University of Central Florida School of Computer Science COT 4210 Fall 2004

Prof. Rene Peralta Homework 7 Solutions (by TA Robert Lee)

1. (4.3 from textbook) Let $ALL_{DFA} = \{\langle A \rangle | A \text{ is a DFA that recognizes } \Sigma^* \}$. Show that ALL_{DFA} is decidable.

Solution We will create a Turing Machine M to decide ALL_{DFA} . Hard-wired into M is the specification $\langle B \rangle$ for a DFA B that recognizes Σ^* ; this is easy to build by making the start state an accept state with self-loops corresponding to each symbol in Σ . On input $\langle A \rangle$, M will feed $\langle A, B \rangle$ as input to $TM_{EQ_{DFA}}$, a TM that decides whether the languages of two DFA's are equal. We know this TM exists by Theorem 4.5. If $TM_{EQ_{DFA}}$ accepts, then $L(A) = L(B) = \Sigma^*$, so M must accept. If $TM_{EQ_{DFA}}$ rejects, then $L(A) \neq L(B)$, so $L(A) \neq \Sigma^*$, hence M must reject. Because M decides ALL_{DFA} , we have proven that ALL_{DFA} is decidable.

2. (4.5 from textbook)

Let INFINITE_{DFA} = { $\langle A \rangle | A$ is a DFA and L(A) is an infinite language}. Show that INFINITE_{DFA} is decidable.

Solution We will create a Turing Machine M to decide INFINITE_{DFA}. A DFA that recognizes an infinite language must contain a loop in its state transitions. This loop can contain just a single state, in the case of a self-loop. It follows that M must consider each state q and determine whether a loop contains q. If so, then M must determine whether there is a path from any state in the loop to an accept state. Finally, M must determine whether there is a path from the start state to q. These steps are performed by the pseudocode below for M:

```
for (each state q in A) {
   clear marks; // initialization
   mark each state that has a transition from q;
   while (new states can be marked) {
      mark each state that has a transition from a marked state;
      if (state q is marked) {
         // this means we have found a loop containing q
         if (an accept state is marked) {
            // this means an accept state is reachable from
            // a state in the loop, so we must now check
            // whether q is reachable from the start state.
            clear marks; // initialize for second search
            mark the start state;
            while (new states can be marked) {
               mark each state that has a transition
                  from a marked state;
               if (state q is marked) {
                  accept; // all conditions are satisfied.
               }
            }
         }
      }
   }
}
reject;
```

Because M decides INFINITE_{DFA}, we have proven that INFINITE_{DFA} is decidable.

3. (5.2 from textbook) Show that EQ_{CFG} is co-Turing-recognizable.

Solution We will create a Turing Machine M to recognize the complement of EQ_{CFG} , denoted $\overline{EQ_{CFG}}$. The definition of $\overline{EQ_{CFG}}$ is

$$\overline{EQ_{CFG}} = \{ \text{strings not of the form } \langle G_1, G_2 \rangle, \text{ where } G_1, G_2 \text{ are CFG's} \}$$
$$\cup \{ \langle G_1, G_2 \rangle \mid G_1, G_2 \text{ are CFG's and } L(G_1) \neq L(G_2) \}.$$

Our Turing Machine M must first accept all "junk" strings, which are in the first set. Then it considers strings in the second set, which are of the form $\langle G_1, G_2 \rangle$. By Theorem 4.6, A_{CFG} is decidable; in other words, a Turing Machine can decide whether a given CFG generates a given string. Let $TM_{A_{CFG}}$ be a TM that decides A_{CFG} .

For each string w in Σ^* , where $\Sigma = \Sigma_{G_1} \cup \Sigma_{G_2}$ is the union of the terminals of G_1 and G_2 , M will feed $\langle G_1, w \rangle$ as input to $TM_{A_{CFG}}$; let the result be a boolean variable g_1 that is TRUE if $TM_{A_{CFG}}$ accepts $\langle G_1, w \rangle$ and FALSE otherwise. Next M will feed $\langle G_2, w \rangle$ as input to $TM_{A_{CFG}}$; let the result be a boolean variable g_2 that is TRUE if $TM_{A_{CFG}}$ accepts $\langle G_2, w \rangle$ and FALSE otherwise.

(Recall that the symbol \oplus denotes the XOR operation.) If $g_1 \oplus g_2 = \text{TRUE}$, then w is in either $L(G_1)$ or $L(G_2)$ but not both; therefore $L(G_1) \neq L(G_2)$, and M accepts $\langle G_1, G_2 \rangle$. If $g_1 \oplus g_2 = \text{FALSE}$, then M considers the next w.

Note that M does not need to reject, because it is a recognizer, not a decider. Because M recognizes $\overline{EQ_{CFG}}$, we have proven that $\overline{EQ_{CFG}}$ is Turing-recognizable. Therefore EQ_{CFG} is co-Turing-recognizable.

