Chapter 5, Section 5.1

Definition 5.1 A function f(r, y) is said to satisfy a Lipschitz condition in the variable y on a set D C [R?
if a constant L > () exists with

Lf(t, 1) — ft.y2.)] < Ly — yal.
whenever (¢, v,), (1, v2) € D. The constant L is called a Lipschitz constant for f. ]
Definition 5.2 A set D C R? is said to be convex if whenever (1,, y;) and (f2, y2) belong to D and A is in
[0, 1], the point ((1 — X))t + Ata, (1 — X)y; + Ay2) also belongs to D. "

Theorem 5.3 Suppose f (1, y) is defined on a convex set D C R?, If a constant L > 0 exists with

of
‘a—y{f. .\“}

<UL, forall(t,y)e D, (5.1)

then f satisfies a Lipschitz condition on D in the variable y with Lipschitz constant L.

Theorem 54 Suppose that D = {(r,y) | a <t < b, —00 < y < oo} and that f(t, y) is continuous

on D. If f satisfies a Lipschitz condition on D in the variable y, then the initial-value
problem

Y@)=f@,y), a<t<b, y@)=q,
has a unique solution y(r) fora <1 < b. (]
Definition 5.5 The initial-value problem

f »
T =fy) asish y@=q (5.2)
[¢

is said to be a well-posed problem if:

e A unique solution, y(r), to the problem exists, and

e There exist constants &g > 0 and &k > 0 such that for any &, with gy > & > 0,
whenever §(r) is continuous with |8(¢)| < & for all ¢ in [a, b], and when |8;| < e,
the initial-value problem

d
Tf~=flhz)+5(r}, a<t<b, z(a)=a+d, (5.3)
[¢

has a unique solution z(¢) that satisfies

|z(t) — y(t)| < ke forallrin [a, b]. (]

Theorem 5.6 Suppose D = [(t,y) |a <t < b and —co0 < y < oo}. If f is continuous and satisfies a
Lipschitz condition in the variable y on the set D, then the initial-value problem

dy = F{t. ¥y <t =<} et

i =f(t,y), a<t=<bh, y@a)=«a

is well-posed. ]
Section 5.2
Euler’s method constructs w; = y(¢;), foreachi = 1,2,... N, by deleting the
remainder term. Thus, Euler’s method 1s
wﬂ = &!

wip = wi +hf(@,w;), foreachi=0,1,... 6 N—1. (5.8)

Equation (5:8) is called the difference equation associated with Euler’s method



Theorem 5.9 Suppose f is continuous and satisfies a Lipschitz condition with constant L on
D={(t,y)|la<t<bh —0c0<y<o0)
and that a constant M exists with
[¥'(t)) < M, forallt € [a,b].
Let y(1) denote the unique solution to the initial-value problem

Y =f@,y), a<t=<h yla)=a,

and wy, wy, ..., wy be the approximations generated by Euler’s method for some positive
integer N. Then, foreachi =0,1,2,... , N,

ly(t) —w;| < g—f [e*“— —1]. (5.10)

Theorem 5.10 Let y(1) denote the unigue solution to the initial-value problem

Y =f@ty), asts<b ya) =« (5.12)
and wg, uy, ..., uy be the approximations obtained using Eq. (5.11). IT [&;] < & for each
i =0,1,...,N and the hypotheses of Theorem 5.9 hold for Eq. (5.12), then
1 fhM &
Iy@t) —uil < — | —= + = ) [e"7 — 1] + |§g|e" i~ (5.13)
L\ 2 h
foreachi =0,1,...,N. u

Section 5.3
Definition 5.11 The difference method
wy = o
Wiy = w; + hep(;, w;), foreachi=0,1,... , N -1,
has local truncation error

Yirr = Qi +hotti, 3i)) _ Yirr =i

Tiri1(h) = 7 P

— ot yi),

foreachi =0,1,... ,N = L.
Taylor method of order n:

wy = o,

wisy = w; +hT™ (@, w;), foreachi =0,1,...,N —1, (5.17)

where
() Fi = pn—l (i—1)
¥ 4 (f:'vw;‘)=f(ff|w:‘]+5f (Iinw5)+"'+_n' f (t;, wy).

Note that Euler’s method is Taylor’s method of order one.



