
University of Central Florida

School of Computer Science

COT 4210 Fall 2004

Prof. Rene Peralta

Homework 7 Solutions (by TA Robert Lee)

1. (4.3 from textbook) LetALLDFA = {〈A〉 |A is a DFA that recognizesΣ∗}. Show that

ALLDFA is decidable.

Solution We will create a Turing MachineM to decideALLDFA. Hard-wired intoM is the

specification〈B〉 for a DFA B that recognizesΣ∗; this is easy to build by making the start state

an accept state with self-loops corresponding to each symbol inΣ. On input〈A〉, M will feed

〈A,B〉 as input toTMEQDFA
, a TM that decides whether the languages of two DFA’s are equal.

We know this TM exists by Theorem 4.5. IfTMEQDFA
accepts, thenL(A) = L(B) = Σ∗, so

M must accept. IfTMEQDFA
rejects, thenL(A) 6= L(B), soL(A) 6= Σ∗, henceM must reject.

BecauseM decidesALLDFA, we have proven thatALLDFA is decidable.

1



2. (4.5 from textbook)

Let INFINITEDFA = {〈A〉 |A is a DFA andL(A) is an infinite language}. Show that INFINITEDFA

is decidable.

Solution We will create a Turing MachineM to decide INFINITEDFA. A DFA that recog-

nizes an infinite language must contain a loop in its state transitions. This loop can contain just a

single state, in the case of a self-loop. It follows thatM must consider each stateq and determine

whether a loop containsq. If so, thenM must determine whether there is a path from any state in

the loop to an accept state. Finally,M must determine whether there is a path from the start state

to q. These steps are performed by the pseudocode below forM :

for (each state q in A) {
clear marks; // initialization
mark each state that has a transition from q;
while (new states can be marked) {

mark each state that has a transition from a marked state;
if (state q is marked) {

// this means we have found a loop containing q
if (an accept state is marked) {

// this means an accept state is reachable from
// a state in the loop, so we must now check
// whether q is reachable from the start state.
clear marks; // initialize for second search
mark the start state;
while (new states can be marked) {

mark each state that has a transition
from a marked state;

if (state q is marked) {
accept; // all conditions are satisfied.

}
}

}
}

}
}
reject;

BecauseM decides INFINITEDFA, we have proven that INFINITEDFA is decidable.

2



3. (5.2 from textbook) Show thatEQCFG is co-Turing-recognizable.

Solution We will create a Turing MachineM to recognize the complement ofEQCFG, de-

notedEQCFG. The definition ofEQCFG is

EQCFG = {strings not of the form〈G1, G2〉, whereG1, G2 are CFG’s}
∪{〈G1, G2〉 |G1, G2 are CFG’s andL(G1) 6= L(G2)}.

Our Turing MachineM must first accept all “junk” strings, which are in the first set. Then

it considers strings in the second set, which are of the form〈G1, G2〉. By Theorem 4.6,ACFG is

decidable; in other words, a Turing Machine can decide whether a given CFG generates a given

string. LetTMACFG
be a TM that decidesACFG.

For each stringw in Σ∗, whereΣ = ΣG1 ∪ ΣG2 is the union of the terminals ofG1 andG2,

M will feed 〈G1, w〉 as input toTMACFG
; let the result be a boolean variableg1 that is TRUE if

TMACFG
accepts〈G1, w〉 and FALSE otherwise. NextM will feed 〈G2, w〉 as input toTMACFG

;

let the result be a boolean variableg2 that is TRUE ifTMACFG
accepts〈G2, w〉 and FALSE other-

wise.

(Recall that the symbol⊕ denotes the XOR operation.) Ifg1 ⊕ g2 = TRUE, thenw is in

either L(G1) or L(G2) but not both; thereforeL(G1) 6= L(G2), andM accepts〈G1, G2〉. If

g1 ⊕ g2 = FALSE, thenM considers the nextw.