4. (5.3 from textbook) Find a match in the following instance of the PCP:

$$\left\{ \left[\frac{ab}{abab}\right], \left[\frac{b}{a}\right], \left[\frac{aba}{b}\right], \left[\frac{aa}{a}\right] \right\}$$

Solution

$$\left[\frac{ab}{abab}\right] \left[\frac{ab}{abab}\right] \left[\frac{aba}{b}\right] \left[\frac{b}{a}\right] \left[\frac{b}{a}\right] \left[\frac{b}{a}\right] \left[\frac{aa}{a}\right] \left[\frac{aa}{a}\right]$$

5. (5.10 from textbook) Let $J = \{w \mid w = 0x \text{ for some } x \in A_{TM} \text{ or } w = 1y \text{ for some } y \in \overline{A_{TM}}\}$. Show that neither J nor \overline{J} is Turing-recognizable.

Solution First we will demonstrate a reduction $f : \Sigma^* \to \Sigma^*$ of $\overline{A_{TM}}$ to J. Given a string $z \in \Sigma^*$, let f(z) = 1z. By definition of J, $z \in \overline{A_{TM}}$ iff $1z \in J$. Thus f is a reduction of $\overline{A_{TM}}$ to J, so $\overline{A_{TM}} \leq_m J$. Because $\overline{A_{TM}}$ is not Turing-recognizable, by Corollary 5.23 J is not Turing-recognizable.

Now we will demonstrate a reduction $g : \Sigma^* \to \Sigma^*$ of A_{TM} to J. Given a string $t \in \Sigma^*$, let g(t) = 0t. By definition of J, $t \in A_{TM}$ iff $0t \in J$. Thus g is a reduction of A_{TM} to J, so $A_{TM} \leq_m J$. A function that reduces language L_1 to language L_2 also reduces $\overline{L_1}$ to $\overline{L_2}$; hence gis also a reduction from $\overline{A_{TM}}$ to \overline{J} , so $\overline{A_{TM}} \leq_m \overline{J}$. Because $\overline{A_{TM}}$ is not Turing-recognizable, by Corollary 5.23 \overline{J} is not Turing-recognizable.

Therefore we have proven that neither J nor \overline{J} is Turing-recognizable.

6. (5.11 from textbook) Give an example of an undecidable language B, where $B \leq_m \overline{B}$.

Solution As it happens, the language J from problem 5.10 will work. We must prove that $J \leq_m \overline{J}$. Define the function $h: \Sigma^* \to \Sigma^*$ as follows:

Given a string $u \in J$, if u = 0x where $x \in A_{TM}$, let h(u) = 1x. Then $h(u) \in \overline{J}$ (because 1x cannot be in J).

On the other hand, if u = 1y where $y \in \overline{A_{TM}}$, let h(u) = 0y. Then $h(u) \in \overline{J}$ (because 0y cannot be in J).

Finally, we need to handle the case where $u = \epsilon$. (We can assume without loss of generality that $\Sigma = \{0, 1\}$, so all other strings in Σ^* begin with 0 or 1.) Let $h(\epsilon) = 0c$, where c is a (fixed) element of A_{TM} . Notice that $\epsilon \notin J$ and $h(\epsilon) \notin \overline{J}$, so this definition of $h(\epsilon)$ does not violate the requirement that $u \in J$ iff $h(u) \in \overline{J}$.

The function h is a reduction of J to \overline{J} . Therefore $J \leq_m \overline{J}$.

7. Consider the Turing machine M_2 of figure 3.4. The tape alphabet Γ is $\{0, x, \sqcup\}$. Give rules R of a Semi-Thue system such that a word $w \in \{0\}^+$ is in $L(M_2)$ iff $w \sqcup \Longrightarrow q_{accept}$. For simplicity, please use the rules $\gamma q_{accept} \longrightarrow q_{accept}$ and $q_{accept} \gamma \longrightarrow q_{accept}$ for all $\gamma \in \Gamma$.

Solution (by Rene) The rules in R are given below. Note that the last six rules are the erasing rules, used after the q_{accept} state appears in the string.

\longrightarrow	$\Box q_2$
\longrightarrow	xq_2
\longrightarrow	xq_3
\longrightarrow	$\Box q_{accept}$
\longrightarrow	xq_3
\longrightarrow	$0q_4$
\longrightarrow	$q_50 \sqcup$
\longrightarrow	$q_5x \sqcup$
\longrightarrow	$q_5 \sqcup \sqcup$
\longrightarrow	xq_4
\longrightarrow	xq_3
\longrightarrow	$\Box q_2$
\longrightarrow	$q_{5}00$
\longrightarrow	$q_5 x 0$
\longrightarrow	$q_5 \sqcup 0$
\longrightarrow	q_50x
\longrightarrow	$q_5 x x$
\longrightarrow	$q_5 \sqcup x$
\longrightarrow	q_{accept}
\longrightarrow	q_{accept}
\longrightarrow	q_{accept}
\longrightarrow	$\Box q_{accept}$
\longrightarrow	q_{accept}
\longrightarrow	q_{accept}
	$\begin{array}{c} \uparrow \\ \uparrow $