Lagrange Interpolating Polynomial (Sec. 3-1):
Theorem 3.2 1f xp,x|,...,x, are n + | distinct numbers and f is a function whose values are given at
these numbers, then a unique polynomial P(x) of degree at most n exists with

flxx) = P(xy), foreachk=0,1,...,n

This polynomial is given by

P(x) = f(xo)Lno(x) + -+ + fxn)Lnn(x) = Z Fx) L (x), (3.1
k=0

where, foreachk =0, 1, ... ,n,
x — xg)(x — coo (X = Xp— — X)) oc e (x =
Eaiiiyms ( 0)(x —x1) o (0 = X1 )(X = Xg1) - (X — Xp) (32)
(xx — x0) (xie = x1) <+ (e = Xp—1) (X — K1) -+ (X — Xp)
(x —x;)
= I_[ -
1"0 (xf H'tl
Theorem 3.3 Suppose xg, xi, ... ,. x, are distinct numbers in the interval [a, b] and f € C"*'[a, b].
Then, for each x in [a, b], a number &(x) (generally unknown) in (a, b) exists with
fEDEX) _
flx) = P(x) + ‘—m'—(x —xg)(x —xp) -+ (x — x,), (3.3)
where P(x) is the interpolating polynomial given in Eq. (3.1). n
Divided Difference (Sec. 3-2): -
Pole) = fluw] + E Flog.xp. ... xe iy —xg) o=l — Xy ). (3.100
) FIJ"I Si.'C(_)I'I_d S - _-I:h-IILl - N -
v flx) divided differences divided differences dl\«'ld\,d dlfh.r?m.e\
X flxal )
Flxa.xil= 7”\;' _ :i'.l'll
o Sl ) I|-Vll-“-‘3|=:r._|w
i R .lri_\‘| - fl_nl Pl Y j|.r|..\_.,.\_1.I — flxg, Xi, x2]
=X ”“ . |_'('|\ “' X3 — X
v flel flag, xs, 0] = —"—_-—‘—-——
flxi, )= _”\."_l_: .l'r_l 2

Newton’s Forward-Difference Formula:

Using binomi:l-coefficient notation.

.1) _ s = Ly---(s —k+1)
(k B k! ‘

we can express P, (x) compactly as

n

Pix)= P(xg+sh) = fly]+ Z (;)Hhifl.t”, s 1 3.1
MNewton Forward-Difference Formula

Pu(x) = f(xo) + ) (2) A* f(xo) (3.12)

k=1
Newton’s Backward-Difference Formula:



Dsfinition 3.7  Given the sequence {p, ), define the backward difference V p, (read nabla p,) by
vp:l = Pun — Pn-1. for n = |
Higher powers are defined recursively by

N =" vk_lp,! ). fork = 2.

- —Mewion Bacloward—Difference Formula — — _ o

. . -5\ _;
R.{x)zfl,rnHZ{—n*( )V*f(xn) (3.13)
k=1 k
(*-\" _ =SS = (=5 =k 4 1) _I)&S(s + 1) (s+k=1)
k)~ K - i |
Hermite Interpolation (Sec. 3-3):

Theorsm 3.2 1If f € C'[a,b]and xy, ... , x, € [a, b] are distinct, the unique polynomial of least degree
agreeing with f and f’ at xp, ..., x, 1s the Hermite polynomial of degree at most 2n + 1
given by

n n
Hue1 () = ) (X)) Haj () + ) f/(x)) Ha j (),
=0 j=0
where

H,j(x)=[1-2(x—- x‘,-}L;J{x‘,-}]LEJ(J:] and Ff,.,j(x) = (x — .rj}LiJ(,\:].
Here L, ;(x) denotes the jth Lagrange coefficient polynomial of degree n defined in
Eq. (3.2).

Moreover, if f € C*"*[q, b], then

2

X—=%0)" 0o (X —2)
2n +2)!

