
Discrete II
Theory of Computation

Charles E. Hughes
COT 4210 – Spring 2017 Notes

4/17/17 COT 4210 © UCF 2

Who, What, Where and When
• Instructor: Charles Hughes;

Harris Engineering 247C; 823-2762
(phone is not a good way to get me);
charles.e.hughes@knights.ucf.edu
(e-mail is a good way to get me)
Please use Subject: COT4210

• Web Page: http://www.cs.ucf.edu/courses/cot4210/Spring2017
• Meetings: TR 10:30AM – 11:45AM, HPA1-116;

30 class periods, each 75 minutes long.
Office Hours: TR 1:15PM – 3:00PM in HEC-247C

• GTA: Sina Lotfian; Harris Engineering Center 234
slotfian@knights.ucf.edu
Please use Subject: COT4210
Office Hours: WF 4:00PM – 6:00PM in HEC-234

2

4/17/17 COT 4210 © UCF 3

Text Material
• This and other material linked from web site.
• Text:

– Sipser, Introduction to the Theory of Computation
2nd or 3rd Ed., Course Technologies, 2005/2013.

– Focus on Chapters 1-5,7
• Reference:

– Hopcroft, Motwani and Ullman, Introduction to
Automata Theory, Languages and Computation
3rd Ed., Addison-Wesley, 2006.

3

4/17/17 COT 4210 © UCF 4

Expectations
• Prerequisites: COT3100 (discrete structure I); COP3503

(undergraduate algorithm design and analysis).
• Assignments: Assignments will be graded but there will also

be ungraded practice problems.
• Quizzes: There may be occasional quizzes. These will

include the same types of questions asked on assignments.
• Exams: Two (2) midterms and a final.
• Material: I will draw heavily from the text by Sipser (Chapters

1-5 and 7). Some material will also come from Hopcroft. Class
notes and in-class discussions are, however, comprehensive
and cover models, closure properties and undecidable
problems that may not be addressed in either of these texts.

4

4/17/17 COT 4210 © UCF 5

Goals of Course
• Introduce Theory of Computation, including

– Various models of computation
• Finite State Automata and their relation to regular expressions, regular equations and

regular grammars
• Push Down Automata and their relation to context-free languages
• Techniques for showing languages are NOT in particular language classes
• Closure and non-closure problems

– Limits of computation
• Turing Machines and other equivalent models
• Decision problems; Undecidable decision problems
• The technique of reducibility
• The ubiquity of undecidability (Rice’s Theorem)

– Complexity theory
• Order notation (this should be a review)
• Time complexity, the sets P, NP, NP-Hard, NP-Complete and the question does P=NP?
• Reducibility in context of complexity

5

4/17/17 COT 4210 © UCF 6

Expected Outcomes
• You will gain a solid understanding of various types of

automata and other computational models and their
relation to formal languages.

• You will have a strong sense of the limits that are
imposed by the very nature of computation, and the
ubiquity of unsolvable problems throughout CS.

• You will understand the notion of computational
complexity and especially of the classes of problems
known as P, NP, NP-Hard and NP-complete.

• You will come away with stronger formal proof skills and
a better appreciation of the importance of discrete
mathematics to all aspects of CS.

6

4/17/17 COT 4210 © UCF 7

Keeping Up
• I expect you to visit the course web site regularly

(preferably daily) to see if changes have been made or
material has been added.

• Attendance is preferred, although I do not take roll.
• I do, however, ask lots of questions in class and give

many hints about the kinds of questions I will ask on
exams. It would be a shame to miss the hints, or to fail to
impress me with your insightful in-class answers.

• You are responsible for all material covered in class,
whether in the text or not.

7

4/17/17 COT 4210 © UCF 8

Rules to Abide By
• Do Your Own Work

– When you turn in an assignment, you are implicitly telling me
that these are the fruits of your labor. Do not copy anyone else's
homework or let anyone else copy yours. In contrast, working
together to understand lecture material and solutions to
problems not posed as graded assignments is encouraged.

• Late Assignments
– I will accept no late assignments, except under very unusual

conditions, and those exceptions must be arranged with me or
the GTA in advance unless associated with some tragic event.

• Exams
– No communication during exams, except with me or a

designated proctor, will be tolerated. A single offense will lead to
termination of your participation in the class, and the assignment
of a failing grade.

8

4/17/17 COT 4210 © UCF 9

Exam Grading

• Overall exam grade involves combining the two
midterms, weighing the better of these two higher than
the weaker, and then combining that aggregate score
with the final where the weight of either the better of the
aggregate midterm or the final gets increased by 50.

• If you do the numbers you will see that It is necessary to
have at least an A- average on the combined exams to
get an A for the course.

9

4/17/17 COT 4210 © UCF 10

Important Dates
• Exam#1 – Tentatively Thursday, February 16
• Withdraw Deadline – Wed., March 22
• Exam#2 – Tentatively Thursday, March 30
• Final – Thurs., May 2, 10:00AM–12:50PM
• Days off: Spring Break – Week of March 13
• Exam #1/#2 dates are subject to change with

appropriate notice. Final exam is, of course,
fixed in stone.

10

4/17/17 COT 4210 © UCF 11

Evaluation (tentative)
• Mid Terms – 100 points each (combined for 200)
• Final Exam – 175 points
• Quizzes and Assignments – 75 points
• Bonus – best exam (combined midterm or final)

weighed +50 points
• Total Available: 500
• Grading will be A ≥ 90%, A- ≥ 88%,

B+ ≥ 85%, B ≥ 80%, B- ≥ 78%,
C+ ≥ 75%, C ≥ 70%, C- ≥ 60%,
D ≥ 50%, F < 50%

11

Navigating Notes
• When a slide is presenting a problem set, I

will highlight the slide title in Red
• When a topic is not in the text, I will

highlight the slide title in Green
• When a topic is covered either in part or

only in exercises in the text, I will highlight
the slide title in Blue

4/17/17 COT 4210 © UCF 12

Assignment # 1 Includes
Financial Aid Related Activity

1. Send an e-mail to me.
The subject must be COT4210.
Send it to charles.e.hughes@knights.ucf.edu
I will use that for all class communication.
Cc: GTA Sina Lotfian slotfian@knights.ucf.edu
In the message, tell me where and when you took Discrete
Structures I or its equivalent. Also, tell me what days/times you are
NOT free to make office hours.

2. Prove or disprove the following:
For non-empty sets A and B, (A-B)=A if and only if A∩B = Ø
A negative result must include sample sets A and B that contradict
the assertion.
A supporting result must prove both directions as it’s an iff property
Hint: You might try proof by contradiction for one direction
The assignment needs to be submitted through Webcourses.

Complete and submit both parts by Midnight Friday, 1/13.
4/17/17 COT 4210 © UCF 13

Sets, Sequences, Relations,
Functions, Cardinality,
Graphs and Languages

Mostly from Chapter 0 of Sipser

Sets
• Sets are unordered collections of distinct objects.
• Sets can be defined or specified in many ways:

– By explicitly enumerating their members or elements
e.g. S = { a, b, c}
Note: If S' = { b, c, a}, then S and S' denote the same set (that is, S' =
S)

– By specifying a condition for membership
S = { x Î D | P(x) }, reads "S is the set of all x in D such that P(x) is
true"
P is called a "predicate" (a function from set D to {true, false})
E.g. S = { x Î UCF_Students | x is a CS_major }

• The empty set is denoted, Ø, and is the set with no members; that
is,
Ø = { }. Also, the predicate, x Î Ø is always false!

• Multisets or Bags are unordered collections of objects where we
keep track of repeated elements (usually with a count per element)

4/17/17 COT 4210 © UCF 15

More on Sets
• If S ¹ Ø, then there exists an x for which x Î S is true; this predicate is read

"x is an element of S" or "x is a member of S". The symbol "Î" denotes the
member relation. x Ï S is true when x is not in S.

• We use normal set operation of union (A È B), intersection (A Ç B) and
complement ~A (usually A with a bar on it).

• If A and B are sets, then we write "A Í B" to mean that A is a subset of B.
This means that for all x Î A, x Î B. Or, "x [x Î A Þ x Î B].

• The expression, ”A ⊊ B" means that A is a proper subset of B.
Mathematically, "x [x Î A Þ x Î B] and $y [y Î B and y ÏA]

• The cross (Cartesian) product of two sets A and B is denoted, A ´ B, and is
the set defined as follows: A ´ B = { (a,b) | a Î A and b Î B } . "(a,b)" is an
expression composed from elements, a,b, selected arbitrarily from sets A
and B, respectively. If A ¹ B, then A ´ B ¹ B ´ A.
Note: (a,b) is a sequence not a set. See next slide.

4/17/17 COT 4210 © UCF 16

Sequences
• While sets have no order and no repeated elements,

sequences have order and can contain repeats at
differing positions in the order.
– The set {5,2,5} = {5,2} = {2,5}
– The sequence (5,2,5) ¹ (2,5,5) ¹ (5,5,2) ¹ (5,2) ¹ (2,5)

• Actually, there is a notion of a multiset or bag that we
sometimes use. It has no order, but repeated elements
are allowed. Since position is irrelevant, we just record
each unique elements with a count.

• We can talk about the k-th element of a sequence, but
not of a set or multiset.

• Finite sequences are often called tuples. Those of length
k are k-tuples. A 2-tuple is also called a pair.

4/17/17 COT 4210 © UCF 17

Relations

• A relation, r, is a mapping from some set A to
some set B;
We write, r: A ® B, and we mean that r assigns to every

member of A a subset of B; that is, for every a Î A,
r(a) Í B and r(a) ¹ Ø.

A relation, r, can also be defined in terms of the cross
product of A and B:
r Í A ´ B such that for every a Î A there is at least one
b Î B such that (a, b) Î r.

• We say that a relation, r, from A to B is a partial relation if
and only if for some a Î A, r(a) = Ø = { }.

4/17/17 COT 4210 © UCF 18

More on Relations
• A predicate or property is a function with range {TRUE,

FALSE}
• A property with a domain of n-tuples An is an n-ary

relation
• Binary relations are common, and like binary functions,

we use infix notations for them
• Let R be a binary relation on A2. R is:

– Reflexive if " x Î a, x R x
– Symmetric if x R y ® y R x
– Transitive if (x R y, y R z) ® x R z
– An equivalence relation if it is reflexive, symmetric and transitive

4/17/17 COT 4210 © UCF 19

Functions
• Functions are special types of relations. Specifically, a relation

f: A® B, is said to be a (total) function from A to B if and only if,
for every a Î A, f(a) has exactly one element; that is, |f(a)| = 1.

• If f is a partial function from A to B, then f may not be defined for every a Î A.
In this case we write |f(a)| £ 1, for every a in A; note that |f(a)| = 0 if and only if
f(a) = Ø, and we say the function is undefined at a.
Note: Text calls the set of possible inputs a function’s domain. We will often
use domain for the set of input values on which f is defined, referring to the
input set as the universe of discourse. If a function is total (defined
everywhere) then there is no terminology difference.

• A function, f, is said to be one-to-one (1-1) if and only if x ¹ y implies
f(x) ¹ f(y). A total function that is one-to-one is sometimes called an injection.

• A function, f: A® B, is said to be onto if and only if for every y Î B there is an
x Î A such that y = f(x).
Note: technically we should write {y} = f(x), since functions are relations,
however, the more convenient and less baroque notation is used when
dealing with functions. Total functions that are onto are called surjections.
Ones that are 1-1 and onto are called bijections.

4/17/17 COT 4210 © UCF 20

Ordinal and Cardinal Numbers
Definition. Ordinal numbers are symbols used to designate relative

position in an ordered collection. The ordinals correspond to the
natural numbers: 0, 1, 2, … The set of all natural (ordinal) numbers
is denoted, N. (Note: Here we include 0 as a natural number.)

A fundamental concept in set theory is the size of a set, S. We begin
with a definition.

Definition. Let S be any set. We associate with S, the unique symbol
|S| called its cardinality. Symbols of this kind are called cardinal
numbers and denote the size of the set with which they are
associated.
|Ø| = 0 (the cardinal number defining the size of the empty set is
the ordinal, 0)
If S = {0, 1, 2, 3, …, n-1}, for some natural number n>0, then |S|=n.
To summarize, the cardinality of any finite set (including the empty
set) is simply the ordinal number that specifies the number of
elements in that set.

4/17/17 COT 4210 © UCF 21

More on Cardinality
To determine the relative size of two sets, we need the following

definitions:
Definition. If A and B are two sets, then |A| £ |B| if and only if there

exists an injection, f, from A to B; f is a 1-1 function from A into B.
Definition. If A and B are two sets, then |A| = |B| if and only if |A| £ |B|

and |B| £ |A|. We may also say that |A| = |B| if and only if there is a
bijection, f, from A to B; f is a 1-1 function from A onto B.

Definition. If A and B are two sets, then |A| < |B| if and only if |A| £ |B|
and |A| ¹ |B|.

