University of Central Florida
School of Computer Science
COT 4210 Spring 2004

Prof. Rene Peralta
Solutions to Homework 2

Consider integers written in base 3 with no leading 0s. Let L be the set of
such strings which represent even numbers.

1. Construct a DFA that accepts L.

/‘_) 2.0

The red state means “I am odd”. The yellow state means “I am even”.



2. Construct a left-linear grammar for L.

Associate with each state U the set of strings whose computation can
end in U. Then we have (let B,R,Y denote be blue,red,yellow states,
resp.)

B — A
(Y +B)1+ R(2+0)
Y — B2+ R1+Y(2+0)

>
!

which simplifies to

R — (Y +A1+R(2+0)
Y — 24 RI+Y(2+0)

The starting symbol of the grammar is Y.

3. Write a regular expression for L.

Using Adler’s rule we have

R = (Y+N12+0)

then

Y = 24 (Y +A1(2+0)1+Y(240)

factoring Y

Y = 24124014+ Y (1(2+0)*1 +2+0)

and finally

Y = (24 1(2+0)1)(1(2 +0)*1 + 2 + 0)*



2.0

4. Write a regular expression for L".

Above is the “reverse” of the automata for L. Just for fun, we can
associate with each state U the set of strings accepted if the automaton
is started at U. We then have the following system of equations (some
obvious steps are skipped)

R = (0+2)"1+ (0+2)"1Y
Y = (04+2)24(0+2)"1R.

Thus

Y = (04+2) 2+ (0+2)*1((04+2)"1 + (0 +2)*1Y)
= (04+2)*(2+1(0+2)*1) + (0 + 2)*1(0 + 2)*1Y
= ((0+2)*1(0+2)"1)*(0 + 2)*(2 + 1(0 + 2)*1).



This looks suspiciously like a (very ugly) way of saying “an even num-
ber of 17 (plus some minor details relating to the “no leading zeroes”
constraint). So what’s up?

The (radix three) integer represented by a string w is n = 3, 3'b;, where
b; is the i* symbol in the w. Since 3 mod 2 = 1, we have

nmod 2 = (b; mod 2)

)

Since 0 and 2 mod 2 are also 0, we have
n mod 2 = (number of 1s in w) mod 2.

That is, w represents an even integer if and only if it contains an even
number of 1s.

5. Write a grammar for the language (over X = {a, b}) consisting of strings
not containing the pattern “abba”.

a,b
o 5 R
b



The machine above accepts strings that contain the pattern “abba”. To
“complement” the machine simply switch accepting and non-accepting
states:

Writing a grammar is straight-forward:
S—A+aU+bS; U—AX+bV+alU,;
Vo AX+aU+0W; W — XA+0bS,
(why only four non-terminals?).

. Write a grammar for the language (over ¥ = {a, b}) consisting of palin-
dromes with the same number of a’s as b’s.

This problem is quite hard. A solution, however, can be easily verified.
This phenomenon (finding a solution to a problem is often much more
difficult than verifying its correctness) and nobody really knows why.
Here is a grammar:

S — aASa+bBSb+ \;
AB — X\; BA — X\
Aa — aA; aA — Aag;
Note this type-0 grammar is not type-1. We know a type-1 grammar

exists because the language can be decided in linear space. However,
it seems difficult to construct such a grammar.