2

f(x) = Haypi (x) + FRE RGN,

for some (generally unknown) &£(x) in the interval (a, ). |

Computing Hermite Polynomials using Divided-Difference Formula:

Suppose that the distinct numbers xo, x|, . .. , x; are given together with the values
of f and f’ at these numbers.Eeﬁne 4 NeW SeqUENCe 2o, Z1s « -« » zz,,.,.]by

22 = 22141 = X;, foreachi=0,1,...,n,

and construct the divided difference table in the form of Table 3.7 that uses zg, zy, ...,

Ln+1.
2n+1

Hoy(x) = flzo]l + Z Flzgioei s llx —20) (& = 21) =4 (& — Ze-1);
k=1



First divided Second divided
f(2) differences differences

w=x0  flzol= flx) ’

f[Zn. o) = fJ (i'lﬂ' [ ] [
u=x flal= flx) flzo, 21, 2] = fﬂ”; :f;‘u‘q]

flz 2l = f[-:.!] - {[3[1

D—1
a=x flzl=f(x) Floi s = LR = f["'f..“ﬂ
/7 33— 2%
flza, 231 = f’(x.)

X flzal=fx)

Cubic Spline Interpolation (Sec. 3-4):

Definition 3.10

Theorem 3.11

Theorem 3.12

Given a function f defined on [a, b] and aset of nodesa = xp < x; < -+ <x, = b, a
cubic spline interpolant S for f is a function that satisfies the following conditions:

(a)

S(x) is a cubic polynomial, denoted S;(x), on the subinterval [x;, x;4] for each
=0 e n—1,

(b) SJ.'(IJ') = f(x;) and Sj{-tj+l} = f(xj-+|) fureachj = 0. l. s AT l;
(€) Sj+1(xjy1) = Sj(xj41) foreach j =0,1,...,n=2;
(d) S;H(.rﬁ.l) = S; (xj41) foreach j =0,1,... ,n=2;
(e) Sf,.l(-rH.J = S}’(xJ-H) foreach j =0,1,... ,n—2;

(f) One of the following sets of boundary conditions is satisfied:

(i) S§"(xp) = 8"(x,) =0 (free or natural boundary);
(ii) S'(xp) = f'(x) and §'(x,) = f'(x,) (clamped boundary). n

If fis defined ata = xp < x; < --+ < x, = b, then f has a unique natural spline
interpolant § on the nodes xp, Xy, ..., X,, that is, a spline interpolant that satisfies the
boundary conditions §”(a) = 0 and $”(b) = 0. L]

If fis df:ﬁned ata = xg < X < :++ < x, = b and differentiable at a and b, then f
has a unique clamped spline interpolant S on the nodes X0, X1, ..., Xn, that is, a spline
interpolant that satisfies the boundary conditions $'(a) = f'(a) and §'(b) = F(b).: [ ]



Devivet| m B'f' cbie splines :

To construct the cubic spline interpolant for a given function f, the conditions in the
definition are applied to the cubic polynomials

Si(x) =a; +bj(x —xj) +cj(x —x;)* +dj(x —x,)i_

foreach j =0,1,... ,n—1. C TL-H-I. are N cubye poinm Mg s_)
Since §;(x;) =a; = f(x;), condition (c) can be applied to obtain

l——-—————-—-"""’
\ ,/:;H =8ilxje) = Si(xjp) = a; +bjlxjy —.r;)+r.‘1(.r,+1 mx;)2+u';(x,+| —XJ)".

a.j 5 are

foreach j =0,1,... ,n—2.
s alve d {rf Since the terms x4 — x; are used repeatedly in this development, it is convenient to

introduce the simpler notation
l }l}' =Xje — X I

foreach j =0,1,... ,n — L. If we also define a, = f(x,), then the equation

aje1 = a; +bjhj + c;h3 + djh; (3.15)

holds foreach j =0,1,... ,n— 1.
In a similar manner, define b, = §'(x,) and observe that