Definition. A set S is said to be finite if and only if |S| Î N; otherwise, S
is said to be infinite. A set S is said to be countable if and only if S is
finite or |S| = | N |; otherwise S is said to be uncountable. We
discuss cardinality in more details later.

4/17/17 COT 4210 © UCF 22

Infinities
By the definitions above, there are many infinite

sets with which you are familiar.
For example:
N (the set of Natural numbers), Z (the set of
Integers), Z+ (the set of Positive Integers), Q (the
set of Rational numbers) and R (the set of Real
numbers).

But, are all these infinite sets the same size??
Brash statement: |N	| = |Z+| = |Z	| = |Q	| < |R	|.

4/17/17 COT 4210 © UCF 23

Power Set

4/17/17 COT 4210 © UCF 24

Definition. Let S be a set, then the power set of S, denoted
P(S) or 2S, is defined by
P(S) = { A | A Í S }.

Examples.
P(Ø) = {Ø},
P({1,2,3}) = {Ø, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}
P(N) = {Ø, {0}, {1}, {2}, {3}, …

, {0,1}, {0,2}, {0,3}, …
, {0,1,2}, …

… { N } }

Undirected Graphs
• An undirected Graph G is defined by a pair (V, E)
• V: Finite Set of Nodes/Vertices
• E: { <a,b> | a,b∈V are called Edges/Arcs}

– E⊆V×V such that <a,b>∈E implies <b,a>∈E
• Degree of node is number of edges at that node

(number of nodes it relates to)
• Graphs can be labeled, as we did above on the nodes,

or unlabeled.
• Labels can go on nodes, edges or both.

4/17/17 COT 4210 © UCF 25

More on Graphs
• A subgraph H of a graph G is a subset of the nodes of G with all

edges retained from G that involve node pairs in H.
• A path is a sequence of nodes connected by edges.
• A graph is connected if every two nodes are connected by a path.
• A cycle is a path that starts and ends in the same node.
• A simple cycle is a path that involves at least three nodes and

starts and ends in the same node. (excludes self loop)
• A tree is a graph that is connected and has no simple cycles.
• A tree may contain a special node called the root.
• The nodes of degree 1 in a tree, excepting the root, are called

leaves.
• The set of leaves of a tree are called the frontier.
• If the edges have direction then a graph is called directed
4/17/17 COT 4210 © UCF 26

Directed vs Undirected

• If directed, we differentiate in-degree
(edges into node) from out-degree
(edges out of node).

• Undirected Directed

4/17/17 COT 4210 © UCF 27

a ba b

Graph G = (V, E)

4/17/17 COT 4210 © UCF 28

Edges / Arcs

Nodes / VerticesUndirected

Directed

(,) (,)i j j iv v v v=

V: Finite Set of Nodes/Vertices
E: V×V ➝ V are Edges/Arcs

Tree has no simple cycles
and often has a root

Alphabets and Strings
• DEFINITION 1. An alphabet S is a finite, non-empty set

of abstract symbols.
• DEFINITION 2. S*, the set of all strings over the

alphabet, S, is given inductively as follows.
– Basis: l Î S* (the null string is denoted by l, it is the string of

length 0, that is |l| = 0) [text uses e but I avoid that as hate
saying e Î A; it’s really confusing when manually written]
"a Î S, a Î S* (the members of S are strings of length 1, |a| = 1)

– Induction rule: If x Î S*, and a Î S, then a×x Î S* and x×a Î S*.
Furthermore, l×x = x×l = x, and |a×x| = |x×a| = 1+ |x|.

– NOTE: “a×x” denotes “a concatenated to x” and is formed by
appending the symbol a to the left end of x. Similarly, x×a,
denotes appending a to the right end of x. In either case, if x is
the null string (l), then the resultant string is “a”.

– We could have skipped saying "a Î S, a Î S*, as this is covered
by the induction step.

4/17/17 COT 4210 © UCF 29

Languages
• DEFINITION 3. Let S be an alphabet. A language over S is a subset, L, of
S*.

• Example. Languages over the alphabet S = {a, b}.
– Ø (the empty set) is a language over S
– S* (the universal set) is a language over S
– {a, bb, aba } (a finite subset of S*) is a language over S.
– { abnam | n = m2, n, m ³ 0 } (infinite subset) is a language over S.

• DEFINITION 4. Let L and M be two languages over S. Then the
concatenation of L with M, denoted L×M is the set,
L×M = { x×y | x Î L and y Î M }
The concatenation of arbitrary strings x and y is defined inductively as
follows.
Basis: When |x| £ 1 or |y| £ 1, then x×y is defined as in Definition 2.
Inductive rule: when |x| > 1 and |y| > 1, then x = x × a for some a Î S and x’ Î S*,
where |x’| = |x|-1. Then x×y = x’×(a×y).

4/17/17 COT 4210 © UCF 30

Operations on Strings
• Let s, t be arbitrary strings over S

– s = a1 a2 … aj , j ³ 0, where each ai Î S
– t = b1 b2 … bk , k ³ 0, where each bi Î S

• length: |s| = j ; |t| = k
• concatenate: = s×t = st =

a1 a2 … aj b1 b2 … bk ; |st| = j+k
• power: sn = ss … s (n times) Note: s0 = l
• reverse: sR = aj aj-1 … a1
• substring: for s = a1 a2 … aj , any ap ap+1 … aq

where 1£p£q£j or l

4/17/17 COT 4210 © UCF 31

Properties of Languages
• Let L, M and N be languages over S, then:

– Ø×L = L×Ø = Ø
– {l}×L = L×{l} = L
– L×(M È N) = L×M È L×N and (M È N) ×L = M×L È N×L

• Concatenation does NOT distribute over intersection.
– L0 = {l} (definition)
– Ln+1 = LLn = LnL, n ³0. (definition)
– L+ = L1 È L2 È … Ln … (definition)
– L* = L0 È L1 È L2 È … Ln … (definition) = L0 È L+

– (L*)* = L*
– (LM)*L = L(ML)*
– (L* × M*)* = (L* È M*)* = (L È M)*
– (L0 È L1 È L2 È … Ln)L* = L*, for all n ³0.

4/17/17 COT 4210 © UCF 32

Recognizer and Generators
1. When we discuss languages and classes of languages, we differ between

recognizers and generators
2. A recognizer for a specific language is a program or computational model

that differentiates members from non-members of the given language
3. A portion of the job of a compiler is to check to see if an input is a legitimate

member of some specific programming language – we refer to this as a
syntactic recognizer

4. A generator for a specific language is a program that generates all and only
members of the given language

5. In general, it is not individual languages that interest us, but rather classes
of languages that are definable by some specific class of recognizers or
generators

6. One type of recognizer is called an automata and there are multiple classes
of such devices

7. One type of generator is called a grammar and there are multiple classes of
such devices

8. Our first journey will be through automata and grammars

4/17/17 COT 4210 © UCF 33

S
Subset of interest,

maybe with ordered
elements

UNIVERSE OF DISCOURSE
USUALLY STRINGS OR NATURAL NUMBERS

For some element,
x, is x in S?

DECISION PROBLEMS

Example 1: S is set of Primes and x is a natural number, is x in S (is x a prime)?
Example 2: S is an undirected graph (pairs for neighbors), is S 3-colorable?
Example 3: S is a program in C, is S syntactically correct?
Example 4: S is program in C, does S halt on all input?
Example 5: S a set of strings, is the language S Regular, Context-Free, … ?

Question: How many
subsets of Natural
Numbers are there?

UNIVERSE OF LANGUAGES

Non-RE

RE = Semi-Dec = Phrase-Structured

Recursive = Decidable

Context-Sensitive

Context-Free

DCFL

REGULAR
= Right
Linear

GRAMMARS
Type 0=Phrase-Structured

Type 1=Context-Sensitive

Type 2=Context-Free

LR(k)

Type 3=
Regular =

Right Linear

Deterministic CFG

REWRITING SYSTEMS

AUTOMATA
Recognizers that use State & Tape

Turing Machines (DTM = NDTM)

LBA (DLBA = NDLBA)

NPDA

DFA =
NDFA

DPDA

MODELS OF COMPUTATION

Of these models, only TMs can do general computation

Proofs

Terminology
• Definitions describe the mathematical objects and ideas

we want to work with
• Statements or assertions are things we say about

mathematics; they can be true or false
• Proofs are unassailable logical demonstrations that

statements are true
• Theorems are statements that have been proven true
• Lemmas are theorems that are not interesting on their

own but are useful for proving other theorems
• Corollaries are follow-on theorems that are easy to

prove once you prove their parent theorems
4/17/17 COT 4210 © UCF 39

Types of Proofs
• Direct Argument

– Use assertions from theorem
statement, known true properties
and valid rules of inference

• Construction
– Prove something exists by

showing how to make it
• Contradiction

– Prove something is true by
showing it can’t be false

– One specific kind of proof by
contradiction uses a technique
called diagonalization

• Weak Induction
– Show that a statement is true for

some base case (often 0 or 1)
– Show that if it’s true for the case of

some i ≥ base case it’s also true
for the case of i + 1

• Strong Induction
– Show that it’s true for for some

base case (often 0 or 1)
– Show that if it’s true for all cases

where ≤ i, where i ≥ base case, it’s
true for the case of i + 1

Sample Proof by Induction
Prove, if n is a positive whole number and n>4, then 2n≥ n2 . Hint: use
induction with a base of n=4.

Proof by Induction:
Base Case: n = 4: 24≥ 42 since 16 ≥ 16.
Induction Hypothesis: Assume 2k≥ k2, for some k ≥ 4.
Induction Step: Prove 2(k+1) ≥ (k+1)2

First, we observe that k2 ≥ 2k+1 when k ≥ 3.
Consider k=m+1, where k ≥ 3; and so m ≥ 2
k2 = (m+1)2 = m2 + 2m+1 ≥ 4 + 2m+1 > 2m+3 = 2(m+1) + 1 = 2k+1.

Using this,
2(k+1) = 2k * 2 = 2k+2k ≥ k2 + k2 ≥ k2 + 2k + 1 = (k+1)2

QED

4/17/17 COT 4210 © UCF 41

Sample Proof by Contradiction
Prove, if p and q are distinct prime numbers, then Ö(p/q) is irrational.
Assume Ö(p/q) is rational where p and q are distinct primes. Let a/b be
the reduced fraction (no common prime factors) that equals Ö(p/q).

Ö(p/q) = a/b : assumption (note a≠b, as p≠q)
p/q = a2/b2 : square both sides
p = a2 and q = b2 : since p and q have no common prime

factors, and a and b have no
common prime factors.

But this is not possible because p and q are prime numbers and so
cannot have multiple factors (e.g., a×a, in the case of p). This
contradicts our original assumption that Ö(p/q) is rational, so it must be
irrational. QED

4/17/17 COT 4210 © UCF 42

Practice Problems
Practice
1. Prove or disprove that, for sets A and B,

A=B if and only if (A Ç ~ B) È (A Ç B) = A.
2. Prove that, for Boolean (T/F) variables P and Q,

((P Þ Q) Þ Q) Û (P Ú Q)
Ú is logical or; Þ is logical implication; Û is logical equivalence

3. Prove: If S is any finite set with |S| = n, then
|S´S´S | ≤ |P(S)|, for all n³N, where N is some constant, the minimum value of
which you must discover and use as the basis for your proof.

4. Let L be a language over {a,b} where every string is of even length and is of the
form WX, where |W|=|X| but W≠X. Design and present an algorithm that recognized
strings in L using no unbounded amount of storage (no stacks, no queues). This
means that any memory required must be of a fixed size independent of the length
of an input string. Note: You cannot play the game of using unbounded recursion,
as each call consumes stack space.

5. Show that, for any language L, if L has finite cardinality and contains some string of
length > 0, then there cannot exist an N>1 such that LN = LN+1.

4/17/17 COT 4210 © UCF 43

Assignment # 2
Assignment
1. Prove, if p and q are distinct prime numbers, then √(p/q) is

irrational.

2. Present a language L over S that has the following properties:
L ≠ L2

L2 = L3

Note: Lk = { x1x2…xk | x1,x2,…,xk Î L }. This is basically a giveaway,
since I showed exactly how to do it.

Due Thursday, January 19 at 10:30AM (use Webcourses to turn in)

4/17/17 COT 4210 © UCF 44

Computability and
Complexity

The study of what can/cannot be done
via purely mechanical means; and

The study of really hard but
computable problems

4/17/17 COT 4210 © UCF 46

Goals of Computability
• Provide precise characterizations (computational

models) of the class of effective procedures / algorithms.
• Study the boundaries between complete and incomplete

models of computation.
• Study the properties of classes of solvable and

unsolvable problems.
• Solve or prove unsolvable open problems.
• Determine reducibility and equivalence relations among

unsolvable problems.
• Our added goal is to apply these techniques and results

across multiple areas of Computer Science.

