

Chapter 5, Section 5.1

Definition 5.1 A function $f(t, y)$ is said to satisfy a **Lipschitz condition** in the variable y on a set $D \subset \mathbb{R}^2$ if a constant $L > 0$ exists with

$$|f(t, y_1) - f(t, y_2)| \leq L|y_1 - y_2|,$$

whenever $(t, y_1), (t, y_2) \in D$. The constant L is called a **Lipschitz constant** for f . ■

Definition 5.2 A set $D \subset \mathbb{R}^2$ is said to be **convex** if whenever (t_1, y_1) and (t_2, y_2) belong to D and λ is in $[0, 1]$, the point $((1 - \lambda)t_1 + \lambda t_2, (1 - \lambda)y_1 + \lambda y_2)$ also belongs to D . ■

Theorem 5.3 Suppose $f(t, y)$ is defined on a convex set $D \subset \mathbb{R}^2$. If a constant $L > 0$ exists with

$$\left| \frac{\partial f}{\partial y}(t, y) \right| \leq L, \quad \text{for all } (t, y) \in D, \quad (5.1)$$

then f satisfies a Lipschitz condition on D in the variable y with Lipschitz constant L .

Theorem 5.4 Suppose that $D = \{(t, y) \mid a \leq t \leq b, -\infty < y < \infty\}$ and that $f(t, y)$ is continuous on D . If f satisfies a Lipschitz condition on D in the variable y , then the initial-value problem

$$y'(t) = f(t, y), \quad a \leq t \leq b, \quad y(a) = \alpha,$$

has a unique solution $y(t)$ for $a \leq t \leq b$. ■

Definition 5.5 The initial-value problem

$$\frac{dy}{dt} = f(t, y), \quad a \leq t \leq b, \quad y(a) = \alpha, \quad (5.2)$$

is said to be a **well-posed problem** if:

- A unique solution, $y(t)$, to the problem exists, and
- There exist constants $\varepsilon_0 > 0$ and $k > 0$ such that for any ε , with $\varepsilon_0 > \varepsilon > 0$, whenever $\delta(t)$ is continuous with $|\delta(t)| < \varepsilon$ for all t in $[a, b]$, and when $|\delta_0| < \varepsilon$, the initial-value problem

$$\frac{dz}{dt} = f(t, z) + \delta(t), \quad a \leq t \leq b, \quad z(a) = \alpha + \delta_0, \quad (5.3)$$

has a unique solution $z(t)$ that satisfies

$$|z(t) - y(t)| < k\varepsilon \quad \text{for all } t \text{ in } [a, b]. \quad ■$$

Theorem 5.6 Suppose $D = \{(t, y) \mid a \leq t \leq b \text{ and } -\infty < y < \infty\}$. If f is continuous and satisfies a Lipschitz condition in the variable y on the set D , then the initial-value problem

$$\frac{dy}{dt} = f(t, y), \quad a \leq t \leq b, \quad y(a) = \alpha$$

is well-posed. ■

Section 5.2

Euler's method constructs $w_i \approx y(t_i)$, for each $i = 1, 2, \dots, N$, by deleting the remainder term. Thus, Euler's method is

$$w_0 = \alpha,$$

$$w_{i+1} = w_i + hf(t_i, w_i), \quad \text{for each } i = 0, 1, \dots, N-1. \quad (5.8)$$

Equation (5.8) is called the **difference equation** associated with Euler's method

Theorem 5.9 Suppose f is continuous and satisfies a Lipschitz condition with constant L on

$$D = \{(t, y) \mid a \leq t \leq b, -\infty < y < \infty\}$$

and that a constant M exists with

$$|y''(t)| \leq M, \quad \text{for all } t \in [a, b].$$

Let $y(t)$ denote the unique solution to the initial-value problem

$$y' = f(t, y), \quad a \leq t \leq b, \quad y(a) = \alpha,$$

and w_0, w_1, \dots, w_N be the approximations generated by Euler's method for some positive integer N . Then, for each $i = 0, 1, 2, \dots, N$,