-~
J.:o’l.,...‘ n—\

§i(x) = bj +2¢;(x — x;) + 3d;(x —x;)?

implies §7(x;) = b, foreach j =0, 1,...,n — 1. Applying condition (d) gives

bjy1 = bj +2cjh; + 3d;h3, (3.16)

foreach j =0,1,... ,n— 1.
Another relationship between the coefficients of §; is obtained by defining
¢y = §”(x,)/2 and applying condition (e). Then, foreach j =0,1,... ,n — I,

Ciy1=¢; + 3djh}- ( (3.17)

Solving for d; in Eq. (3.17) and substituting this value into Egs. (3.15) and (3.16)

gives, foreach j =0, 1,... ,n — I, the new equations
A
ajyy =a; +bhj+ ?[?.c; + Cj+1) (3.18)
bj-}-l = bJ ‘+"h;((‘; -1 t.'}'.'_l). (3.[9)

The final relationship involving the coefficients is obtained by solving the appropriate
equation in the form of Eq. (3.18), first for b,

1 h
bj = 3 (@1 = ap) = 52 + i), (320)
J

and then, with a reduction of the index, for b;_;. This gives

hj-
bjy = (a; —ay) — ’3](247;-. +¢)).

ki
Substituting these values into the equation derived from Eq. (3.19), with the index reduced
by one, gives the linear system of equations

3 3
hjoiCjay +2Mhj—1 +hj)c; +hjcjp = -h—‘{aj.H —aj) — h——'{aj —a;-1), (3‘2])3
] i-1

foreach j = 1,2,... ,n— 1. This system involves only th‘ {ej)iog gls unknowns since the
values of {h_,]'j';(l, and {a;}]_, are given, respectively, by the’Spacing of the nodes [x;}7_,
and the values of f at the nodes.

Note that once the values of (¢;}]_, are determined, it is a simple matter to find the

remainder of the constants {b;}7Z, from Eq. (3.20) and {d, }';;'] from Eq. (3.17), and to
construct the cubic polynomials {S;(x)} =L



Theorem 3.11

Ff f is defined ata = xy < x; < .-+ < x, = b, then f has a unique natural spline
interpolant § on the nodes xg, xi, ..., x,, that is, a spline interpolant that satisfies the
boundary conditions §”(a) = 0 and 5”(b) = 0. ]

Proof The boundary conditions in this case imply that ¢, = §”(x,)/2 = 0 and that

0 = §"(x0) = 2co + 6dp(x0 — x0),

s0 ¢ = 0. The two equations ¢y = 0 and ¢, = 0, together with the equations in (3.21)
produce a linear system described by Ax = b, where A is the (n + 1) x (n + 1) matrix

1 0 0:_.‘... ......................... 0
ho 2(ho + h)) hy
0.. hi, 2m+h) h. :

A: . .'-,_‘ .'-.‘ "'-.‘ "-.l :} 1]
’ ¢

: _.‘.. hp-2 2(;1;,...2-]-}!"_]‘)” lhw—-l
RN o 0 1

and b and x are the vectors

- 0 =
i(ﬂ = - (a )
¥ 2 —day o | — 4o cy
4]
b= : and x=| .
r(ﬂn ay-1) — (@n-1 — dn-2) Ci
n—1 n=2

The matrix A is strictly diagonally dominant, so it satisfies the hypotheses of
Theorem 6.19 in Section 6.6. Therefore, the linear system has a unique solution for

€0y Clyeve s Cne



Theorem 3.12 If f is defined ata = xy < x; < --- < x, = b and differentiable at @ and b, then f
has a unique clamped spline interpolant S on the nodes xp, xj, ... , x,, that is, a spline
interpolant that satisfies the boundary conditions §'(a) = f’(«¢) and S'(b) = f'(b). (]