Theorem 5.12  If Taylor's method of order n is used to approximate the solution to

V()= f@t,y(t), a<t=<b, ya) =a,

with step size h and if y € C"*'[a, b], then the local truncation error is O (h"). ]
Section 5.4

Theorem 5.13 Suppose that f(r, y) and all its partial derivatives of order less than or equal to n + 1 an
— ' ) continuous on D = {(t.y) | a <t < b,c < y < d}, and let (1, yo) € D. For ever

""J Ll (1, ¥) € D, there exists & between ¢ and ry and pt between y and yg with

Theoism

l\'ﬂ-fﬂ! V‘iﬂ.‘u".‘ f(r-,\")—‘pn(fvy)""Rn“'}')‘
where

af d
Pu(t, y) = f(to, yo) + l:(f - 30)3_{(3(}; ya)+(y — yi})a—ﬁ(fn- )’0)}

= |:“ _;OJZ (j;{ (to, yo) + (¢t — 0)(¥ — ¥o) j:aj;(fth Yo)
- @i{(m, )‘u)] o
+ |:$ g (;)(f — 10" (y = yo)’ at’;Ljfjf;y_f(m’ )’0)}
and
hA= J: D! JX:; (n T [)(‘ ~ Gy y.y%fs, -

The function P,(t, y) is called the nth Taylor polynomial in two variables for the
function f about (1, yo), and R, (t, y) is the remainder term associated with P, (¢, y). =

The difference-equation method resulting from replacing 7' (¢, y) in Taylor’s method

of order two by f(r + (h/2), y+ (h/2) f(t, y)) is a specific Runge—Kutta method known
as the Midpoint method.

Midpoint Method
wp = o,

h h
Wit =w; +hf (I,’ + 5, w; + E‘f(ff, w,)) ;. foreachi =0, I, ..« N—L



Tws ot 0Ch*) metinds o ot s ate,y) *a
Modified Euler Method '{I & ‘ » Lf(t*d %
9 =+ §ofte, 2D --Erzll
wp = o,
h
Wi = Wi + E[f(!’, w;) + f(fii-lg w; + hf(fi‘ w;))l,

foreach i=0,1,2,... ,N—1.

Heun’s Method

wy = o,
h 2 2
Wi+l = w; + 7 [f(fs, wi) +3f (&' + ih' w; + ghf(fn w:’)):l -

foreachi =0,1,2,..., N — 1.
Runge-Kutta Order Four:

wy = «,
ki = hf(t, w;),

h |
ky = hf (If + 5 Wi + Ekl),

2
ks = hf(ti1, wi + ka),

h 1
ks=hf (fr + = Wy Ekz),

1
Wiy = w; + B(kl + 2ky + 2k3 + ka),

for each i = 0,1,..., N — 1. This method has local truncation error|Q(h*),/provided
the solution y(t) has five continuous derivatives.

Chapter 6:
Theorem 6.5 Let A, B, and C be n x m matrices and A and u be real numbers. The following properties
of addition and scalar multiplication hold:

(a) A+B=B+A, (b) (A+B)+C=A+(B+0),
(c) A+O0=0+A=A, (d A+(-A)=-A+A=0,
(&) A(A+B)=XiA+ 4B, (0 (A+pu)A =LA+ puA,

(g) A(pnA) =(ApA, (h) 1A =A.



Theorem 6.9 Let A be an n x m matrix, B be an m x k matrix, C be a k x p matrix, D be an m x k
matrix, and A be a real number. The following properties hold:

@ ABC) =@B)C; (Asrddia law fo- rnuu\‘lfpuca-Hm)
(b) A(B+D)=AB+AD; ¢ Viteibive law)
(© I.B=BandBlL=8B; (TLkehty Element)

(d) AAB) = (LA)B = A()LB). n
F r‘h"!" LA B AV
Definition 6.10 An@matﬁx A is nonsingular (or invertible) if an n x n matrix A~! exists with
AA" "= A~'A = I. The matrix A~" is called the inverse of A. A matrix without an
F T . - 3 -‘-"_'_
inverse 1s called singular (or noninvertible). u
,—_-—

The following properties regarding matrix inverses follow from Definition 6.10. The
proofs of these results are considered in Exercise 3.

