1. Consider integers written in base 3 with no leading 0s. Let L_1 be the set of such strings which represent odd numbers.

 (a) Construct a DFA that accepts L_1.

 (b) Construct a left-linear grammar for L_1.

2. Consider the language L_2 generated by the following grammar

 $$
 S \rightarrow AB + C \\
 A \rightarrow aB + C \\
 B \rightarrow Ab + C \\
 C \rightarrow b + aaaC
 $$

 Characterize L_1 using a combination of set notation and regular expressions.

3. What does it mean for an infinite set to be “countable”?
4. Construct a DFA equivalent to the following NFA.

5. Consider the language over $\Sigma = \{a, b, c\}$ consisting of strings with more occurrences of the pattern “abc” than occurrences of the pattern “abb”. Is this a regular language? Justify your answer.