Proof Since f'(a) = §'(a) = §'(xy) = by, Eq. (3.20) with j = 0 implies

fa)= fh%(ﬂi =A== }'132(20{1 +cy).
Consequently,

3 ]
2hocy + hocy = }T(m —ay) — 3f (a).
0

Similarly,
fj{b) = by = by—1 + hn—1(Ca—1 + Ca),
so Eq. (3.20) with j = n — | implies that

n — Qp—) hy-
hu—! 3

; a
f (b) = (2[';;—.1 +cy) + hn—l(fn—l +¢n)

ay — dp—| hn—l
Ry + 3 (cn—1 + 2¢4),

and

Ra—1Ci-1 + 2Ry_1Ch = Bf’{b) - (ap —ap-i).

by
Equations (3.21) together with the equations
3 7
2hoco + hocy = h—(ﬂ! —ap) —3f (a)
0
and

3
hu—lfn—l + 2}1”_[(.'" = 3f:{b) o _(an = an—l)

n—1

determine the linear system Ax = b, where

’_2}1{, ho 0:::. ........................... 0
ho 2Aho+h)) b
0., hy 20hy + ha)  hy .
A=| el T
’ : g *=i )

3 hu—a 2“‘11—2 +hrx—.1‘)“‘hn—1
”00 By ]y
= 3 ’ _

—(ay —ag) — 3 f'(a)
ho
—( ) : (@) —ap)
hy ay —d ko 1 —do Cp
(&
b= : , and x=
—(ay —ay-1) — (@i—1 —an—2) Cn
hy : n=2 :
; 3
3f (b) = h—(au _aﬂ—l)
. n—1 -




The matrix A is strictly diagonally dominant, so it satisfies the conditions of Theo-
rem 6.19. Therefore, the linear system has a unique solution for ¢p, ¢y, ... ,¢;. s n =

Numerical Differentiation (Sec. 4-1):

fxo+h)— f(xg) h

f(xg) = el (4.1)
(n + 1)-point formula:
n (n+1) ; 7~
) == Zf(xk)LL(x;) + -f—(nf% n(xj — Xk), (4.2)
= =

Three-point Formulas:
!2
f'xo) = %[—3f{xo) +4f(xo+h) = flxo+2m)] + —}f”’(&nx (4.4)

where &, lies between xg and xo + 2h, and

h.?
f'(x) = .,—L[f(-‘in +h) — flxg—h)]— -gf“’(el). @

where &) lies between (xo — h) and (xg + h).
Five-point Formulas:

;4
F/050) = 0 (xn = 20) = 8 o — )+ 8 (xo + 1) = £ o + 2] + 35 /O ®),

Qo

where & lies between xo—2h and xq+2h. whose derivation is considered in Section 4.2. The
other five-point formula is useful for{end-point approximationg! particularly with regard to

the clamped mWerpo]ation of Section 3.4. It is
4.7)

f'(x0) = -l%}—![—%f(—\'o) + 48 f (xo + k) — 36 f (xo + 2h)

B
+ 16 f(xo + 3h) — 3 f(xo +4h)] + ?f"’(ig‘).

wherel¢ lies between xo and xo + 4h Left-endpoint approximations are found using this
formula with # > 0 and right-endpoint approximations with 2 < 0.
Higher-Order Derivative:

h* '
" (x0) = }:—2[)((-’60 —h)—=2f(xp) + f(xo+h)]— Efm (e &9)/

for some &, where xo —h < & < xg9 + A.
Richardson’s Extrapolation:



! hz " h4 ~(5
f (o) = Ni(h) — B—f (x0) — Tﬁﬁf( (ko) =+, (4.15)

where

l
Ni(h) = N(h) = E[f(x” + h) — f(xo — h)].