Theorem 6.11  For any nonsingular n x n matrix A:
(a) A~!isunique.
(b) A~'isnonsingular and (A~")"! = A.
(c) If B is also a nonsingular n x n matrix, then (AB)™! = B~'A~L

Theorem 6.13 The following operations involving the transpose of a matrix hold whenever the operation

is possible:
(a (AN =A, (b) (A + B) = A'+ B!,
(¢) (AB) = B'A', . (d) if A" exists, then (A~ = (A")~".
Definition 6.14 (a) If A =[a]isal x | matrix, then det A = a.

(b) If Aisann x n matrix, the minor M;; is the determinant of the (n — 1) x (n — 1)
submatrix of A obtained by deleting the ith row and jth column of the matrix A.

(¢) The cofactor A;; associated with M;; is defined by A;; = (= l}l‘+ijj.

(d) The determinant of the n x n matrix A, when n > 1, is given either by

R R

n n
detA =) ayAy =Y (=1)*ay;M;y, foranyi
j=1 i=l
or by

n n
detA:Za,-jA,-j=Z(—l}‘“'a,-,Mu. forany j =1,2,...,n. ]
i=l i=l -



Theorem 6.15 Suppose A is ann X n matrix:

(a)
(b)

(c)

7
_Q,\tﬁ"‘k" @

(e)

(f)
(2)
(h)
(i)

If any row or column of A has only zero entries, then det A = 0,

If A has two rows or two columns the same, then det A = 0.

If A is obtained from A by the operation (E;) <> (E;), with i # j, then det A=
—det A.

If A is obtained from A by the operation (LE;) — (E;), then det A = Adet A.

If .d:_is obtained from A by the operation (E; + AE;) — (E;) withi # J, then
det A =det A.

If B is also an n x n matrix, then det AB = det A det B.

det A" = det A.

When A~ exists, det A~! = (det 4)~'.

If A is an upper triangular, or a lower triangular, or a diagonal matrix, then
det A = I-[:."=1 aji. ]

Theorem 6.16 The following statements are(equivalem}or any n X n matrix A:

(a)
(b)
(c)
(d)

The equation Ax = 0 has the unique solution x = 0.
The system Ax = b has a unique solution for any n-dimensional column vector b.
The matrix A is nonsingular; that is, A~! exists.

det A # 0.

(e) Gaussian elimination with row interchanges can be Erformed on the system
Ax = b for any n-dimensional column vectorb. A ]
Chapter 7:
Definition 7.1 A vector norm on R" is a function, | - ||, from R" into R with the following properties:

(i)
(ii)
(iii)
(iv)

Definition 7.2 The [, and [, norms for the vector x = (x|, X2, ... ,

Theorem 7.3

For each x = (x, x2, ...

Definition 7.4

Ifx = (11,x3,...

x|l = 0O for all x € R",

fix|| = 0if and only if x = 0,

llex| = |e|]lx|| forall « € R and x € R",
Ix+yll < lIx]l +llyll forallx, y € R".

x| Dbding ¢ meagare
£ e ey iteds ) Veche X

xp)" are defined by

1/2
Ixll2 = [ ?] and [[X]loo = max ||
i=l ot

(Cauchy—Bunyakovsky-Schwarz Inequality for Sums)

,Xn) and y = (y1, ¥2, ..., ya)' in R",

x'y = )":x.-yf < { 3 }l 2[ ZJ”: ] = lIxllz2 - llyll2.

i=l
, X andy = (yi, ¥2, ..., ¥n)' are vectors in R", the /; and /., distances

between x and y are defined by
e —

n 1/2
Ix —yll2 = [Z(xs —y.-)zl and |IX — ¥l = E?éf, [xi — yil. u



Definition 7.5 A sequence {x“‘)]ﬁ‘;l of vectors in R” is said to converge to x with respect to the norm || - ||
if, given any ¢ > 0, there exists an integer N (¢) such that

X% —x|| <&, forallk = N(e). a
Theorem 7.6 The sequence of vectors (x*)} converges to x in R” with respect to || - || if and only if
limg 00 .r,.(k’ = x;, foreachi=1,2,...,n. n