46

4/17/17 COT 4210 © UCF 47

Hilbert, Russell and Whitehead
• Late 1800’s to early 1900’s
• Russell and Whitehead: Principia Mathematica

– Developed and catalogued axiomatic schemes
• Axioms plus sound rules of inference
• Much of focus on number theory

• Hilbert
– Felt all mathematics could be developed within a formal system

that allowed the mechanical creation and checking of proofs
– Even posed 23 problems, the solutions to which he felt were

critical to understanding how to attack hard problems
• Post

– Devised truth tables as an algorithmic approach to checking
Boolean propositions for tautologies and satisfiability

47

4/17/17 COT 4210 © UCF 48

Gödel
• In 1931 Gödel showed that any first order theory

that embeds elementary arithmetic is either
incomplete or inconsistent.

• Gödel also developed the general notion of
recursive functions but made no claims about
their strength.
– We will look at the formal description of recursive

functions later

48

4/17/17 COT 4210 © UCF 49

Turing (Post, Church, Kleene)
• In 1936, each presented a formalism for computability.

– Turing and Post devised abstract machines and
claimed these represented all mechanically
computable functions.

– Church developed the notion of lambda-computability
from recursive functions (as previously defined by
Gödel and Kleene) and claimed completeness for this
model. Lambda calculus gave birth to Lisp.

• Kleene demonstrated the computational equivalence of
recursively defined functions to Post-Turing machines.

• Post later showed computability could also be described
by forms of symbolic rewriting systems.

49

RE Co-RE
R
E
C

UNIVERSE OF SETS

NRNC

NonRE = (NRNC ∪ Co-RE) - REC

RE-
Complete

Complexity vs ..
• Complexity seeks to categorize problems

as easy (polynomial) or hard (exponential
or even worse). Some parts focus on time;
others on space.

• Computability seeks to categorize problem
as algorithmically solvable or not.

• Algorithm Design & Analysis tries to find
the most efficient algorithms to solve
problems.

4/17/17 COT 4210 © UCF 51

P and NP
• P is the set (class) of problems solvable in

polynomial time using a computer with a
fixed number of processors.

• NP is the set of problems solvable in
polynomial time using a finite but
unbounded number of processors.

• Note: P vs NP also means deterministic
versus non-deterministic polynomial time.

• Big question: Is P = NP?
4/17/17 COT 4210 © UCF 52

NP Co-NP

UNIVERSE OF SETS

PNP-
Complete

Regular Languages

Includes and Expands on
Chapter 1 of Sipser

4/17/17 COT 4210 © UCF 55

Regular Languages # 1
• Finite Automata
• Moore and Mealy models: Automata with output.
• Regular operations
• Non-determinism: Its use. Conversion to

deterministic FSAs. Formal proof of equivalence.
• Lambda moves: Lambda closure of a state
• Regular expressions
• Equivalence of REs and FSAs.
• Pumping Lemma: Proof and applications.

55

4/17/17 COT 4210 © UCF 56

Regular Languages # 2
• Regular equations: REQs and FSAs.
• Myhill-Nerode Theorem: Right invariant

equivalence relations. Specific relation for a
language L. Proof and applications.

• Minimization: Why it's unique. Process of
minimization. Analysis of cost of different
approaches.

• Regular (right linear) grammars, regular
languages and their equivalence to FSA
languages.

56

4/17/17 COT 4210 © UCF 57

Regular Languages # 3
• Closure properties: Union, concatenation,

Kleene *, complement, intersection, set
difference, reversal, substitution, homomorphism
and quotient with regular sets, Prefix, Suffix,
Substring, Exterior.

• Algorithms for reachable states and states that
can reach some other chosen states.

• Decision properties: Emptiness, finiteness,
equivalence.

57

Concrete Model of FSA

4/17/17 COT 4210 © UCF 58

x1 x2 x3 … Xn-1 xn

L is a finite state (regular) language over finite alphabet S
Each xi is a character in S
w = x1 x2 … xn is a string to be tested for membership in L

• Arrow above represents read head that starts on left.
• q0∈ Q (finite state set) is initial state of machine.
• Only action at each step is to change state based on

character being read and current state. State change is
determined by a transition function d: Q × S ➝ Q.

• Once state is changed, read head moves right.
• Machine stops when head passes last input character.
• Machine accepts string as member of L if it ends up in

a state from Final State set F ⊆ Q.

q0

Finite State Automata
• An deterministic finite state automaton (DFA) A is

defined by a 5-tuple
A = (Q,Σ,δ,q0,F), where
– Q is a finite set of symbols called the states of A
– Σ is a finite set of symbols called the alphabet of A
– δ is a function from Q×Σ into Q (δ: Q×Σ → Q) called

the transition function of A
– q0∈Q is a unique element of Q called the start state
– F is a subset of Q (F ⊆ Q) called the final states (can

be empty)

4/17/17 COT 4210 © UCF 59

DFA Transitions
• Given a DFA, A = (Q,Σ,δ,q0,F), we can definition the

reflexive transitive closure of δ, δ*:Q×Σ* → Q, by
– δ*(q,l) = q where l is the string of length 0

• Note that text uses ∊ rather than l as symbol for string of length zero

– δ*(q,ax) = δ*(δ(q,a),x), where a ∈ Σ and x ∈ Σ*
– Note that this means

δ*(q,a) = δ(q,a), where a ∈ Σ as a = al
• We also define the transitive closure of δ, δ+, by

– δ+(q,w) = δ*(q,w) when |w|>0 or, equivalently, w ∈ Σ+

• The function δ* describes every step of computation by
the automaton starting in some state until it runs out of
characters to read

4/17/17 COT 4210 © UCF 60

Regular Languages and DFAs
• Given a DFA, A = (Q,Σ,δ,q0,F), we can define the

language accepted by A as those strings that cause it to
end up in a final state once it has consumed the entire
string

• Formally, the language accepted by A is
– { w | δ*(q0,w) ∈ F }

• We generally refer to this language as L(A)
• We define the notion of a Regular Language by saying

that a language is Regular if and only if it is accepted
(recognized) by some DFA

4/17/17 COT 4210 © UCF 61

State Diagram
• A finite state automaton can be described by a

state diagram, where
– Each state is represented by a node labelled with that

state, e.g., q
– The state state has an arc entering it with no source,

e.g., q0

– Each transition δ(q,a) = s is represented by a directed
arc from node q to node s that is labelled with the
letter a, e.g., q a s

– Each final state has an extra circle around its node,
e.g., f

4/17/17 COT 4210 © UCF 62

Sample DFAs # 1

4/17/17 COT 4210 © UCF 63

E O
1

1

0 0

A = ({E,O}, {0,1}, d, E, {O}), where d is defined by above diagram.
L(A) = { w | w is a binary string of odd parity }

A

A’ = ({C,NC,X}, {00,01,10,11}, d’, C, {NC}), where d’ is defined by above diagram.
L(A’) = { w | w is a pair of binary strings where the bottom string is the 2’s
complement of the top one, both read least (lsb) to most significant bit (msb) }

C NC01

10 01,10

A’

00,11

X

S

00,11

Sample DFAs # 2

4/17/17 COT 4210 © UCF 64

A” = ({0,1,2}, {0,1}, d, 0, {2}), where d” is defined by above diagram.
L(A”) = { w | w is a binary string of length at least 1 being read left to right
(msb to lsb) that, when interpreted as a decimal number divided by 3, has a
remainder of 2 }

0 1
1

0

A” 2

1

00
01

State Transition Table
• A finite state automaton can be described by a state

transition table with |Q| rows and |Σ| columns
• Rows are labelled with state names and columns with

input letters
• The start state has some indicator, e.g., a greater than

sign (>q) and each final state has some indicator, e.g.,
an underscore (f)

• The entry in row q, column a, contains δ(q,a)
• In general we will use state diagrams, but transition

tables are useful in some cases (state minimization)

4/17/17 COT 4210 © UCF 65

FSAs and Applications
• A synchronous sequential circuit has

– Binary input lines (input admitted at clock tick)
– Binary output lines (simple case is one line)

• 1 accepts; 0 rejects input
– Internal flip flops (memory) that define state
– Simple combinatorial circuits (and, or, not) that combine current state

and input to alter state
– Simple combinatorial circuits (and, or, not) that use state to determine

output

• Think about FSA to recognize the string PAPAPAT
appearing somewhere in a corpus of text, say with a
substring PAPAPAPATRICK

• Comments about GREP
4/17/17 COT 4210 © UCF 66

DFA Closure
• Regular languages (those recognized by DFAs) are closed

under complement, union, intersection, difference and
exclusive or (⊕) and many other set operations

• Let A1 = (Q1,Σ,δ1,q0,F1), A2 = (Q2,Σ,δ2,s0,F2) be arbitrary DFAs
• Σ*-L(A1) is recognized by A1

C = (Q1,Σ,δ1,q0,Q1-F1)
• Define A3 = (Q1×Q2,Σ,δ3,<q0,s0>,F3) where

δ3(<q,s>,a)= <δ1(q,a),δ2(s,a)>, qÎQ1, sÎQ2, aÎΣ
– L(A1)∪L(A2) is recognized when F3=(F1×Q2)∪(F1×Q2)
– L(A1)∩L(A2) is recognized when F3=F1×F2

– L(A1) - L(A2) is recognized when F3=F1×(Q2-F2)
– L(A1) ⊕ L(A2) is recognized when F3=F1×(Q2-F2)∪(Q1-F1)×F2

4/17/17 COT 4210 © UCF 67

Complement of Regular Sets
• Let A = (Q,Σ,δ,q0,F)
• Simply create new automaton

AC = (Q,Σ,δ,q0,Q-F)
• L(AC) = { w | δ*(q0,w) ∊ Q-F } =

{ w | δ*(q0,w) ∉ F } =
{ w | w ∉ L(A) }

• Again, imagine trying to do this in the context of regular
expressions

• Choosing the right representation can make a very big
difference in how easy or hard it is to prove some
property is true

4/17/17 COT 4210 © UCF 68

Parallelizing DFAs
• Regular sets can be shown closed under many binary operations

using the notion of parallel machine simulation
• Let A1 = (Q1,Σ,δ1,q0,F1) and A2 = (Q2,Σ,δ2,s0,F2) where

Q1∩Q2 = Ø
• B = (Q1×Q2,Σ,δ3,<q0,s0>,F3) where

δ3(<q,s>,a) = < δ1(q,a), δ2(s,a) >
• Union is F3 = F1×Q2∪ Q1×F2

• Intersection is F3 = F1×F2
– Can do by combining union and complement

• Difference is F3 = F1×(Q2 – F2)
– Can do by combining intersection and complement

• Exclusive Or is F3=F1×(Q2-F2)∪(Q1-F1)×F2

4/17/17 COT 4210 © UCF 69

Non-determinism NFA
• A non-deterministic finite state automaton (NFA) A is defined by a 5-tuple

A = (Q,Σ,δ,q0,F), where
– Q is a finite set of symbols called the states of A
– Σ is a finite set of symbols called the alphabet of A
– δ is a function from Q×Σe into P(Q) = 2Q ; Note: Σe = (Σ∪{l})

(δ: Q× Σe → P(Q)) called the transition function of A; by definition q ∈
δ(q,l)

– q0∈Q is a unique element of Q called the start state
– F is a subset of Q (F ⊆ Q) called the final states
– Note that a state/input (called a discriminant) can lead nowhere new, one place

or many places in an NDA; moreover, an NDA can jump between states even
without reading any input symbol

– For simplicity, we often extend the definition of δ: Q× Σe to a variant that
handles sets of states, where δ: P(Q)× Σe is defined as
δ(S,a) = ∪q∈S δ(q,a), where a ∈ Σe – if S=Ø, ∪q∈S δ(q,a) =Ø

4/17/17 COT 4210 © UCF 70

NFA Transitions
• Given an NFA, A = (Q,Σ,δ,q0,F), we can define the

reflexive transitive closure of δ, δ*:P(Q)×Σ* → P(Q), by
– l-Closure(S) = { t | t ∊ δ*(S,l)}, S ∈ P(Q) – extended δ
– δ*(S,l) = l-Closure(S)
– δ*(S,ax) = δ*(l-Closure(δ(S,a),x)), where a ∈ Σ and x ∈ Σ*

• Note that δ*(S,ax) = ∪q∈S∪p∈l-Closure(δ(q,a)) δ*(p,x), where a ∈ Σ and x ∈ Σ*

• We also define the transitive closure of δ, δ+, by
– δ+(S,w) = δ*(S,w) when |w|>0 or, equivalently, w ∈ Σ+

• The function δ* describes every “possible” step of
computation by the non-deterministic automaton starting
in some state until it runs out of characters to read

4/17/17 COT 4210 © UCF 71

NFA Languages
• Given an NFA, A = (Q,Σ,δ,q0,F), we can define the

language accepted by A as those strings that allow it to
end up in a final state once it has consumed the entire
string – here we just mean that there is some accepting
path

• Formally, the language accepted by A is
– { w | (δ*(l-Closure({q0}),w) ∩ F) ≠ Ø }

• Notice that we accept if there is any set of choices of
transitions that lead to a final state

4/17/17 COT 4210 © UCF 72

Finite State Diagram
• A non-deterministic finite state automaton can

be described by a finite state diagram, except
– We now can have transitions labelled with l
– The same letter can appear on multiple arcs from a

state q to multiple distinct destination states

4/17/17 COT 4210 © UCF 73

Sample NFAs
• Done in class

4/17/17 COT 4210 © UCF 74

Equivalence of DFA and NFA
• Clearly every DFA is an NFA except that

δ(q,a) = s becomes δ(q,a) = {s}, so any
language accepted by a DFA can be
accepted by an NFA.