An O(h*) formula using extrapolation:

h4
f'(x0) = Na(h) + &*S—O'f(s)(xo) o

_1 hy v (B L Ni(h/2) = Ni(h)
Na(h) = 3 {44\!1 (2) Nl(h)] =N (2) + 3 :

where

Continuing this procedure gives, foreach j =2,3,..., an 0 (h*) approximation

h) n Nj-1(h/2) - Nj-l(h)_

N;(h) = N;_, (5 T

Numerical Integration (Sec. 4-3):

. b b (n+1)
- g B A r [ — 1 "f' (E(x))
i J‘(X)d--l—l ;f(x:)b(l)dx** : g(" %i) (n+ 1)! e

1 b n

- X ((n+1) i
(n+ 1!/, gu i) [T (6 (x)) dx

= iaif('ri) *

i=0

Definition 4.1 The degree of accuracy, or precision, of a quadrature formula is the largest positive inte-
ger n such that the formula is exact for x*, foreachk =0, 1,... , n. |

Closed Newton-Cotes Formulas:

Theorem 4.2 Suppose that 3_"_ a; f (x;) denotes the (n + 1)-point closed Newton—-Cotes formula with
xp =da,x, =b,and h = (b — a)/n. There exists § € (a, b) for which

b n n+3 p(n+2) n
f f(x)d.r:Za;f(:c,-)+%/ rs(r— 1)---(t —n)dt,
9 i=0 T 0

if n iseven and f € C"*?[a, b], and

b n hl:-l-ﬁf(n-t-]J(E] n
Hde= Y il + 8 — Dy silp—nyde,
j; fx)dx Z_Eu flx) + Y ’ L(t ) oot —n)dt

if nis odd and f € C"*'[a, b). L]



n = 1: Trapezoidal rule

g h 0
/ fx)dx = E[f(In) + Fixi)]l =~ Ef”(&), where xp <& < x. (4.23)
X0

n = 2: Simpson’s rule

x2 h 3
f fO)dx = Z(f (x0) +4f (x1) + f(x2)] = gﬁf“”@). where: xp < § < x2.

(4.24)
n = 3: Simpson’s Three-Eighths rule
& 3/ . _ . 3hn°
f flx)dx = —Bilf(xu) + 3700 +3F(x2) + fx3)] = ~8—(Tfm(‘§).
where xp < & < xs. ' (4.25)

Open Newton-Cotes Formulas:

Theorem 4.3 Suppose that ) ._;a; f(x;) denotes the (n + 1)-point open Newton-Cotes formula with
X_y =@, Xy =b,and h = (b — a)/(n + 2). There exists & € (a, b) for which

b n hu+3f(n+21(¢-) n+l 5
() dx =) a4 f(x) + ——— — 1) (¢ —n)dt,
l flx)dx ;;a Pl B n) dt

if n is even and f € C"**{a, b], and

b ) n ) hn+2f(n+l:{5) n+l.
./; j(I)(f,t:ga;f(.Y")+W » f(f-‘l)"'(f—ﬂ)df.

if nis odd and f € C"*'[a, b). n



n = 0: Midpoint rule

X 3
f f(x)dx = 2hf (x) + %f”{&), where x_, <& < x. (4.27
-]

n=1:

«© 3h . _ 383 _
Flx)dx = T[‘f (x0) + f(x)] + Tf (§), where x_1 <& <x;. (4.28)

n=4a

%3 4h 14n> .
f fyde = =[2f(x0) = fx) +2f ()] + == FV©),
B |

where x_; <& < x3. (4.29)

Composite Numerical Integration (Sec. 4-4):
Theorem 4.4 Let f € C*[a, b], n beeven, h = (b —a)/n, and xj =a+ jh,foreach j =0,1,... ,n.
There exists a u € (a, b) for which thefComposite Simpson’s rulg for n subintervals can
be written with its error term as

(nf2)=1 nf2 . =" »
2 flxa)) + 4;fm,-_n + f(b)J - w—gﬁ‘*f{ ().

!