Note thatM does not need to reject, because it is a recognizer, not a decider. BecauseM

recognizesEQCFG, we have proven thatEQCFG is Turing-recognizable. ThereforeEQCFG is

co-Turing-recognizable.

3



4. (5.3 from textbook) Find a match in the following instance of the PCP:

{[
ab

abab

]
,

[
b

a

]
,

[
aba

b

]
,
[
aa

a

]}

Solution
[

ab

abab

] [
ab

abab

] [
aba

b

] [
b

a

] [
b

a

] [
aa

a

] [
aa

a

]

5. (5.10 from textbook) LetJ = {w |w = 0x for somex ∈ ATM or w = 1y for somey ∈
ATM}. Show that neitherJ norJ is Turing-recognizable.

Solution First we will demonstrate a reductionf : Σ∗ → Σ∗ of ATM to J . Given a string

z ∈ Σ∗, let f(z) = 1z. By definition of J , z ∈ ATM iff 1z ∈ J . Thusf is a reduction of

ATM to J , soATM ≤m J . BecauseATM is not Turing-recognizable, by Corollary 5.23J is not

Turing-recognizable.

Now we will demonstrate a reductiong : Σ∗ → Σ∗ of ATM to J . Given a stringt ∈ Σ∗,

let g(t) = 0t. By definition ofJ , t ∈ ATM iff 0t ∈ J . Thusg is a reduction ofATM to J , so

ATM ≤m J . A function that reduces languageL1 to languageL2 also reducesL1 to L2; henceg

is also a reduction fromATM to J , soATM ≤m J . BecauseATM is not Turing-recognizable, by

Corollary 5.23J is not Turing-recognizable.

Therefore we have proven that neitherJ norJ is Turing-recognizable.

6. (5.11 from textbook) Give an example of an undecidable languageB, whereB ≤m B.

Solution As it happens, the languageJ from problem 5.10 will work. We must prove that

J ≤m J . Define the functionh : Σ∗ → Σ∗ as follows:

Given a stringu ∈ J , if u = 0x wherex ∈ ATM , let h(u) = 1x. Thenh(u) ∈ J (because1x

cannot be inJ).

On the other hand, ifu = 1y wherey ∈ ATM , let h(u) = 0y. Thenh(u) ∈ J (because0y

cannot be inJ).

Finally, we need to handle the case whereu = ε. (We can assume without loss of generality

thatΣ = {0, 1}, so all other strings inΣ∗ begin with 0 or 1.) Leth(ε) = 0c, wherec is a (fixed)

element ofATM . Notice thatε 6∈ J andh(ε) 6∈ J , so this definition ofh(ε) does not violate the

requirement thatu ∈ J iff h(u) ∈ J .

The functionh is a reduction ofJ to J . ThereforeJ ≤m J .

4



7. Consider the Turing machineM2 of figure 3.4. The tape alphabetΓ is {0, x,t}. Give

rulesR of a Semi-Thue system such that a wordw ∈ {0}+ is in L(M2) iff wt =⇒ qaccept. For

simplicity, please use the rulesγqaccept −→ qaccept andqacceptγ −→ qaccept for all γ ∈ Γ.

Solution (by Rene) The rules inR are given below. Note that the last six rules are the erasing

rules, used after theqaccept state appears in the string.

q10 −→ tq2

q2x −→ xq2

q20 −→ xq3

q2t −→ tqaccept

q3x −→ xq3

q30 −→ 0q4

0q3t −→ q50 t
xq3t −→ q5x t
tq3t −→ q5 t t

q4x −→ xq4

q40 −→ xq3

q5t −→ tq2

0q50 −→ q500

xq50 −→ q5x0

tq50 −→ q5 t 0

0q5x −→ q50x

xq5x −→ q5xx

tq5x −→ q5 t x

0qaccept −→ qaccept

qaccept0 −→ qaccept

tqaccept −→ qaccept

qacceptt −→ tqaccept

xqaccept −→ qaccept

qacceptx −→ qaccept

5