Theorem 7.7 Foreachx e R",

IXlloo < lIXll2 £ VAlIXlloo-

Definition 7.8 A matrix norm on the set of all n x n matrices is a real-valued function, || - ||, defined on
this set, satisfying for all n x n matrices A and B and all real numbers «:
@i Al =06

(ii) ||A|l =0, if and only if A is O, the matrix with all 0 entries;

(i) [leAll = [allAl:

(iv) llA+ Bl = llAl+ 1181,

(v) [IAB] < [AlNBII. u

The distance between n x n matrices A and B with respect to this matrix norm is
A — Bl

Theorem 7.9 1If || - || is a vector norm on R”, then

Al = max || Ax||
lixl=1

1S a4 matrix norm.

Corallary 7.10  For any vector z # 0, matrix A, and any natural norm || - ||, we have
Azl < |All - Iz

Theorem 7.11 If A = (a;;) is an n X n matrix, then

n
"A"oo = max Z Ia,-jl.
l<i<zn =l

Definition 7.12 If A is a squarc matrix, the characteristic polynomial of A is defined by
p(L) =det(A — AI).
Definition 7.13 If p is the characteristic polynomial of the matrix A, the zeros of p are eigenvalues, or
characteristic values, of the matrix A. If A is an eigenvalue of A and x # 0 satisfies

(A — Al)x = 0, then x is an eigenvector, or characteristic vector, of A corresponding
to the eigenvalue A. B

Definition 7.1 The spectral radius p(A) of a matrix A is defined By

p(A) = max |x|, where X is an eigenvalue of A.

(Recall that for complex A = « + i, we have |A| = (a? + 2)/2)



Theorem 7.15 If A is ann x n matrix, then

(@) 1All2 = [p(AA)]'2,
(i) p(A) <A, for any natural norm || - ||.

Definition 7.16 We call an n x n matrix A convergent if \

kiim(A"],-;:O, foreachi=1,2,...,n and j=1,2,...,n
-+ 00

Theorem 7.17 The following statements are equivalent.

(i) A is a convergent matrix.

(i) lim,—co ||]A"|| = 0O, for some natural norm.
(ifi) limy_ o [|A"|| = 0, for all natural norms.
(iv) p(A) < 1.
= e ) timpse A =0, Torevery x. D

The method of Example 1 is called the Jacobi iterative method. It consists ofsolvmg
the ith equation in Ax = b for x; to obtain (provideg¢'a;; #0

aijx b,‘
r,—-z( i ;) = fori =1.2,...,n
B (D

; k
and generating each xf.( ) from components of X%~ for k > | by

D =1 (—a,—}.\:}k"l)) + bi
k [ #i r
gh = I ; forda 2.0 (7.4)

1 H) 4
[2FH 3

A possible improvement in Algorithm 7.1 can be seen by reconsidering Eq. (7.4).
The components of x*~" are used to compute x( ). Since, for i > 1, t“‘) ®

Rl o |

have already been computed and are probably better approximations to the actual solu-

tions xy, ... , x;— than x{ I g ,tfi Y it seems more reasonable to compute r( ? using

these most recently calculated values. Thal is, we can use

i=1 (k) (k =1)
— Y Lo @px: ) — (aijx ) + b;
I;(k) - Z;—l( 4 Z j=i-1 \ij X ‘ (??)

A

.-

foreachi = 1,2, ..., n, instead of Eq. (7.4). This modification is called the Gauss—Seidel
iterative technique and is illustrated in the following example.

Lemma 7.18 If the spectral radius p(7') satisﬁe{ p(T) < l’ then (I — T)~" exists, and

o0
U=T)'=I1+T+T2+...=) T/
- j=0



Theorem 7.19 For any x'© & R", the sequence {x*))22, defined by

P ro‘.{. x® = Tx*Y 4 ¢, foreachk > 1, (7.10)
.;L..:.?Qeé) converges to the unigue solution of x = Tx + cif and only if p(T) < L. u

Corollary 720 If ||T| < 1 for any natural matrix norm and ¢ is a given"i'réctor, then the sequence (x*)22,
defined by x* = Tx*~V + ¢ converges, for any x©® ¢ R”, to a vector x € R”, and the
following error bounds hold:

@ lx—x®) < 1711 —xil;

7y

) x—x®l < 7 lIx® — xO. .