• The challenge is to show every language
accepted by an NFA is accepted by an
equivalent DFA. That is, if A is an NFA,
then we can construct a DFA A’, such that
L(A’) = L(A).

4/17/17 COT 4210 © UCF 75

Constructing DFA from NFA
• Let A = (Q,Σ,δ,q0,F) be an arbitrary NFA
• Let S be an arbitrary subset of Q.

– Construct the sequence seq(S) to be a sequence that contains
all elements of S in lexicographical order, using angle brackets
to . That is, if S={q1, q3, q2} then seq(S)=<q1,q2,q3>. If S=Ø
then seq(S)=<>

• Our goal is to create a DFA, A’, whose state set contains
seq(S), whenever there is some w such that S=δ*(q0,w)

• To make our life easier, we will act as if the states of A’
are sets, knowing that we really are talking about
corresponding sequences

4/17/17 COT 4210 © UCF 76

l-Closure
• Define the l-Closure of a state q as the set of states one can arrive

at from q, without reading any additional input.
• Formally l-Closure(q) = { t | t ∊ δ*(q,l) }
• We can extend this to S ∈ P(Q) by

l-Closure(S) = { t | t ∊ δ*(q,l), q ∈ S } = { t | t ∊ l-Closure(q),q ∈ S}

4/17/17 COT 4210 © UCF 77

A B C D E
1 l

0

1

0,1

λ

0

1

A:

State A B C D E

l-closure { A } { B , C } { C } { D, E } { E }

Details of DFA
• Let A = (Q,Σ,δ,q0,F) be an arbitrary NFA
• In an abstract sense,

A’ = (<P(Q)>,Σ,δ’, <l-Closure({q0})>, F’),
but we really don’t need so many states (2|Q|) and we
can iteratively determine those needed by starting at l-
Closure({q0}) and keeping only states reachable from
here

• Define δ’(<S>,a) = <l-Closure(δ(S,a))> =
<∪q∈S l-Closure(δ(q,a)) >, where a∈Σ, S ∈ P(Q)

• F’ = {<S> ∈ <P(Q)> | (S ∩ F) ≠ Ø }

4/17/17 COT 4210 © UCF 78

Regular Languages and NFAs
• Showing that every NFA can be simulated by a DFA that

accepts the same language proves the following
• A language is Regular if and only if it is accepted

(recognized) by some NFA

4/17/17 COT 4210 © UCF 79

Convert from NFA to DFA

4/17/17 COT 4210 © UCF 80

Lexical Analysis
• Consider distinguishing variable names

from keywords like IF, THEN, ELSE, etc.
• This really screams for non-determinism
• Non deterministic automata typically have

fewer states
• However, non-deterministic FSA

interpretation is not as fast as deterministic

4/17/17 COT 4210 © UCF 81

4/17/17

Practice Problems
Practice
1. Using DFA’s (not any equivalent notation) show that the

Regular Languages are closed under Min, where
Min(L) = { w | w Î L, but no proper prefix of w is in L}..
This means that w Î Min(L) iff w Î L and for no y≠λ is x
in L, where w=xy. Said a third way, w is not an extension
of any element in L.

2. a.) Present a transition diagram for an NFA for the
language associated with the regular expression
(1011 + 111 + 101)*.

b.) Use the standard conversion technique (subsets of
states) to convert the NFA from (a) to an equivalent
DFA. Be sure to not include unreachable states.

COT 4210 © UCF 8282COT 4210 © UCF

4/17/17

Assignment # 3
Assignment
1. Present a transition diagram for a DFA that recognizes the set of binary

strings that starts with a 1 and, when interpreted as entering the DFA least
to most significant digit, each represents a binary number that is divisible by
six. Thus, 110, 1100 and 1000010 are in the language, but 101, 1001 and
11001 are not.

2. a.) Present a transition diagram for an NFA for the language associated with
the regular expression (000 + 010 + 01)*. Your NFA must have no more
than four states.
b.) Use the standard conversion technique (subsets of states) to convert the
NFA from (a) to an equivalent DFA. Be sure to not include unreachable
states. Hint: This DFA should have no more than six states.

3. Using DFA’s (not any equivalent notation) show that the Regular Languages
are closed under Max, where
Max(L) = { w | w Î L, w is not the proper prefix of any other string in L}.

I solved #3 later in Notes

Due: Thursday, January 26, 10:30 (use Webcourses to turn in)

COT 4210 © UCF 8383COT 4210 © UCF

Regular Expressions
• Primitive:

– Φ denotes {}
– λ denotes {λ}
– a where a is in Σ denotes {a}

• Closure:
– If R and S are regular expressions then so are R ・ S, R + S and

R*, where
• R ・ S denotes RS = { xy | x is in R and y is in S }
• R + S denotes RÈS = { x | x is in R or x is in S }
• R* denotes R*

• Parentheses are used as needed

4/17/17 COT 4210 © UCF 84

Regular Sets =
Regular Languages

• Show every regular expression denotes a
language recognized by a finite state
automaton (can do deterministic or non-
deterministic)

• Show every Finite State Automata
recognizes a language denoted by a
regular expression

4/17/17 COT 4210 © UCF 85

Every Regular Set is a
Regular Language

• Primitive:
– Φ denotes {}
– λ denotes {λ}
– a where a is in Σ denotes {a}

• Closure: (Assume that R’s and S’s states do not overlap)
– R ・ S start with machine for R, add l transitions from

every final state of R’s recognizer to start state of S,
making final state of S final states of new machine

– R + S create new start state and add l transitions from new
state to start states of each of R and S, making union
of R’s and S’s final states the new final states

– R* add l transitions from each final state of R back to its start
state, keeping original start and final states (gets R+) – FIX?

4/17/17 COT 4210 © UCF 86

λ

aa

Every Regular Language is a
Regular Set Using Rij

k

• This is a challenge that can be addressed in multiple ways but
I like to start with the Rij

k approach. Here’s how it works.
• Let A = (Q,Σ,δ,q1,F) be a DFA, where Q = {q1,q2, … , qn}
• Rij

k = {w | δ*(qi,w) = qj, and no intermediate state visited
between qi and qj, while reading w, has index > k

• Basis: k=0, Rij
0 = { a | δ(qi,a) = qj } sets are either Φ, λ, or an

element of Σ or λ + element of Σ, and so are regular sets
• Inductive hypothesis: Assume Rij

m are regular sets for
0 ≤ m ≤ k

• Inductive step: k+1, Rij
k+1 = (Rij

k + Rik+1
k ・ (Rk+1k+1

k)* ・ Rk+1j
k)

• L(A) = +f∈F R1f
n

4/17/17 COT 4210 © UCF 87

Convert to RE

4/17/17 COT 4210 © UCF 88

q2 q3q1

0

11

0, 1

0 1

q2 q3q1

0

1
1

0, 1

0 1

• R11
0= l R12

0= 0 R13
0= f

• R21
0= 0 R22

0= l + 1 R23
0= 0 + 1

• R31
0= f R32

0= 1 R33
0= l + 1

• R11
1= l R12

1= 0 R13
1= f

• R21
1= 0 R22

1= l + 1 + 00 R23
1= 0 + 1

• R31
1 = f R32

1= 1 R33
1= l + 1

• R11
2= l + 01*0 R12

2= 0(1+00)* R13
2= 0(1+00)*(0+1)

• R21
2= (1+00)*0 R22

2= (1+00)* R23
2= (1+00)*(0+1)

• R31
2= 1(1+00)*0 R32

2= 1(1+00)* R33
2= l+1+1(1+00)*(0+1)

• L = R12
3=

0(1+00)* + 0(1+00)*(0+1) (1+1(1+00)*(0+1))* 1(1+00)*

4/17/17 COT 4210 © UCF 89

State Ripping Concept
• This is similar to generalized automata approach but with fewer arcs

than text. It actually gets some of its motivation from Rij
k approach

as well
• Add a new start state and add a l–transition to existing start state
• Add a new final state qf and insert l–transitions from all existing final

states to the new one; make the old final states non-final
• Leaving the start and final states, successively pick states to remove
• For each state to be removed, change the arcs of every pair of

externally entering and exiting arcs to reflect the regular expression
that describes all strings that could result is such a double transition;
be sure to account for loops in the state being removed. Also, or (+)
together expressions that have the same start and end nodes

• When have just start and final, the regular expression that leads
from start to final describes the associated regular set

4/17/17 COT 4210 © UCF 90

State Ripping Details
• Let B be the node to be removed
• Let e1 be the regular expression on the arc from some node A to some

node B (A≠B); e2 be the expression from B back to B (or l if there is no
recursive arc); e3 be the expression on the arc from B to some other node
C (C ≠B but C could be A); e4 be the expression from A to C

• Erase the existing arcs from A to B and A to C, adding a new arc from A to
C labelled with the expression
e4 + e1 e2* e3

• Do this for all nodes that have edges to B until B has no more entering
edges; at this point remove B and any edges it has to other nodes and itself

• Iterate until all but the start and final nodes remain
• The expression from start to final describes regular set that is equivalent to

regular language accepted by original automaton
• Note: Your choices of the order of removal make a big difference in how

hard or easy this is

4/17/17 COT 4210 © UCF 91

Use Ripping; Rip q3

4/17/17 COT 4210 © UCF 92

q2 q3q1

0

11

0+1

0 1

qf

l
l

q0

q2q1

0

0 1+(0+1)1+

qf

l
l

q0

Use Ripping; Rip q1

4/17/17 COT 4210 © UCF 93

q2q1

0

0 1+(0+1)1+

qf

l
l

q0

q2
0

1+(0+1)1++00

qf

l

q0

Use Ripping; Rip q2

4/17/17 COT 4210 © UCF 94

q2
0

1+(0+1)1++00

qf

l

q0

0 (1+(0+1)1++00)*
qf

l

q0

L = 0 (1+(0+1)1++00)* = 0 (1+(0+1)1++00)*

Regular Equations
• Assume that R, Q and P are sets such that P

does not contain the string of length zero, and R
is defined by

• R = Q + RP
• We wish to show that
• R = QP*

4/17/17 COT 4210 © UCF 95

Show QP* is a Solution
• We first show that QP* is contained in R. By

definition, R = Q + RP.
• To see if QP* is a solution, we insert it as the

value of R in Q + RP and see if the equation
balances

• R = Q + QP*P = Q(λ+P*P) = QP*
• Hence QP* is a solution, but not necessarily the

only solution.

4/17/17 COT 4210 © UCF 96

Uniqueness of Solution
• To prove uniqueness, we show that R is contained in QP*.
• By definition, R = Q+RP = Q+(Q+RP)P
• = Q+QP+RP2 = Q+QP+(Q+RP)P2

• = Q+QP+QP2+RP3

• ...
• = Q(λ+P+P2+ ... +Pi)+RPi+1, for all i>=0
• Choose any w in R, where |W| = k. Then, from above,
• R = Q(λ+P+P2+ ... +Pk)+RPk+1

• but, since P does not contain the string of length zero, w is not in
RPk+1. But then w is in

• Q(λ+P+P2+ ... +Pk) and hence w is in QP*.

4/17/17 COT 4210 © UCF 97

Example
• We use the above to solve simultaneous regular equations.

For example, we can associate regular expressions with finite
state automata as follows

• Hence,
• For A, Q=l+B1; P=0

A = QP* = (l+B1)0*
= B10* + 0*

• B = B10*1 + B0 + 0*1
For B, Q=0*1; P= B10*1 + B0 = B(10*1 + 0)

• and therefore
• B = 0*1(10*1 + 0)*
• Note: This technique fails if there are lambda transitions.
4/17/17 COT 4210 © UCF 98

Using Regular Equations

4/17/17 COT 4210 © UCF 99

B CA

0

11

0, 1

0 1

A = l + B0
B = A0 + C1 + B1
C = B(0+1) + C1; C = B(0+1)1*
B = 0 + B00 + B(0+1)1+ + B1
B = 0 + B (00+(0+1) 1+ + 1); B = 0(00 +(0+1)1+ + 1)*

This is same form as with state ripping. It won’t always be so.