$$|y(t_i) - w_i| \leq \frac{hM}{2L} [e^{L(t_i-a)} - 1]. \quad (5.10)$$

Theorem 5.10 Let $y(t)$ denote the unique solution to the initial-value problem

$$y' = f(t, y), \quad a \leq t \leq b, \quad y(a) = \alpha \quad (5.12)$$

and u_0, u_1, \dots, u_N be the approximations obtained using Eq. (5.11). If $|\delta_i| < \delta$ for each $i = 0, 1, \dots, N$ and the hypotheses of Theorem 5.9 hold for Eq. (5.12), then

$$|y(t_i) - u_i| \leq \frac{1}{L} \left(\frac{hM}{2} + \frac{\delta}{h} \right) [e^{L(t_i-a)} - 1] + |\delta_0| e^{L(t_i-a)}, \quad (5.13)$$

for each $i = 0, 1, \dots, N$. ■

Section 5.3

Definition 5.11 The difference method

$$w_0 = \alpha$$

$$w_{i+1} = w_i + h\phi(t_i, w_i), \quad \text{for each } i = 0, 1, \dots, N-1,$$

has **local truncation error**

$$\tau_{i+1}(h) = \frac{y_{i+1} - (y_i + h\phi(t_i, y_i))}{h} = \frac{y_{i+1} - y_i}{h} - \phi(t_i, y_i),$$

for each $i = 0, 1, \dots, N-1$.

Taylor method of order n :

$$w_0 = \alpha,$$

$$w_{i+1} = w_i + hT^{(n)}(t_i, w_i), \quad \text{for each } i = 0, 1, \dots, N-1, \quad (5.17)$$

where

$$T^{(n)}(t_i, w_i) = f(t_i, w_i) + \frac{h}{2} f'(t_i, w_i) + \dots + \frac{h^{n-1}}{n!} f^{(n-1)}(t_i, w_i).$$

Note that Euler's method is Taylor's method of order one.

Theorem 5.12 If Taylor's method of order n is used to approximate the solution to

$$y'(t) = f(t, y(t)), \quad a \leq t \leq b, \quad y(a) = \alpha,$$

with step size h and if $y \in C^{n+1}[a, b]$, then the local truncation error is $O(h^n)$. ■

Section 5.4

Theorem 5.13 Suppose that $f(t, y)$ and all its partial derivatives of order less than or equal to $n + 1$ are continuous on $D = \{(t, y) \mid a \leq t \leq b, c \leq y \leq d\}$, and let $(t_0, y_0) \in D$. For every $(t, y) \in D$, there exists ξ between t and t_0 and μ between y and y_0 with

Taylor's

Theorem

in two variables

$$f(t, y) = P_n(t, y) + R_n(t, y),$$

where

$$\begin{aligned} P_n(t, y) &= f(t_0, y_0) + \left[(t - t_0) \frac{\partial f}{\partial t}(t_0, y_0) + (y - y_0) \frac{\partial f}{\partial y}(t_0, y_0) \right] \\ &\quad + \left[\frac{(t - t_0)^2}{2} \frac{\partial^2 f}{\partial t^2}(t_0, y_0) + (t - t_0)(y - y_0) \frac{\partial^2 f}{\partial t \partial y}(t_0, y_0) \right. \\ &\quad \left. + \frac{(y - y_0)^2}{2} \frac{\partial^2 f}{\partial y^2}(t_0, y_0) \right] + \dots \\ &\quad + \left[\frac{1}{n!} \sum_{j=0}^n \binom{n}{j} (t - t_0)^{n-j} (y - y_0)^j \frac{\partial^n f}{\partial t^{n-j} \partial y^j}(t_0, y_0) \right] \end{aligned}$$

and

$$R_n(t, y) = \frac{1}{(n+1)!} \sum_{j=0}^{n+1} \binom{n+1}{j} (t - t_0)^{n+1-j} (y - y_0)^j \frac{\partial^{n+1} f}{\partial t^{n+1-j} \partial y^j}(\xi, \mu).$$

The function $P_n(t, y)$ is called the **n th Taylor polynomial in two variables** for the function f about (t_0, y_0) , and $R_n(t, y)$ is the remainder term associated with $P_n(t, y)$. ■

The difference-equation method resulting from replacing $T^{(2)}(t, y)$ in Taylor's method of order two by $f(t + (h/2), y + (h/2)f(t, y))$ is a specific Runge–Kutta method known as the *Midpoint method*.

