=\sin x$, where $a=1.0$. Find the exact value for $f^{\prime}(a)$ and the absolute error using the approximate value given above assuming 6-digit chopping arithmetic in the calculations.

Note on Question 1(a) of Assignment \#1:

Consider the function $f(x)=\frac{\sin x}{x+1}-0.4$ defined on $x \in(-1, \infty)$. Find the value for $\lim _{x \rightarrow \infty} f(x)$.
Answer: Since $|\sin x| \leq 1$ and $\frac{1}{x+1} \rightarrow 0$ as $x \rightarrow \infty, \lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty}\left(\frac{\sin x}{x+1}-0.4\right)=0-0.4=-0.4$.