State Minimization
• Text makes it an assignment on Page 299 in Edition 2.
• This is too important to defer, IMHO.
• First step is to remove any state that is unreachable from the start

state; a depth first search rooted at start state will identify all
reachable states

• One seeks to merge compatible states – states q and s are
compatible if, for all strings x, δ*(q,x) and δ*(s,x) are either both an
accepting or both rejecting states

• One approach is to discover incompatible states – states q and s are
incompatible if there exists a string x such that one of δ*(q,x) and
δ*(s,x) is an accepting state and the other is not

• There are many ways to approach this but my favorite is to do
incompatible states via an n by n lower triangular matrix

4/17/17 COT 4210 © UCF 100

Sample Minimization
• This uses a transition

table
• Just an X denotes

Immediately incompatible
• Pairs are dependencies

for compatibility
• If a dependent is

incompatible, so are pairs
that depend on it

• When done, any not x--ed
out are compatible

• Here, new states are
<1,3>, <2,4,5>, <6>;
<1,3> is start and not
accept; others are accept

• Write new diagram

4/17/17 COT 4210 © UCF 101

Practice NFAs
• Write NFAs for each of the following

– (111 + 000)+

– (0+1)* 101 (0+1)+

– (1 (0+1)* 0) + (0 (0+1)* 1)
• Convert each NFA you just created to an

equivalent DFA.

4/17/17 COT 4210 © UCF 102

DFAs to REs
• For each of the DFAs you created for the

previous page, use ripping of states and
then regular equations to compute the
associated regular expression. Note: You
obviously ought to get expressions that
are equivalent to the initial expressions.

4/17/17 COT 4210 © UCF 103

Myhill-Nerode Theorem
The following are equivalent:
1. L is accepted by some DFA
2. L is the union of some of the classes of a right invariant

equivalence relation, R, of finite index.
3. The specific right invariance equivalence relation

RL where x RL y iff "z [xz Î L iff yz Î L]
has finite index

Definition. R is a right invariant equivalence relation iff R is
an equivalence relation and "z [x R y implies xz R yz].
Note: This is only meaningful for relations over strings.

4/17/17 COT 4210 © UCF 104

Myhill-Nerode 1 ⇒ 2
1. Assume L is accepted by some DFA, A = (Q,Σ,δ,q1,F)
2. Define RA by x RA y iff δ*(q1,x) = δ*(q1,y). First, RA is

defined by equality and so is obviously an equivalence
relation (Clearly if δ*(q1,x) = δ*(q1,y) then "z δ*(q1,xz) =
δ*(q1,yz) because A is deterministic. Moreover if "z
δ*(q1,xz) = δ*(q1,yz) then δ*(q1,x) = δ*(q1,y), just by
letting z = l. Putting it together x RA y L iff "z xz RA yz.
Thus, RA is right invariant; its index is |Q| which is finite;
and L(A) = ∪δ*(x)∊F[x]RA, where [x]RA refers to the
equivalence class containing the string x.

4/17/17 COT 4210 © UCF 105

Myhill-Nerode 2 ⇒ 3
2. Assume L is the union of some of the classes of a right

invariant equivalence relation, R, of finite index.
3. Since x R y iff "z [xz R yz], R is right invariant and L is

the union of some of the equivalence classes, then
x R y ⇒ "z [xz Î L iff yz Î L] ⇒ x RL y.
This means that the index of RL is less than or equal to
that of R and so is finite. Note than the index of RL is
then less than or equal to that of any other right
invariant equivalence relation, R, of finite index that
defines L.

4/17/17 COT 4210 © UCF 106

Myhill-Nerode 3 ⇒ 1
3. Assume the specific right invariance equivalence

relation RL where x RL y iff "z [xz Î L iff yz Î L]
has finite index

1. Define the automaton A = (Q,Σ,δ,q1,F) by
Q = { [x]RL | x ∈ Σ* }
δ([x]RL,a) = [xa]RL
q1 = [l]
F = { [x]RL | x ∈ L }

Note: This is the minimum state automaton and all
others are either equivalent or have redundant
indistinguishable states

4/17/17 COT 4210 © UCF 107

Use of Myhill-Nerode
• L = {anbn | n>0 } is NOT regular.
• Assume otherwise.
• M-N says that the specific r.i. equiv. relation RL has finite

index, where x RL y iff "z [xz Î L iff yz Î L].
• Consider the equivalence classes [aib] and [ajb], where

i,j>0 and i ≠ j.
• aibbi-1 Î L but ajbbi-1 Ï L and so [aib] is not related to

[ajb] under RL and thus [aib] ≠ [ajb].
• This means that RL has infinite index.
• Therefore L is not regular.

4/17/17 COT 4210 © UCF 108

xwx is not Regular (MN)
• L = { x a x | x∈{a,b}+} :
• We consider the right invariant equivalence class [ajb].
• It’s clear that ajbaajb is in the language, but ajbaakb is

not when k < j.
• This shows that there is a separate equivalence class,

[ajb], induced by RL, for each j>0. Thus, the index of RL is
infinite and Myhill-Nerode states that L cannot be
Regular.

4/17/17 COT 4210 © UCF 109

aFib(k) is not Regular (MN)
• L = {aFib(k) | k>0} :
• We consider the collection of right invariant equivalence

classes [aFib(j)], j > 2.
• It’s clear that aFib(j)aFib(j+1) is in the language, but

aFib(k)aFib(j+1) is not when k>2 and k≠j and k≠j+2
• This shows that there is a separate equivalence class

[aFib(j)] induced by RL, for each j > 2.
• Thus, the index of RL is infinite and Myhill-Nerode states

that L cannot be Regular.

4/17/17 COT 4210 © UCF 110

Myhill-Nerode and
Minimization

• Corollary: The minimum state DFA for a
regular language, L, is formed from the
specific right invariance equivalence
relation RL where
x RL y iff "z [xz Î L iff yz Î L]

• Moreover, all minimum state machines
have the same structure as the above,
except perhaps for the names of states

4/17/17 COT 4210 © UCF 111

What is Regular So Far?
• Any language accepted by a DFA
• Any language accepted by an NFA
• Any language specified by a Regular

Expression
• Any language representing the unique

solution to a set of properly constrained
regular equations

4/17/17 COT 4210 © UCF 112

What is NOT Regular?
• Well, anything for which you cannot write

an accepting DFA or NFA, or a defining
regular expression, or a right/left linear
grammar, or a set of regular equations, but
that’s not a very useful statement

• There are two tools we have:
– Pumping Lemma for Regular Lnaguges
– Myhill-Nerode Theorem

4/17/17 COT 4210 © UCF 113

4/17/17

Assignment # 4.1,2

COT 4210 © UCF 114114COT 4210 © UCF

1. Convert the following NFA to an equivalent DFA.

2. Convert the DFA you developed in #1 to a regular expression, first
by using either the GNFA (or state ripping) or Rij

k approach, and
then by using regular equations. You must show all steps in each
part of this solution.

Due: Thursday, February 2, 10:30AM (Use Webcourses to turn in)

AA:

0,1 1 0
0 0

1

B C

4/17/17

Assignment # 4.3

COT 4210 © UCF 115115COT 4210 © UCF

3. Minimize the number of states in the following DFA, showing the
determination of incompatible states (table on right).

Construct and write down your new, equivalent automaton!!
Due: Thursday, February 2, 10:30AM (use Webcourses to turn in)

a b c

>1 2 3 6 2

2 5 2 1 3

3 2 4 5 4

4 5 4 1 5

5 5 2 4 6

6 5 4 2 >1 2 3 4 5

Reversal of Regular Sets
• It is easier to do this with regular sets than with DFAs
• Let E be some arbitrary expression; ER is formed by

– Primitives: ØR=Ø λR=λ aR=a
– Closure:

• (A ・ B)R = (BR ・ AR)
• (A + B)R = (AR + BR)
• (A*)R = (AR*)

• Challenge: How would you do this with FSA models?
– Start with DFA; change all final to start states; change start

to a final state; and reverse edges
– Note that this creates multiple start states; can create a

new start state with l-transitions to multiple starts
4/17/17 COT 4210 © UCF 116

Substitution
• A substitution is a function, f, from each

member, a, of an alphabet, Σ, to a language La

• Regular languages are closed under substitution
of regular languages (i.e., each La is regular)

• Easy to prove by replacing each member of Σ in
a regular expression for a language L with
regular expression for La

• A homomorphism is a substitution where each
La is a single string

4/17/17 COT 4210 © UCF 117

Quotient with Regular Sets
• Quotient of two languages B and C, denoted B/C, is defined as

B/C = {x | ∃y∈C where xy∈B}
• Let B be recognized by DFA

AB = (QB,Σ,δB,q1B,FB) and C by
AC = (QC,Σ,δC,q1C,FC)

• Define the recognizer for B/C by
AB/C = (QB∪QB×QC,Σ,δB/C,q1B, FB×FC)
δB/C(q,a) = {δB(q,a)} a∈Σ,q∈QB
δB/C(q,l) = {<q,q1C>} q∈QB
δB/C(<q,p>,l) = {δB(q,a),δC(p,a)} a∈Σ,q∈QB,p∈QC

• The basic idea is that we simulate B and then randomly decide it
has seen x and continue by looking for y, simulating B continuing
after x but with C starting from scratch

4/17/17 COT 4210 © UCF 118

Quotient Again
• Assume some class of languages, C, is closed

under concatenation, intersection with regular
and substitution of members of C, show C is
closed under Quotient with Regular

• L/R = { x |∃y∈R where xy∈L }
– Define Σ’ = { a’ | a∈Σ }
– Let h(a) = a; h(a’) = l where a∈Σ
– Let g(a) = a’ where a∈Σ
– Let f(a) = {a,a’} where a∈Σ
– L/R = h(f(L) ∩ (Σ* ・ g(R)))

4/17/17 COT 4210 © UCF 119

Applying Meta Approach
• INIT(L) = { x |∃y∈Σ* where xy∈L }

– INIT(L) = h(f(L) ∩ (Σ* ・ g(Σ*)))
– Also INIT(L) = L / Σ*

• LAST(L) = { y |∃x∈Σ* where xy∈L }
– LAST(L) = h(f(L) ∩ (g(Σ*) ・ Σ*))

• MID(L) = { y |∃x,z∈Σ* where xyz∈L }
• MID(L) = h(f(L) ∩ (g(Σ*) ・ Σ* ・ g(Σ*)))

• ETERIOR(L) = { xz |∃y∈Σ* where xyz∈L }
– EXTERIOR(L) = h(f(L) ∩ (Σ* ・ g(Σ*) ・ Σ*))

4/17/17 COT 4210 © UCF 120

Making Life Easy
• The key in proving closure is to always try to identify the

“best” equivalent formal model for regular sets when
trying to prove a particular property

• For example, how could you even conceive of proving
closure under intersection and complement in regular
expression notations?

• Note how much easier quotient is when have closure
under concatenation, and substitution and intersection
with regular languages than showing in FSA notation

4/17/17 COT 4210 © UCF 121

Reachable and Reaching
• Reachablefrom(q) = { p | ∃w ∍ δ(q,w)=p }

– Just do depth first search from q, marking all
reachable states. Works for NFA as well.

• Reachingto(q) = { p | ∃w ∍ δ(p,w)=q }
– Do depth first from q, going backwards on

transitions, marking all reaching states. Works
for NFA as well.

4/17/17 COT 4210 © UCF 122

Min and Max
• Min(L) = { w | w∈L and no proper prefix of w is in L } =

{ w | w∈L and if w=xy, x∈Σ*, y∈Σ+ then x∉L}
• Max(L) = { w | w∈L and w is not the proper prefix of any word in L }

= { w | w∈L and if y∈Σ+ then wy∉L }
• Examples:

– Min(0(0+1)*) = {0}
– Max(0(0+1)*) = {}
– Min(01 + 0 + 10) = {0,10}
– Max(01 + 0 + 10) = {01,10}
– Min({aibjck | i ≤ k or j ≤ k}) = {aibjck | | i,j ≥0, k = min(i, j)}
– Max({aibjck | i ≤ k or j ≤ k}) = {} because k has no bound
– Min({aibjck | i ≥ k or j ≥ k}) = {λ}
– Max({aibjck | i ≥ k or j ≥ k}) = {aibjck | | i,j ≥0, k = max(i, j)}

4/17/17 COT 4210 © UCF 123

Regular Closed under Min
• Assume L is regular then Min(L) is regular
• Let L= L(A), where A = (Q,Σ,δ,q0,F) is a DFA with no

state unreachable from q0

• Define Amin = (Q∪{dead},Σ,δmin,q0,F), where for a∈Σ
δmin(q,a) = δ(q,a), if q∈Q-F; δmin(q,a) = dead, if q∈F;
δmin(dead,a) = dead

The reasoning is that the machine Amin accepts only elements in L that are not
extensions of shorter strings in L. By making it so transitions from all final
states in Amin go to the new “dead” state, we guarantee that extensions of
accepted strings will not be accepted by this new automaton.