Midpoint Method

$$w_0 = \alpha,$$

$$w_{i+1} = w_i + hf \left(t_i + \frac{h}{2}, w_i + \frac{h}{2}f(t_i, w_i) \right), \quad \text{for each } i = 0, 1, \dots, N-1.$$

Two other $O(h^2)$ methods of the form: $a_1 f(t, y) + a_2 f(t + \Delta t, y + \Delta t f(t, y)) \rightarrow [5.2]$

$$w_0 = \alpha,$$

$$w_{i+1} = w_i + \frac{h}{2} [f(t_i, w_i) + f(t_{i+1}, w_i + hf(t_i, w_i))],$$

for each $i = 0, 1, 2, \dots, N - 1$.

Heun's Method

$$w_0 = \alpha,$$

$$w_{i+1} = w_i + \frac{h}{4} \left[f(t_i, w_i) + 3f \left(t_i + \frac{2}{3}h, w_i + \frac{2}{3}hf(t_i, w_i) \right) \right],$$

for each $i = 0, 1, 2, \dots, N - 1$.

Runge-Kutta Order Four:

$$w_0 = \alpha,$$

$$k_1 = hf(t_i, w_i),$$

$$k_2 = hf \left(t_i + \frac{h}{2}, w_i + \frac{1}{2}k_1 \right),$$

$$k_3 = hf \left(t_i + \frac{h}{2}, w_i + \frac{1}{2}k_2 \right),$$

$$k_4 = hf(t_{i+1}, w_i + k_3),$$

$$w_{i+1} = w_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4),$$

for each $i = 0, 1, \dots, N - 1$. This method has local truncation error $O(h^4)$, provided the solution $y(t)$ has five continuous derivatives.

Chapter 6:

Theorem 6.5 Let A , B , and C be $n \times m$ matrices and λ and μ be real numbers. The following properties of addition and scalar multiplication hold:

(a) $A + B = B + A,$	(b) $(A + B) + C = A + (B + C),$
(c) $A + O = O + A = A,$	(d) $A + (-A) = -A + A = 0,$
(e) $\lambda(A + B) = \lambda A + \lambda B,$	(f) $(\lambda + \mu)A = \lambda A + \mu A,$
(g) $\lambda(\mu A) = (\lambda\mu)A,$	(h) $1A = A.$

Theorem 6.9 Let A be an $n \times m$ matrix, B be an $m \times k$ matrix, C be a $k \times p$ matrix, D be an $m \times k$ matrix, and λ be a real number. The following properties hold:

- (a) $A(BC) = (AB)C$; (Associative law for multiplication)
- (b) $A(B + D) = AB + AD$; (Distributive law)
- (c) $I_m B = B$ and $B I_k = B$; (Identity Element)
- (d) $\lambda(AB) = (\lambda A)B = A(\lambda B)$.

Definition 6.10 An $n \times n$ matrix A is nonsingular (or *invertible*) if an $n \times n$ matrix A^{-1} exists with $AA^{-1} = A^{-1}A = I$. The matrix A^{-1} is called the inverse of A . A matrix without an inverse is called singular (or *noninvertible*).

The following properties regarding matrix inverses follow from Definition 6.10. The proofs of these results are considered in Exercise 5.

Theorem 6.11 For any nonsingular $n \times n$ matrix A :

- (a) A^{-1} is unique.
- (b) A^{-1} is nonsingular and $(A^{-1})^{-1} = A$.
- (c) If B is also a nonsingular $n \times n$ matrix, then $(AB)^{-1} = B^{-1}A^{-1}$.

Theorem 6.13 The following operations involving the transpose of a matrix hold whenever the operation is possible:

- (a) $(A^t)^t = A$,
- (b) $(A + B)^t = A^t + B^t$,
- (c) $(AB)^t = B^t A^t$,
- (d) if A^{-1} exists, then $(A^{-1})^t = (A^t)^{-1}$.