J

E h
flx)dx = 3 fla)+2
a
- u
Theorem 4.5 lect f € C*a, bl,h = (b—a)/n,and xj=a+ jh,foreach j =0, 1,...,n. There exists
a i € (a, b) for which the Composite Trapezoidal rule for n subintervals can be written
with its error term as -

b ) h n=1 b—a y
[a flx)dx = 3 fla) «r’z;f{xj} + f(b) | — T{ (). u
Theorem 46 Let f € C*la,b], nbeeven, h = (b —a)/(n + 2), and x; = a + (j + 1)h for each
j==1,0,...,n+ 1. There exists a u € (a, b) for which the Composite Midpoint rule

for n + 2 subintervals can be written with its error term as

n/1

Ed b—a
(x)dx =2h ) f(xa) + ——RNF"(w).
/ﬁ f(x)dx gﬂr-JH > R () =

b
Romberg Integration for J' f (x)dx (Sec. 4-5):



.
R = 2@+ f®) = 21 @ + O

Ru = 20/ (@ + f®) +2f(a+ho)

_ B
N [f(a) + F(b) +2f (a+ ( - a))]

4

1
= ;[Rl,l + h[f(a +h2)],

R3) = %{Rl.l + ha[f(a + h3) + f(a +3h3)1}h

and, in general (see Figure 4.10),
1k=2
1 -

Rei = 5 Rk-u+hk_l§f(a+(2i—1>hk) ,

Applying Richardson’s extrapolation:

R
sl Ry -3&-—1.1 w

foreach k = 2,3, ..., n, and apply the Richardson extrapolation procedure to these val-
ues. C_‘onlinuing this notation, we have, foreach k = 2,3,4,... ,nand j = 2,... ,k, an
O(h;’) approximation formula defined by

Ry, j=1 = Ri=1,j~1
Rej=Rij-1+ fd_}._]_I =,

Gaussian Quadrature (Sec. 4-7):

I P—
f f(x)dx =~ f (—3’/—5) +f (?) ; (4.41)
-1

This formula ha&icgree of precision 3, that is, it produces the exact result for every poly-
nomial of degree 3 or less. '

Legendre Polynomials Py(x), P1(X), ..., Pn(X):



a collection {Py(x), Pi(x),..., Py(x), ..., ]} with properties:

1. For t;ach n, P,(x) is a monic polynomial of degree n.

2 full P(x)P,(x)dx = 0 whenever P(x) is a polynomial of degree less than n.
The first few Legendre polynomials are
BbY=x, PE)=i"~3,

6,2 4 3
7X°+ 355

Py(x) =1,
Py(x) =x*—1ix, and Py(x)=x*-

Theorem 4.7 Suppose that x|, X2, ... , X, are the roots of the nth Legendre polynomial P,(x) and that
foreachi = 1,2, ..., n, the numbers ¢; are defined by

om [ TIE2ar } atermient by

1'—-‘:1

1 “;#:I LO‘J r‘u&e |4+frpol‘d'}ﬂé-

If P(x) is any polynomial o' degree less than ZnI then pal Y m.-.“Q af- (.l.q n-.
P(x) d@ c; P(x;). ]
IRCE O

N geadty &

A change of variable applied to integration:

b l _ —_
Pl de= f f ((b ay it “)) b - 4 i, (4.42)
a -1

/A

The constants ¢; needed for the quadrature rule can be generated from the equation
in Theorem 4.7, but both these constants and the roots of the Legendre polynomials are
extensively tabulated. Table 4.11 lists these values for n = 2, 3, 4,’and 3. Others can he

found in [StS].

Table 4.11 Roots r, ; Coefficients ¢,
0.5773502692 1.0000000000
—-0.5773502692 1.0000000000
0.7745966692 0.5555555556
0.0000000000 0.8888888889
—0.7745966692 0.5555555556
0.8611363116 0.3478548451
0.3399810436 0.6521451549
—0.3399810436 0.6521451549
—-0.8611363116 0.3478548451
0.9061798459 0.2369268850
0.5384693101 0.4786286705
0.0000000000 0.5688888889
—0.5384693101 0.4786286705
-0.9061798459 0.2369268850