Therefore, Regular Languages are closed under Min.

4/17/17 COT 4210 © UCF 124

Regular Closed under Max
• Assume L is regular then Max(L) is regular
• Let L= L(A), where A = (Q,Σ,δ,q0,F) is a DFA with no state

unreachable from q0

• Define Amax = (Q,Σ,δ,q0,Fmax), where
Fmax= { f | f∈F and Reachablefrom+(f)∩F=Φ }
where Reachablefrom+(q) = { p | ∃w ∍ |w|>0 and δ(q,w) = p }

The reasoning is that the machine Amax accepts only elements in L that cannot be
extended. If there is a non-empty string that leads from some final state f to any final
state, including f, then f cannot be final in Amax. All other final states can be retained.
The inductive definition of NontrivialReachable is:
1. Reachablefrom+(q) contains { s | there exists an element of S, a, such that d(q,a) = s }
2. If s is in Reachablefrom+ (q) then Reachablefrom+ (q) contains

{ t | there exists an element of S, a, such that d(s,a) = t }
3. No other states are in NontrivialReachable(q)
Therefore, Regular Languages are closed under Max.

4/17/17 COT 4210 © UCF 125

Pumping Lemma Concept
• Let A = (Q,Σ,δ,q1,F) be a DFA, where Q = {q1,q2, … , qN}
• The “pigeon hole principle” tells us that whenever we visit N+1

or more states, we must visit at least one state more than
once (loop)

• Any string, w, of length N or greater leads to us making N
transitions after visiting the start state, and so we visit at least
one state more than once when reading w

4/17/17 COT 4210 © UCF 126

Pumping Lemma For Regular
• Theorem: Let L be regular then there

exists an N>0 such that, if w Î L and
|w| ≥ N, then w can be written in the form
xyz, where |xy| ≤ N, |y|>0, and for all i≥0,
xyiz Î L

• This means that interesting regular
languages (infinite ones) have a very
simple self-embedding property that
occurs early in long strings

4/17/17 COT 4210 © UCF 127

Pumping Lemma Proof
• If L is regular then it is recognized by some DFA, A=(Q,S,d,q0,F). Let |Q| = N

states. For any string w, such that |w| ≥ N, A must make N+1 state visits to
consume its first N characters, followed by |w|-N more state visits.

• In its first N+1 state visits, A must enter at least one state two or more times.
• Let w = v1…vj…vk…vm, where m =|w|, and d(q0,v1…vj)=d(q0,v1…vk), k > j,

and let this state represent the first one repeated while A consumes w.
• Define x = v1…vj, y = vi+1…vk, and z = vk+1…vm. Clearly w=xyz. Moreover,

since k > j, |y| > 0, and since k ≤ N, |xy| ≤ N.
• Since A is deterministic, d(q0,xy)=d(q0,xyi), for all i ≥ 0.
• Thus, if w Î L, d(q0,xyz) Î F, and so d(q0,xyiz) Î F, for all i ≥ 0.
• Consequently, if w Î L, |w|≥N, then w can be written in the form xyz, where

|xy| ≤ N, |y| > 0, and for all i ≥ 0, xyiz Î L.

4/17/17 COT 4210 © UCF 128

Lemma’s Adversarial Process
• Assume L = {anbn | n>0 } is regular
• P.L.: Provides N > 0

– We CANNOT choose N; that’s the P.L.’s job
• Our turn: Choose aNbN Î L

– We get to select a string in L
• P.L.: aNbN = xyz, where |xy| ≤ N, |y| > 0, and for all i ≥ 0, xyiz Î L

– We CANNOT choose split, but P.L. is constrained by N
• Our turn: Choose i = 0.

– We have the power here
• P.L: aN-|y|bN Î L; just a consequence of P.L.
• Our turn: aN-|y|bN Ï L; just a consequence of L’s structure
• CONTRADICTION, so L is NOT regular

4/17/17 COT 4210 © UCF 129

xwx is not Regular (PL)
• L = { x w x | x,w∈{a,b}+} :
• Assume that L is Regular.
• PL: Let N > 0 be given by the Pumping Lemma.
• YOU: Let s be a string, s ∈ L, such that s = aNbaaNb
• PL: Since s ∈ L and |s| ≥ N, s can be split into 3 pieces, s = xyz, such that

|xy| ≤ N and |y| > 0 and ∀ i ≥ 0 xyiz∈ L
• YOU: Choose i = 2
• PL: xy2z = xyyz∈ L (could also use i = 0)
• Thus, aN + |y|baaNb would be in L, but this is not so since N+|y| ≠ N
• We have arrived at a contradiction.
• Therefore L is not Regular.

4/17/17 COT 4210 © UCF 130

aFib(k) is not Regular (PL)
• L = {aFib(k) | k>0} :
• Assume that L is regular
• Let N be the positive integer given by the Pumping Lemma
• Let s be a string s = aFib(N+3)Î L
• Since s Î L and |s| ≥ N (Fib(N+3)>N in all cases; actually Fib(N+2)>N as

well), s is split by PL into xyz, where |xy| ≤ N and |y| > 0 and for all i ≥ 0,
xyiz Î L

• We choose i = 2; by PL: xy2z = xyyzÎ L
• Thus, aFib(N+3)+|y| would be Î L. This means that there is Fibonacci number

between Fib(N+3) and Fib(N+3)+N, but the smallest Fibonacci greater than
Fib(N+3) is Fib(N+3)+Fib(N+2) and Fib(N+2)>N
This is a contradiction, therefore L is not regular ■

• Note: Using values less than N+3 could be dangerous because N could be
1 and both Fib(2) and Fib(3) are within N (1) of Fib(1).

4/17/17 COT 4210 © UCF 131

Pumping Lemma Problems
• Use the Pumping Lemma to show each of

the following is not regular
– { 0m 12n | m £ n }
– { wwR | w Î {a,b}+ }
– { 1n2 | n > 0 }
– { ww | w Î {a,b}+ }

4/17/17 COT 4210 © UCF 132

Finite State Transducers
• A transducer is a machine with output
• Mealy Model

– M = (Q, S, G, d, g, q0)
G is the finite output alphabet
g: Q × S ® G is the output function

– Essentially a Mealy Model machine produced a character of
output for each character of input it consumes, and it does so on
the transitions from one state to the next.

– A Mealy Model represents a synchronous circuit whose output is
triggered each time a new input arrives.

4/17/17 COT 4210 © UCF 133

Sample Mealy Model
• Write a Mealy finite state machine that

produces the 2’s complement result of
subtracting 1101 from a binary input
stream (assuming at least 4 bits of input)

4/17/17 COT 4210 © UCF 134

C
1..1
001

NC
1..1
0011

1/0

0/1 NC
1..1
001

C
1..1
00

NC
1..1
00

1/0

1/1,0/
0

0/1

C
1..1
0

NC
1..1
0

0/1

1/0

0/0,1/1

C
1..1

NC
1..1

0/1

1/0

0/0,1/1

1/1,0/0

0/1

1/0

Finite State Transducers
• Moore Model

– M = (Q, S, G, d, g, q0)
G is the finite output alphabet
g: Q ® G is the output function

– Essentially a Moore Model machine produced a
character of output whenever it enters a state,
independent of how it arrived at that state.

– A Moore Model represents an asynchronous circuit
whose output is a steady state until new input arrives.

4/17/17 COT 4210 © UCF 135

4/17/17

Assignment # 5
1. For each of the following, prove it is not regular by using the Pumping Lemma or

Myhill-Nerode. You must do at least one of these using the Pumping Lemma and at
least one using Myhill-Nerode.

a. L = { xy | |x| = |y|; x ≠ y; x, yÎ 0,1}* }
b. L = { aibjck | i≥0, j≥0, k≥0, if i=1 then j>k }
c. L = { x x w | x, w Î {a,b}+ }

2. Write a regular (right linear) grammar that generates L = { w | w Î {0,1}* and w
interpreted as a binary number has a remainder of 2 when divided by 5 } .

3. Present a Mealy Model finite state machine that reads an input x Î {0, 1}* and
produces the binary number that represents the result of subtracting binary 10 from x
(assumes all numbers are positive, including results). Assume that x is read starting
with its least significant digit.
Examples: 0010 ® 0000; 1000 ® 0110; 0001 ® 1111 (wrong answer due to going
negative, but nothing we can do about it.) Note: Can be attacked with 2’s complement
addition or direct subtraction.

Due: Thursday, 2/13, 11:59PM (use Webcourses to turn in)

COT 4210 © UCF 136136COT 4210 © UCF

Formal Languages

Includes and Expands on
Chapter 2 of Sipser

History of Formal Language
• In 1940s, Emil Post (mathematician) devised rewriting systems as a

way to describe how mathematicians do proofs. Purpose was to
mechanize them.

• Early 1950s, Noam Chomsky (linguist) developed a hierarchy of
rewriting systems (grammars) to describe natural languages.

• Late 1950s, Backus-Naur (computer scientists) devised BNF (a
variant of Chomsky’s context-free grammars) to describe the
programming language Algol.

• 1960s was the time of many advances in parsing. In particular,
parsing of context free was shown to be no worse than O(n3). More
importantly, useful subsets were found that could be parsed in O(n).

4/17/17 COT 4210 © UCF 138

Formalism for Grammars
Definition : A language is a set of strings of characters from some alphabet.

The strings of the language are called sentences or statements.

A string over some alphabet is a finite sequence of symbols drawn from that
alphabet.

A meta-language is a language that is used to describe another language.

A very well known meta-language is BNF (Backus Naur Form)

It was developed by John Backus and Peter Naur, in the late 50s, to describe
programming languages.

Noam Chomsky in the early 50s developed context free grammars that can be
expressed using BNF.

4/17/17 COT 4210 © UCF 139

Grammars
• G = (V, Σ, R, S) is a Phrase Structured Grammar (PSG)

where
– V: Finite set of non-terminal symbols
– Σ: Finite set of terminal symbols
– R: finite set of rules of form α ® β,

• α in (V È Σ)* V (V È Σ)*
• β in (V È Σ)*

– S: a member of V called the start symbol
• Right linear restricts all rules to be of forms

– α in V
– β of form ΣV, Σ or λ

4/17/17 COT 4210 © UCF 140

Derivations
• x Þ y reads as x derives y iff

– x = γαδ, y = γβδ and α ® β
• Þ* is the reflexive, transitive closure of Þ
• Þ+ is the transitive closure of Þ
• x Þ* y iff x = y or x Þ* z and z Þ y
• Or, x Þ* y iff x = y or x Þ z and z Þ* y
• L(G) = { w | S Þ* w } is the language

generated by G.
4/17/17 COT 4210 © UCF 141

Regular Grammars
• Regular grammars are also called right

linear grammars
• Each rule of a regular grammar is

constrained to be of one of the three
forms:
A → a, A ∈ V, a ∈ Σ*
A → l, A ∈ V, a ∈ Σ*
A → aB, A, B ∈ V, a ∈ Σ*

4/17/17 COT 4210 © UCF 142

DFA to Regular Grammar
• Every language recognized by a DFA is

generated by an equivalent regular
grammar

• Given A = (Q,Σ,δ,q0,F), L(A) is generated
by GA = (Q,Σ,R,q0) where R contains
q ® as iff δ(q,a) = s
q ® l iff q ∈ F

4/17/17 COT 4210 © UCF 143

Example of DFA to Grammar
• DFA

• Grammar
A ® 0 B | 1 B
B ® 0 A | 1 C | l | l
C ® 0 C | 1 S

4/17/17 COT 4210 © UCF 144

A CBA:

0

0,1

0

1

1

Regular Grammar to NFA
• Every language generated by a regular grammar

is recognized by an equivalent NFA
• Given G = (V, Σ, R, S), L(G) is recognized by

AG = (V∪{f},Σ,δ,S,{f}) where δ is defined by
δ(A,a) ⊆{B} iff A → aB
δ(A,a) ⊆{f} iff A → a
δ(A,l) ⊆{f} iff A → l

4/17/17 COT 4210 © UCF 145

Example of Grammar to NFA
• Grammar
S ® 0 S | 1 A
A ® 0 S | 0 A | 1 B | l
B ® 1 S | 0 B
• DFA

4/17/17 COT 4210 © UCF 146

S BA:

0 0 0

1

0

1

1

A

What More is Regular?
• Any language, L, generated by a right linear grammar
• Any language, L, generated by a left linear grammar

(A → a, A → l, A → Ba)
– Easy to see L is regular as we can reverse these rules and get a

right linear grammar that generates LR, but then L is the reverse
of a regular language which is regular

– Similarly, the reverse LR of any regular language L is right linear
and hence the language itself is left linear

• Any language, L, that is the union of some of the classes
of a right invariant equivalence relation of finite index

4/17/17 COT 4210 © UCF 147

Mixing Right and Left Linear
• We can get non-Regular languages if we present

grammars that have both right and left linear rules
• To see this, consider G = ({S,T}, Σ, R, S), where R is:

