University of Central Florida
School of Computer Science
COT 4210 Spring 2004

Prof. Rene Peralta
Solutions to Homework 2

Consider integers written in base 3 with no leading 0s. Let L be the set of such strings which represent even numbers.

1. Construct a DFA that accepts L.

The red state means “I am odd”. The yellow state means “I am even”.
2. Construct a left-linear grammar for L.

Associate with each state U the set of strings whose computation can end in U. Then we have (let B, R, Y denote be blue, red, yellow states, resp.)

\[
\begin{align*}
B & \to \lambda \\
R & \to (Y + B)1 + R(2 + 0) \\
Y & \to B2 + R1 + Y(2 + 0)
\end{align*}
\]

which simplifies to

\[
\begin{align*}
R & \to (Y + \lambda)1 + R(2 + 0) \\
Y & \to 2 + R1 + Y(2 + 0)
\end{align*}
\]

The starting symbol of the grammar is Y.

3. Write a regular expression for L.

Using Adler’s rule we have

\[
R = (Y + \lambda)1(2 + 0)^*
\]

then

\[
Y = 2 + (Y + \lambda)1(2 + 0)^*1 + Y(2 + 0)
\]

factoring Y

\[
Y = 2 + 1(2 + 0)^*1 + Y(1(2 + 0)^*1 + 2 + 0)
\]

and finally

\[
Y = (2 + 1(2 + 0)^*1)(1(2 + 0)^*1 + 2 + 0)^*
\]
4. Write a regular expression for L^r.

Above is the “reverse” of the automata for L. Just for fun, we can associate with each state U the set of strings accepted if the automaton is started at U. We then have the following system of equations (some obvious steps are skipped)

\[
\begin{align*}
R & = (0 + 2)^*1 + (0 + 2)^*1Y \\
Y & = (0 + 2)^*2 + (0 + 2)^*1R.
\end{align*}
\]

Thus

\[
\begin{align*}
Y & = (0 + 2)^*2 + (0 + 2)^*1((0 + 2)^*1 + (0 + 2)^*1Y) \\
& = (0 + 2)^*(2 + 1(0 + 2)^*1) + (0 + 2)^*1(0 + 2)^*1Y \\
& = ((0 + 2)^*1(0 + 2)^*1)(0 + 2)^*(2 + 1(0 + 2)^*1).
\end{align*}
\]
This looks suspiciously like a (very ugly) way of saying “an even number of 1” (plus some minor details relating to the “no leading zeroes” constraint). So what’s up?

The (radix three) integer represented by a string ω is $n = \sum_i 3^i b_i$, where b_i is the i^{th} symbol in the ω. Since $3 \mod 2 = 1$, we have

$$n \mod 2 \equiv \sum_i (b_i \mod 2)$$

Since 0 and 2 mod 2 are also 0, we have

$$n \mod 2 = (\text{number of 1s in } \omega) \mod 2.$$

That is, ω represents an even integer if and only if it contains an even number of 1s.

5. Write a grammar for the language (over $\Sigma = \{a, b\}$) consisting of strings not containing the pattern “abba”.
The machine above accepts strings that contain the pattern “abba”. To “complement” the machine simply switch accepting and non-accepting states:

Writing a grammar is straight-forward:

\[S \rightarrow \lambda + aU + bS; \quad U \rightarrow \lambda + bV + aU; \]
\[V \rightarrow \lambda + aU + bW; \quad W \rightarrow \lambda + bS; \]

(why only four non-terminals?).

6. Write a grammar for the language (over \(\Sigma = \{a, b\} \)) consisting of palindromes with the same number of a’s as b’s.

This problem is quite hard. A solution, however, can be easily verified. This phenomenon (finding a solution to a problem is often much more difficult than verifying its correctness) and nobody really knows why.

Here is a grammar:

\[S \rightarrow aASa + bBSb + \lambda; \]
\[AB \rightarrow \lambda; \quad BA \rightarrow \lambda; \]
\[Aa \rightarrow aA; \quad aA \rightarrow Aa; \]

Note this type-0 grammar is not type-1. We know a type-1 grammar exists because the language can be decided in linear space. However, it seems difficult to construct such a grammar.