Definition 6.14

- (a) If $A = [a]$ is a 1×1 matrix, then $\det A = a$.
- (b) If A is an $n \times n$ matrix, the **minor** M_{ij} is the determinant of the $(n - 1) \times (n - 1)$ submatrix of A obtained by deleting the i th row and j th column of the matrix A .
- (c) The **cofactor** A_{ij} associated with M_{ij} is defined by $A_{ij} = (-1)^{i+j} M_{ij}$.
- (d) The **determinant** of the $n \times n$ matrix A , when $n > 1$, is given either by

$$\det A = \sum_{j=1}^n a_{ij} A_{ij} = \sum_{j=1}^n (-1)^{i+j} a_{ij} M_{ij}, \quad \text{for any } i = 1, 2, \dots, n,$$

or by

$$\det A = \sum_{i=1}^n a_{ij} A_{ij} = \sum_{i=1}^n (-1)^{i+j} a_{ij} M_{ij}, \quad \text{for any } j = 1, 2, \dots, n.$$

Theorem 6.15 Suppose A is an $n \times n$ matrix:

*Elementary
row
operations* {

- (a) If any row or column of A has only zero entries, then $\det A = 0$.
- (b) If A has two rows or two columns the same, then $\det A = 0$.
- (c) If \tilde{A} is obtained from A by the operation $(E_i \leftrightarrow E_j)$, with $i \neq j$, then $\det \tilde{A} = -\det A$.
- (d) If \tilde{A} is obtained from A by the operation $(\lambda E_i) \rightarrow (E_i)$, then $\det \tilde{A} = \lambda \det A$.
- (e) If \tilde{A} is obtained from A by the operation $(E_i + \lambda E_j) \rightarrow (E_i)$ with $i \neq j$, then $\det \tilde{A} = \det A$.
- (f) If B is also an $n \times n$ matrix, then $\det AB = \det A \det B$.
- (g) $\det A^t = \det A$.
- (h) When A^{-1} exists, $\det A^{-1} = (\det A)^{-1}$.
- (i) If A is an upper triangular, or a lower triangular, or a diagonal matrix, then $\det A = \prod_{i=1}^n a_{ii}$.

Theorem 6.16 The following statements are equivalent for any $n \times n$ matrix A :

- (a) The equation $Ax = 0$ has the unique solution $x = 0$.
- (b) The system $Ax = b$ has a unique solution for any n -dimensional column vector b .
- (c) The matrix A is nonsingular; that is, A^{-1} exists.
- (d) $\det A \neq 0$.
- (e) Gaussian elimination with row interchanges can be performed on the system $Ax = b$ for any n -dimensional column vector b .

Chapter 7:

Definition 7.1 A vector norm on \mathbb{R}^n is a function, $\|\cdot\|$, from \mathbb{R}^n into \mathbb{R} with the following properties:

- (i) $\|x\| \geq 0$ for all $x \in \mathbb{R}^n$,
- (ii) $\|x\| = 0$ if and only if $x = 0$,
- (iii) $\|\alpha x\| = |\alpha| \|x\|$ for all $\alpha \in \mathbb{R}$ and $x \in \mathbb{R}^n$,
- (iv) $\|x + y\| \leq \|x\| + \|y\|$ for all $x, y \in \mathbb{R}^n$.

*$\|x\|$ defines a measure
for the magnitude of vector x*

Definition 7.2 The l_2 and l_∞ norms for the vector $x = (x_1, x_2, \dots, x_n)^t$ are defined by

$$\|x\|_2 = \left\{ \sum_{i=1}^n x_i^2 \right\}^{1/2} \quad \text{and} \quad \|x\|_\infty = \max_{1 \leq i \leq n} |x_i|.$$

Theorem 7.3 (Cauchy–Bunyakovsky–Schwarz Inequality for Sums)

For each $x = (x_1, x_2, \dots, x_n)^t$ and $y = (y_1, y_2, \dots, y_n)^t$ in \mathbb{R}^n ,

$$x^t y = \sum_{i=1}^n x_i y_i \leq \left\{ \sum_{i=1}^n x_i^2 \right\}^{1/2} \left\{ \sum_{i=1}^n y_i^2 \right\}^{1/2} = \|x\|_2 \cdot \|y\|_2.$$