– S → aT
– T → Sb | b

• L(G) = { anbn | n > 0 } which is a classic non-regular,
context-free language

4/17/17 COT 4210 © UCF 148

Decision and Closure
Properties

Regular Languages

Decidable Properties
• Membership (just run DFA over string)
• L = Ø: Minimize and see if minimum state DFA is

• L = Σ*: Minimize and see if minimum state DFA is

• Finiteness: Minimize and see if there are no loops
emanating from a final state

• Equivalence: Minimize both and see if isomorphic

4/17/17 COT 4210 © UCF 150

A

Σ

A

Σ

Closure Properties
• Virtually everything with members of its own class as we

have already shown

• Union, concatenation, Kleene *, complement,
intersection, set difference, reversal, substitution,
homomorphism, quotient with regular sets, Prefix, Suffix,
Substring, Exterior, Min, Max and so much more

4/17/17 COT 4210 © UCF 151

Midterm#1 Topics.1
• Properties of sets, sequences, relations,

functions and graphs
– Basic notions
– Proof techniques

• Computability, complexity, languages
– Basic notions

4/17/17 COT 4210 © UCF 152

Midterm#1 Topics.2
• Finite state automata and Regular languages

– Definitions: Deterministic and Non-Deterministic
– Notions of state transitions, acceptance and language accepted
– State diagrams and state tables
– Construction from descriptions of languages
– Conversion of NFA to DFA

• l-Closure
• Subset construction
• Reachable states
• Reaching states
• Minimizing DFAs (distinguishable states)

4/17/17 COT 4210 © UCF 153

Midterm#1 Topics.3
• Regular expressions and Regular Sets

– Definition of regular expressions and regular sets
– Every regular sets is a regular language
– Every regular language is a regular set

• Ripping states (GNFA)
• Ri,j

k expressions
– Rij

k+1 = (Rij
k + Rik

k ・ (Rkk
k)* ・ Rkj

k)
– L(A) = +f∈F R1f

n

• Regular equations
– Uniqueness of solution to R=Q+RP
– Solving for expressions associated with states

4/17/17 COT 4210 © UCF 154

Midterm#1 Topics.4
• Pumping Lemma

– Classic non-regular languages {0n 1n | n >= 0}
– Formal statement and proof of Pumping Lemma for Regular

Languages
– Use of Pumping Lemma

• Minimization (using distinguishable states)
• Myhill-Nerode

– Right Invariant Equivalence Relations (RIER)
– Specific RIER, x RL y ∀z [xz∈L⇔ yz∈L] is minimal
– Uniqueness of minimum state DFA based on RL

– Use to show languages are no Regular

4/17/17 COT 4210 © UCF 155

Midterm#1 Topics.5
• Grammars

– Definition of grammar and notions of derivation and language
– Restricted grammars: Regular (right and left linear)
– Why you can’t mix right and left linear and stay in Regular domain
– Relation of regular grammars to finite state automata

• Closures
– Union, Concatenation, Keene star
– Complement, Exclusive Union, Intersection, Set Difference, Reversal
– Substitution, Homomorphism, Quotient, Prefix, Suffix, Substring
– Max, Min

• Decidable Properties
– Membership
– L = Ø
– L = Σ*
– Finiteness / Infiniteness
– Equivalence

4/17/17 COT 4210 © UCF 156

Context Free Languages

Context Free Grammar
G = (V, S, R, S) is a PSG where
Each member of R is of the form
A ® a where a is a strings (VÈS)*
Note that the left hand side of a rule is a letter in V;
The right hand side is a string from the combined alphabets
The right hand side can even be empty (e or λ)
A context free grammar is denoted as a CFG and the language
generated is a Context Free Language (CFL).
A CFL is recognized by a Push Down Automaton (PDA) to be
discussed a bit later.

4/17/17 COT 4210 © UCF 158

Interesting Sample CFG
Example of a grammar for a small language:

G = ({<program>, <stmt-list>, <stmt>, <expression>},
{begin, end, ident, ;, =, +, -}, R, <program>) where R is

<program> à begin <stmt-list> end

<stmt-list> à <stmt> | <stmt> ; <stmt-list>

<stmt> à ident = <expression>

<expression> à ident + ident | ident - ident | ident

Here “ident” is a token return from a scanner, as are “begin”, “end”, “;”, “=”,
“+”, “-”

Note that “;” is a separator (Pascal style) not a terminator (C style).

4/17/17 COT 4210 © UCF 159

Derivation

4/17/17 COT 4210 © UCF 160

A sentence generation is called a derivation.

Grammar for a simple
assignment statement:

R1 <assgn> à <id> := <expr>
R2 <id> à a | b | c
R3 <expr> à <id> + <expr>
R4 | <id> * <expr>
R5 | (<expr>)
R6 | <id>

The statement a := b * (a + c)
Is generated by the leftmost derivation:

<assgn> Þ <id> := <expr> R1
Þ a := <expr> R2
Þ a := <id> * <expr> R4
Þ a := b * <expr> R2
Þ a := b * (<expr>) R5
Þ a := b * (<id> + <expr>) R3
Þ a := b * (a + <expr>) R2
Þ a := b * (a + <id>) R6
Þ a := b * (a + c) R2In a leftmost derivation only the

leftmost non-terminal is replaced

Parse Trees

4/17/17 COT 4210 © UCF 161

A parse tree is a graphical representation of a derivation
For instance the parse tree for the statement a := b * (a + c) is:

<assign>

<id> := <expr>

a <id> * <expr>

b (<expr>)

<id> + <expr>

a <id>

c

Every internal node of a
parse tree is labeled with
a non-terminal symbol.

Every leaf is labeled with a
terminal symbol.

The generated string is read
left to right

Ambiguity
A grammar that generates a sentence for which there are two or more
distinct parse trees is said to be “ambiguous”

For instance, the following grammar is ambiguous because it generates
distinct parse trees for the expression a := b + c * a

<assgn> à <id> := <expr>
<id> à a | b | c
<expr> à <expr> + <expr>

| <expr> * <expr>
| (<expr>)
| <id>

4/17/17 COT 4210 © UCF 162

Ambiguous Parse

4/17/17 COT 4210 © UCF 163

This grammar generates two parse trees for the same expression.

If a language structure has more than one parse tree,
the meaning of the structure cannot be determined uniquely.

<assign>

<id> := <expr>

A <expr> + <expr>

<id> <expr> * <expr>

B <id> <id>

C A

<assign>

<id> := <expr>

A <expr> * <expr>

<expr> + <expr> <id>

<id> <id> A

B C

Precedence

4/17/17 COT 4210 © UCF 164

Operator precedence:
If an operator is generated lower in the parse tree, it indicates that the
operator has precedence over the operator generated higher up in the tree.

An unambiguous grammar for expressions:

<assign> à <id> := <expr>
<id> à a | b | c
<expr> à <expr> + <term>

| <term>
<term> à <term> * <factor>

| <factor>
<factor> à (<expr>)

| <id>

This grammar indicates the usual
precedence order of multiplication and
addition operators.

This grammar generates unique parse
trees independently of doing a
rightmost or leftmost derivation

Left (right)most Derivations

4/17/17 COT 4210 © UCF 165

Rightmost derivation:
<assgn> Þ <id> := <expr>

Þ <id> := <expr> + <term>
Þ <id> := <expr> + <term> *<factor>
Þ <id> := <expr> + <term> *<id>
Þ <id> := <expr> + <term> * a
Þ <id> := <expr> + <factor> * a
Þ <id> := <expr> + <id> * a
Þ <id> := <expr> + c * a
Þ <id> := <term> + c * a
Þ <id> := <factor> + c * a
Þ <id> := <id> + c * a
Þ <id> := b + c * a
Þ a := b + c * a

Leftmost derivation:
<assgn> à <id> := <expr>

à a := <expr>
à a := <expr> + <term>
à a := <term> + <term>
à a := <factor> + <term>
à a := <id> + <term>
à a := b + <term>
à a := b + <term> *<factor>
à a := b + <factor> * <factor>
à a := b + <id> * <factor>
à a := b + c * <factor>
à a := b + c * <id>
à a := b + c * a

Ambiguity Test
• A Grammar is Ambiguous if there are two

distinct parse trees for some string
• Or, two distinct leftmost derivations
• Or, two distinct rightmost derivations
• Some languages are inherently ambiguous but

many are not
• Unfortunately (to be shown later) there is no

systematic test for ambiguity of context free
grammars

4/17/17 COT 4210 © UCF 166

Unambiguous Grammar
When we encounter ambiguity, we try to rewrite the grammar to avoid
ambiguity.

The ambiguous expression grammar:

<expr> à <expr> <op> <expr> | id | int | (<expr>)
<op> à + | - | * | /

Can be rewritten as:

<expr> à <term> | <expr> + <term> | <expr> - <term>
<term> à <factor> | <term> * <factor> | <term> / <factor>.
<factor> à id | int | (<expr>)

4/17/17 COT 4210 © UCF 167

Parsing Problem
The parsing Problem: Take a string of symbols in a language (tokens)
and a grammar for that language to construct the parse tree or report
that the sentence is syntactically incorrect.

For correct strings:

Sentence + grammar à parse tree

For a compiler, a sentence is a program:

Program + grammar à parse tree

Types of parsers:

Top-down aka predictive (recursive descent parsing)

Bottom-up aka shift-reduce

4/17/17 COT 4210 © UCF 168

Removing Left Recursion
Given left recursive and non left recursive rules
A ® Aa1 | … | Aan | b1 | … | bm

Can view as
A ® (b1 | … | bm) (a1 | … | an)*
Star notation is an extension to normal notation with
obvious meaning
Now, it should be clear this can be done right recursive as
A ® b1B | … | bm B
B ® a1B| … | anB | λ

4/17/17 COT 4210 © UCF 169

Right Recursive Expressions
Grammar: Expr à Expr + Term | Term

Term à Term * Factor | Factor
Factor à (Expr) | Int

Fix: Expr à Term ExprRest
ExprRest à + Term ExprRest | l
Term à Factor TermRest
TermRest à * Factor TermRest | l
Factor à (Expr) | Int

4/17/17 COT 4210 © UCF 170

Bottom Up vs Top Down
• Bottom-Up: Two stack operations

– Shift (move input symbol to stack)
– Reduce (replace top of stack a with A, when A®a)
– Challenge is when to do shift or reduce and what reduce to do.

• Can have both kinds of conflict

• Top-Down:
– If top of stack is terminal

• If same as input, read and pop
• If not, we have an error

– If top of stack is a non-terminal A
• Replace A with some a, when A®a
• Challenge is what A-rule to use

4/17/17 COT 4210 © UCF 171

Chomsky Normal Form
• Each rule of a CFG is constrained to be of

one of the three forms:
A → a, A ∈ V, a ∈ Σ
A → BC, A,B,C ∈ V

• If the language contains l then we allow
S → l
and constrain all rules of form to be
A → BC, A ∈ V, B,C ∈ V-{S}

4/17/17 COT 4210 © UCF 172

Nullable Symbols
• Let G = (V, S, R, S) be an arbitrary CFG
• Compute the set Nullable(G) = {A | A ⇒* l }
• Nullable(G) is computed as follows

Nullable(G) ⊇ { A | A → l }
Repeat

Nullable(G) ⊇ { B | B → a and a ∈ Nullable* }
until no new symbols are added

4/17/17 COT 4210 © UCF 173

Removal of l-Rules
• Let G = (V, S, R, S) be an arbitrary CFG
• Compute the set Nullable(G)
• Remove all l-rules
• For each rule of form B → aAb where A is nullable, add

in the rule B → ab
• The above has the potential to greatly increase the

number of rules and add unit rules
(those of form B → C, where B,C∈V)

• If S is nullable, add new start symbol S0, as new start
state, plus rules S0, → l and S0 → a, where S → a

4/17/17 COT 4210 © UCF 174

Chains
• Let G = (V, S, R, S) be an arbitrary CFG that has

had its l-rules removed
• For A∈V, Chain(A) = { B | A ⇒* B, B∈V }
• Chain(A) is computed as follows

Chain(A) ⊇ { A }
Repeat

Chain(A) ⊇ { C | B → C and B∈ Chain(A) }
until no new symbols are added

4/17/17 COT 4210 © UCF 175

Removal of Unit-Rules
• Let G = (V, S, R, S) be an arbitrary CFG that has had its
l-rules removed, except perhaps from start symbol

• Compute Chain(A) for all A∈V
• Create the new grammar G = (V, S, R, S) where R is

defined by including for each A∈V, all rules of the form
A → a, where B → a ∈ R, a ∉ V and B ∈ Chain(A)
Note: A∈Chain(A) so all its non unit-rules are included

4/17/17 COT 4210 © UCF 176

Non-Productive Symbols
• Let G = (V, S, R, S) be an arbitrary CFG that has had its
l-rules and unit-rules removed

• Non-productive non-terminal symbols never lead to a
terminal string (not productive)

