University of Central Florida
School of Computer Science
CQOT 4210 Fall 2004

Prof. Rene Peralta
Homework 7 Solutions (by TA Robert Lee)

1. (4.3 from textbook) LetALLpr4 = {(A)|Ais a DFA that recognizes*}. Show that
ALLpr4 is decidable.

Solution We will create a Turing Machin@/ to decideALLpr4. Hard-wired into)M is the
specification(B) for a DFA B that recognize&*; this is easy to build by making the start state
an accept state with self-loops corresponding to each symbvdl i@n input(A), M will feed
(A, B) as input toI'Mgq,,,.,, @ TM that decides whether the languages of two DFAS are equal.
We know this TM exists by Theorem 4.5. TtMgq,,,, accepts, the.(A) = L(B) = ¥*, so
M must accept. IT'Mgq,,, rejects, thenL(A) # L(B), soL(A) # ¥*, hencelM must reject.
BecauseV/ decidesALLpr4, we have proven thad LL x4 IS decidable.

2. (4.5 from textbook)
LetINFINITEpra = {(A) | Ais a DFA andL(A) is an infinite language Show that INFINITE, £ 4
is decidable.

Solution We will create a Turing Machin@/ to decide INFINITE, 4. A DFA that recog-
nizes an infinite language must contain a loop in its state transitions. This loop can contain just a
single state, in the case of a self-loop. It follows thatmust consider each stajeand determine
whether a loop containg If so, then)M must determine whether there is a path from any state in
the loop to an accept state. Finally, must determine whether there is a path from the start state
to ¢q. These steps are performed by the pseudocode below for

for (each state q in A) {
clear marks; // initialization
mark each state that has a transition from q;
while (new states can be marked) {
mark each state that has a transition from a marked state;
if (state q is marked) {
/I this means we have found a loop containing q
if (an accept state is marked) {
/I this means an accept state is reachable from
/I a state in the loop, so we must now check
I/l whether q is reachable from the start state.
clear marks; // initialize for second search
mark the start state;
while (new states can be marked) {
mark each state that has a transition
from a marked state;
if (state q is marked) {
accept; // all conditions are satisfied.

}

}
}

reject;

Becausel/ decides INFINITE 4, we have proven that INFINITE-4 is decidable.

3. (5.2 from textbook) Show thal' Q- r¢ is co-Turing-recognizable.

Solution We will create a Turing Machin@/ to recognize the complement &iQ)¢rq, de-
noted£Q)crq. The definition ofEQcrq is

EQcrc = {strings not of the form{G;, G»), whereG,, G, are CFG’$
U{(Gy,Gs) | Gy, Gy are CFG’s and.(G) # L(G5)}.

Our Turing MachineM must first accept all “junk” strings, which are in the first set. Then
it considers strings in the second set, which are of the f@m G»). By Theorem 4.6 Acrg IS
decidable; in other words, a Turing Machine can decide whether a given CFG generates a given
string. LetT'M 4., be a TM that decided r¢.

For each stringv in ¥*, whereX = X4, U X, is the union of the terminals @, andGs,

M will feed (G, w) as input toT'M,,.,...; let the result be a boolean variabjethat is TRUE if
TMa,,. accepts Gy, w) and FALSE otherwise. Next/ will feed (G2, w) as input taI’'My4,.,...;
let the result be a boolean varialgiethat is TRUE ifT'M 4., acceptsG,, w) and FALSE other-
wise.

(Recall that the symbob denotes the XOR operation.) #f © go = TRUE, thenw is in
either L(G,) or L(G5) but not both; thereford.(G,) # L(G2), and M accepts(Gy, Gs). If
g1 @ g2 = FALSE, then)M considers the next.

Note thatM does not need to reject, because it is a recognizer, not a decider. Bédause
recognizesEQcrg, we have proven thab Q. is Turing-recognizable. TherefolQcrq is
co-Turing-recognizable.

4. (5.3 from textbook) Find a match in the following instance of the PCP:
b] (2], [da] e
abab| |la|’| b |'la
ab | [ab | faba] [b] [0] foa] faa]
abab | | abab b allalla a

5. (5.10 from textbook) Let/ = {w|w = 0x for somex € Ary orw = 1y for somey €
Aryr}. Show that neithed nor J is Turing-recognizable.

Solution

Solution First we will demonstrate a reductigh: X* — X* of A7), to J. Given a string
2z € ¥, let f(z) = 1z. By definition of J, 2 € Apy, iff 1z € J. Thusf is a reduction of
Aryto J, soAry <, J. Becausedr,, is not Turing-recognizable, by Corollary 5.23is not
Turing-recognizable.

Now we will demonstrate a reduction: >* — ¥* of Ary, to J. Given a stringt € X%,
let g(t) = 0t. By definition of J, t € Arp,, iff 0t € J. Thusg is a reduction ofdr,, to J, so
Ary <,» J. Afunction that reduces languade to languagel., also reduces, to L,; henceg
is also a reduction froml;,, to J, so Ary, <,, J. Becausedr,, is not Turing-recognizable, by
Corollary 5.237 is not Turing-recognizable.

Therefore we have proven that neithenor J is Turing-recognizable.

6. (5.11 from textbook) Give an example of an undecidable langiagehereB <,, B.

Solution As it happens, the languagefrom problem 5.10 will work. We must prove that
J <,, J. Define the functiorh : ¥* — X* as follows:

Given a stringu € J, if u = 0x wherex € Aryy, leth(u) = 1z. Thenh(u) € J (becausdz
cannot be inJ).

On the other hand, if. = 1y wherey € Aryy, let h(u) = Oy. Thenh(u) € J (becausdy
cannot be inJ).

Finally, we need to handle the case where- ¢. (We can assume without loss of generality
that> = {0, 1}, so all other strings ifc* begin with 0 or 1.) Let:(e) = Oc, wherec is a (fixed)
element ofAr,,. Notice thate ¢ J andh(e) ¢ J, so this definition ofi(¢) does not violate the
requirement that € J iff h(u) € J.

The functionk is a reduction of/ to J. ThereforeJ <,, J.

7. Consider the Turing machin&/, of figure 3.4. The tape alphabgtis {0, z,U}. Give
rules R of a Semi-Thue system such that a wards {0} is in L(M,) iff wl = quecept. FOT
simplicity, please use the rule@,ccept — Gaccept ANAGaccepty — Gaccept fOr all y € T'.

Solution (by Rene) The rules inRk are given below. Note that the last six rules are the erasing
rules, used after the,...,: State appears in the string.

@0 — Ug
Qr — TG
@0 — g3
Gl — UQaccept
qsr —— Iqs
30 — 0qq
Ozl — ¢s0U
sl — gsw U
Ugsll — g5 UL
qur —— g4
0 — g3
¢4 — LUgo
0gs0 — ¢500
rqs0 — ¢520
UgsO — g5 U0
Oz — ¢s50x
TG — G5TT
Ugsr — g Uw
OGaccept — Qaccept
Qaccepto — accept
UQaccept — Qaccept
Qaccept! — UQaccept
Tqaccept — Gaccept

qaccept X Qaccept