Definition 7.4 If $x = (x_1, x_2, \dots, x_n)^t$ and $y = (y_1, y_2, \dots, y_n)^t$ are vectors in \mathbb{R}^n , the l_2 and l_∞ distances between x and y are defined by

$$\|x - y\|_2 = \left\{ \sum_{i=1}^n (x_i - y_i)^2 \right\}^{1/2} \quad \text{and} \quad \|x - y\|_\infty = \max_{1 \leq i \leq n} |x_i - y_i|. \quad \blacksquare$$

Definition 7.5 A sequence $\{\mathbf{x}^{(k)}\}_{k=1}^{\infty}$ of vectors in \mathbb{R}^n is said to **converge** to \mathbf{x} with respect to the norm $\|\cdot\|$ if, given any $\varepsilon > 0$, there exists an integer $N(\varepsilon)$ such that

$$\|\mathbf{x}^{(k)} - \mathbf{x}\| < \varepsilon, \quad \text{for all } k \geq N(\varepsilon). \quad \blacksquare$$

Theorem 7.6 The sequence of vectors $\{\mathbf{x}^{(k)}\}$ converges to \mathbf{x} in \mathbb{R}^n with respect to $\|\cdot\|_{\infty}$ if and only if $\lim_{k \rightarrow \infty} x_i^{(k)} = x_i$, for each $i = 1, 2, \dots, n$. \blacksquare

Theorem 7.7 For each $\mathbf{x} \in \mathbb{R}^n$,

$$\|\mathbf{x}\|_{\infty} \leq \|\mathbf{x}\|_2 \leq \sqrt{n} \|\mathbf{x}\|_{\infty}.$$

Definition 7.8 A **matrix norm** on the set of all $n \times n$ matrices is a real-valued function, $\|\cdot\|$, defined on this set, satisfying for all $n \times n$ matrices A and B and all real numbers α :

- (i) $\|A\| \geq 0$;
- (ii) $\|A\| = 0$, if and only if A is O , the matrix with all 0 entries;
- (iii) $\|\alpha A\| = |\alpha| \|A\|$;
- (iv) $\|A + B\| \leq \|A\| + \|B\|$;
- (v) $\|AB\| \leq \|A\| \|B\|$. \blacksquare

The **distance between $n \times n$ matrices** A and B with respect to this matrix norm is $\|A - B\|$.

Theorem 7.9 If $\|\cdot\|$ is a vector norm on \mathbb{R}^n , then

$$\|A\| = \max_{\|\mathbf{x}\|=1} \|A\mathbf{x}\|$$

is a matrix norm.

Corollary 7.10 For any vector $\mathbf{z} \neq \mathbf{0}$, matrix A , and any natural norm $\|\cdot\|$, we have

$$\|A\mathbf{z}\| \leq \|A\| \cdot \|\mathbf{z}\|.$$

Theorem 7.11 If $A = (a_{ij})$ is an $n \times n$ matrix, then

$$\|A\|_{\infty} = \max_{1 \leq i \leq n} \sum_{j=1}^n |a_{ij}|.$$

Definition 7.12 If A is a square matrix, the **characteristic polynomial** of A is defined by

$$p(\lambda) = \det(A - \lambda I).$$

Definition 7.13 If p is the characteristic polynomial of the matrix A , the zeros of p are **eigenvalues**, or characteristic values, of the matrix A . If λ is an eigenvalue of A and $\mathbf{x} \neq \mathbf{0}$ satisfies $(A - \lambda I)\mathbf{x} = \mathbf{0}$, then \mathbf{x} is an **eigenvector**, or characteristic vector, of A corresponding to the eigenvalue λ . \blacksquare

Definition 7.14 The **spectral radius** $\rho(A)$ of a matrix A is defined by

$$\rho(A) = \max |\lambda|, \quad \text{where } \lambda \text{ is an eigenvalue of } A.$$

(Recall that for complex $\lambda = \alpha + \beta i$, we have $|\lambda| = (\alpha^2 + \beta^2)^{1/2}$.)

Theorem 7.15 If A is an $n \times n$ matrix, then

- (i) $\|A\|_2 = [\rho(A^t A)]^{1/2}$,
- (ii) $\rho(A) \leq \|A\|$, for any natural norm $\|\cdot\|$.

Definition 7.16 We call an $n \times n$ matrix A **convergent** if

$$\lim_{k \rightarrow \infty} (A^k)_{ij} = 0, \quad \text{for each } i = 1, 2, \dots, n \quad \text{and} \quad j = 1, 2, \dots, n.$$

Theorem 7.17 The following statements are equivalent.

- (i) A is a convergent matrix.
- (ii) $\lim_{n \rightarrow \infty} \|A^n\| = 0$, for some natural norm.
- (iii) $\lim_{n \rightarrow \infty} \|A^n\| = 0$, for all natural norms.
- (iv) $\rho(A) < 1$.
- (v) $\lim_{n \rightarrow \infty} A^n \mathbf{x} = \mathbf{0}$, for every \mathbf{x} .

The method of Example 1 is called the **Jacobi iterative method**. It consists of solving the i th equation in $A\mathbf{x} = \mathbf{b}$ for x_i to obtain (provided $a_{ii} \neq 0$)

$$x_i = \sum_{\substack{j=1 \\ j \neq i}}^n \left(-\frac{a_{ij}x_j}{a_{ii}} \right) + \frac{b_i}{a_{ii}}, \quad \text{for } i = 1, 2, \dots, n$$

and generating each $x_i^{(k)}$ from components of $\mathbf{x}^{(k-1)}$ for $k \geq 1$ by

$$x_i^{(k)} = \frac{\sum_{\substack{j=1 \\ j \neq i}}^n (-a_{ij}x_j^{(k-1)}) + b_i}{a_{ii}}, \quad \text{for } i = 1, 2, \dots, n. \quad (7.4)$$

A possible improvement in Algorithm 7.1 can be seen by reconsidering Eq. (7.4). The components of $\mathbf{x}^{(k-1)}$ are used to compute $x_i^{(k)}$. Since, for $i > 1$, $x_1^{(k)}, \dots, x_{i-1}^{(k)}$ have already been computed and are probably better approximations to the actual solutions x_1, \dots, x_{i-1} than $x_1^{(k-1)}, \dots, x_{i-1}^{(k-1)}$, it seems more reasonable to compute $x_i^{(k)}$ using these most recently calculated values. That is, we can use

$$x_i^{(k)} = \frac{-\sum_{j=1}^{i-1} (a_{ij}x_j^{(k)}) - \sum_{j=i+1}^n (a_{ij}x_j^{(k-1)}) + b_i}{a_{ii}}, \quad (7.7)$$

for each $i = 1, 2, \dots, n$, instead of Eq. (7.4). This modification is called the **Gauss–Seidel iterative technique** and is illustrated in the following example.

Lemma 7.18 If the spectral radius $\rho(T)$ satisfies $\rho(T) < 1$ then $(I - T)^{-1}$ exists, and

$$(I - T)^{-1} = I + T + T^2 + \dots = \sum_{j=0}^{\infty} T^j.$$

Theorem 7.19 For any $\mathbf{x}^{(0)} \in \mathbb{R}^n$, the sequence $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ defined by

(Proof
skipped)

$$\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{c}, \quad \text{for each } k \geq 1, \quad (7.10)$$

converges to the unique solution of $\mathbf{x} = T\mathbf{x} + \mathbf{c}$ if and only if $\rho(T) < 1$. \blacksquare

Corollary 7.20 If $\|T\| < 1$ for any natural matrix norm and \mathbf{c} is a given vector, then the sequence $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ defined by $\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{c}$ converges, for any $\mathbf{x}^{(0)} \in \mathbb{R}^n$, to a vector $\mathbf{x} \in \mathbb{R}^n$, and the following error bounds hold:

- (i) $\|\mathbf{x} - \mathbf{x}^{(k)}\| \leq \|T\|^k \|\mathbf{x}^{(0)} - \mathbf{x}\|$;
- (ii) $\|\mathbf{x} - \mathbf{x}^{(k)}\| \leq \frac{\|T\|^k}{1 - \|T\|} \|\mathbf{x}^{(1)} - \mathbf{x}^{(0)}\|$.

\blacksquare