• Productive(G) is computed by
Productive(G) ⊇ { A | A → a, a∈S* }
Repeat

Productive(G) ⊇ { B | B → a, a∈(S∪Productive)* }
until no new symbols are added

• Keep only those rules that involve productive symbols
• If no rules remain, grammar generates nothing

4/17/17 COT 4210 © UCF 177

Unreachable Symbols
• Let G = (V, S, R, S) be an arbitrary CFG that has had its l-

rules, unit-rules and non-productive symbols removed
• Unreachable symbols are ones that are inaccessible from

start symbol
• We compute the complement (Useful)
• Useful(G) is computed by

Useful(G) ⊇ { S }
Repeat

Useful(G) ⊇ { C | B → aCb, C∈V∪Σ, B∈ Useful(G) }
until no new symbols are added

• Keep only those rules that involve useful symbols
• If no rules remain, grammar generates nothing

4/17/17 COT 4210 © UCF 178

Reduced CFG
• A reduced CFG is one without l-rules

(except possibly for start symbol), no unit-
rules, no non-productive symbols and no
useless symbols

4/17/17 COT 4210 © UCF 179

CFG to CNF
• Let G = (V, S, R, S) be arbitrary reduced CFG
• Define G’=(V∪{<a>|a∈Σ}, S, R, S)
• Add the rules <a> → a, for all a∈Σ
• For any rule, A → a, |a| > 1, change each terminal

symbol, a, in a to the non-terminal <a>
• Now, for each rule A → BCa, |a| > 0, introduce the new

non-terminal B<Ca>, and replace the rule rule A →
B<Ca>

• Iteratively apply the above step until all rules are in CNF

4/17/17 COT 4210 © UCF 180

Example of CNF Conversion

Starting Grammars
• L = { ai bj ck | i=j or j=k }
• G = ({S,A,<B=C>,C,<A=B>}, {a,b}, R, S)
• R:

– S à A | C
– A à a A | <B=C>
– <B=C> à b <B=C> c | λ
– C à C c | <A=B>
– <A=B> à a <A=B> b | λ

4/17/17 COT 4210 © UCF 182

Remove Null Rules
• Nullable = {<B=C>, <A=B>, A, C, S}

– S’ à S | λ // S’ added to V
– S à A | C
– A à a A | a |<B=C>
– <B=C> à b <B=C> c | b c
– C à C c | c | <A=B>
– <A=B> à a <A=B> b | ab

4/17/17 COT 4210 © UCF 183

Remove Unit Rules
• Chains=

{[S’:S’,S,A,C,<A=B>,<B=C>],[S:S,A,C,<A=B>,<
B=C>],
[A:A,<B=C>],[C:C,<B=C>],[<B=C>:<B=C>],
[<A=B>:<A=B>]}
– S’ à λ | aA | a | b<B=C>c | bc | Cc | c | a<A=B>b | ab
– S à aA | a | b<B=C>c | bc | Cc | c | a<A=B>b | ab
– A à aA | a | b<B=C>c | bc
– <B=C> à b<B=C>c | bc
– C à Cc | c | a<A=B>b | ab
– <A=B> à a<A=B>b | ab

4/17/17 COT 4210 © UCF 184

Remove Useless Symbols
• All non-terminal symbols are productive (lead

to terminal string)

• S is useless as it is unreachable from S’ (new
start).

• All other symbols are reachable from S’

4/17/17 COT 4210 © UCF 185

Normalize rhs as CNF
• S’ à λ | <a>A | a | <<B=C><c>> | <c> |

C<c> | c | <a><<A=B>> | <a>
• A à <a>A | a |<<B=C><c>> | <c>
• <B=C> à <<B=C><c>> | <c>
• C à C<c> | c | <a><<A=B>> | <a>
• <A=B> à <a> <<A=B>> | <a>
• <<B=C><c>> à <B=C><c>
• <<A=B>> à <A=B>
• <a> à a
• à b
• <c> à c

4/17/17 COT 4210 © UCF 186

4/17/17

Assignment # 6
1. Write a CFG for the following languages:

L = { w | w ∈ {a,b}+ wa = 2*wb where wa is the number of a’s in w; wb is the number of b’s }.
2. Convert the following grammar to a CNF equivalent grammar. Show all steps.

G = ({S,A,B,C,D}, {a,b,c}, R, S) where R is
S ® A | B
A ® aA | Cc
C ® bCc | Cc | l
B ® aBc | Bc | Dc
D ® bD | aD

3. Present the CKY recognition matrix for the string abaabab assuming the Chomsky Normal Form
grammar, G = ({S,A,B,C,D }, {a,b}, R, S), specified by the rules R:
S ® AB | BA
A ® SC | CD | a
B ® SD | DC | b
C ® a
D ® b
Is abaabab in L(G)?

Due: Thursday 3/2, 10:30AM (use Webcourses to turn in)

COT 4210 © UCF 187187COT 4210 © UCF

CKY (Cocke, Kasami, Younger)
O(N3) PARSING

4/17/17 COT 4210 © UCF 188

Dynamic Programming
To solve a given problem, we solve small parts of the problem (subproblems),
then combine the solutions of the subproblems to reach an overall solution.

The Parsing problem for arbitrary CFGs was elusive, in that its complexity was
unknown until the late 1960s. In the meantime, theoreticians developed notion
of simplified forms that were as powerful as arbitrary CFGs. The one most
relevant here is the Chomsky Normal Form – CNF. It states that the only rule
forms needed are:

A ® BC where B and C are non-terminals
A ® a where a is a terminal

This is provided the string of length zero is not part of the language.

4/17/17 COT 4210 © UCF 189

CKY (Bottom-Up Technique)
Let the input string be a sequence of n letters a1 ... an.
Let the grammar contain r terminal and nonterminal symbols R1 ... Rr,
Let R1 be the start symbol.
Let P[n,n,r] be an array of Booleans. Initialize all elements of P to false.
For each i = 1 to n

For each unit production Rj → ai, set P[i,1,j] = true.
For each i = 2 to n

For each j = 1 to n-i+1
For each k = 1 to i-1

For each production RA -> RB RC

If P[j,k,B] and P[j+k,i-k,C] then set P[j,i,A] = true
If P[1,n,1] is true then a1 ... an is member of language
else a1 ... an is not member of language

4/17/17 COT 4210 © UCF 190

CKY Parser
Present the CKY recognition matrix for the string abba assuming the Chomsky
Normal Form grammar, G = ({S,A,B,C,D,E}, {a,b}, R, S), specified by the rules R:

S ® AB | BA
A ® CD | a
B ® CE | b
C ® a | b
D ® AC
E ® BC

4/17/17 COT 4210 © UCF 191

a b b a
1 A,C B,C B,C A,C
2 S,D E S,E
3 B B
4 S,E

2nd CKY Example

4/17/17 COT 4210 © UCF 192

a - a + a - a
1 E M E P E M E

2 E, F E, F E, F

3 E E E

4 E, F E, F

5 E E

6 E, F

7 E

E ® E F | M E | P E | a
F ® M F | P F | M E | P E
P ® +
M ® -

CFL Pumping Lemma
Concept

• Let L be a context free language the there is CNF grammar
G = (V, Σ, R, S) such that L(G) = L.

• As G is in CNF all its rules that allow the string to grow are of the form
A ➝ BC, and thus growth has a binary nature.

• Any sufficiently long string z in L will have a parse tree that must have deep
branches to accommodate z’s growth.

• Because of the binary nature of growth, the width of a tree with maximum
branch length k at its deepest nodes is at most 2k; moreover, if the frontier
of the tree is all terminal, then the string so produced is of length at most
2k-1; since the last rule applied for each leaf is of the form A ➝ a.

• Any terminal branch in a derivation tree of height > |V| has more than |V|
internal nodes labelled with non-terminals. The “pigeon hole principle” tells
us that whenever we visit |V| +1 or more nodes, we must use at least one
variable label more than once. This creates a self-embedding property that
is key to the repetition patterns that occur in the derivation of sufficiently
long strings.

4/17/17 COT 4210 © UCF 193

Pumping Lemma For CFL
• Let L be a CFL then there exists an N>0 such

that, if z Î L and |z| ≥ N, then z can be written in
the form uvwxy, where |vwy| ≤ N, |vx|>0, and for
all i≥0, uviwxiy Î L.

• This means that interesting context free
languages (infinite ones) have a self-embedding
property that is symmetric around some central
area, unlike regular where the repetition has no
symmetry and occurs at the start.

4/17/17 COT 4210 © UCF 194

Pumping Lemma Proof
• If L is a CFL then it is generated by some CNF grammar, G = (V, Σ,

R, S). Let |V| = k. For any string z, such that |z| ≥ N = 2k, the
derivation tree for z based on G must have a branch with at least
k+1 nodes labelled with variables from G.

• By the Pigeon Hole Principle at least two of these labels must be the
same. Let the first repeated variable be T and consider the last two
instances of T on this path.

• Let z = uvwxy, where S ⇒* uTy⇒* uvTxy⇒* uvwxy
• Clearly, then, we know S ⇒* uTy; T ⇒* vTx; and T ⇒* w
• But then, we can start with S ⇒* uTy; repeat T ⇒* vTx zero or more

times; and then apply T ⇒* w.
• But then, S ⇒* uviwxiy for all i≥0, and thus uviwxiy Î L, for all i ≥0.

4/17/17 COT 4210 © UCF 195

Visual Support of Proof

4/17/17 COT 4210 © UCF 196

T

T

T

T

T

2 =i 0 =i
T

S S S

u v w x y

w

u yu v x y

v w x

Lemma’s Adversarial Process
• Assume L = {anbncn | n>0 } is a CFL
• P.L.: Provides N>0 We CANNOT choose N; that’s the P.L.’s job
• Our turn: Choose aNbNcN Î L We get to select a string in L
• P.L.: aNbNcN = uvwxy, where |vwx| ≤ N, |vx|>0, and for all i≥0,

uviwxiy Î L We CANNOT choose split, but P.L. is constrained by N
• Our turn: Choose i=0. We have the power here
• P.L: Two cases:

(1) vwx contains some a’s and maybe some b’s. Because |vwx| ≤ N, it cannot
contain c’s if it has a’s. i=0 erases some a’s but we still have N c’s so uwy∉L
(2) vwx contains no a’s. Because |vx|>0, vx contains some b’s or c’s or some of each.
i=0 erases some b’s and/or c’s but we still have N a’s so uwy∉L

• CONTRADICTION, so L is NOT a CFL

4/17/17 COT 4210 © UCF 197

Non-Closure
• Intersection ({ anbncn | n≥0 } is not a CFL)

{ anbncn | n≥0 } =
{ anbncm | n,m≥0 } ∩ { ambncn | n,m≥0 }
Both of the above are CFLs

• Complement
If closed under complement then would be
closed under Intersection as
A ∩ B = ~(~A ∪ ~B)

4/17/17 COT 4210 © UCF 198

Max and Min of CFL
• Consider the two operations on languages max and min, where

– max(L) = { x | x ∈ L and, for no non-null y does xy∈ L } and
– min(L) = { x | x ∈ L and, for no proper prefix of x, y, does y ∈ L }

• Describe the languages produced by max and min. for each of :
– L1 = { ai bj ck | k ≤ i or k ≤ j } CFL

• max(L1) = { ai bj ck | k =max(i, j) } Non-CFL
• min(L1) = { λ } (string of length 0) Regular

– L2 = { ai bj ck | k > i or k > j } CFL
• max(L2) = { } (empty) Regular
• min(L2) = { ai bj ck | k =min(i, j)+1 } Non-CFL

• max(L1) shows CFL not closed under max
• min(L2) shows CFL not closed under min

4/17/17 COT 4210 © UCF 199

Complement of ww
• Let L = { ww | w ∈ {a,b}+ }. L is not a CFL
• Consider L’s complement, it must be of form xayx’by’ or xbyx’ay’,

where |x|=|x’| and |y|=|y’|
• The above reflects that this langugaage has one “transcription error”
• This seems really hard to write a CFG but it’s all a matter of how you

view it
• We don’t care about what precedes or follows the errors so long as

the lengths are right
• Thus, we can view above as xax’yby’ or xbx’y’ay’,

where |x|=|x’| and |y|=|y’|
• The grammar for this has rules

S ➝ AB | BA ; A ➝ XAX | a ; B ➝ XBX | b
X ➝ a | b

4/17/17 COT 4210 © UCF 200

Solvable CFL Problems
• Let L be an arbitrary CFL generated by CFG G

with start symbol S then the following are all
decidable
– Is w in L? Run CKY

If S in final cell then w∈L
– Is L empty (non-empty)? Reduce G

If no rules left then empty
– Is L finite (infinite)? Reduce G

Run DFS(S)
If no loops then finite

4/17/17 COT 4210 © UCF 201

Formalization of PDA
• A = (Q, Σ, Γ, δ, q0, Z0, F)
• Q is finite set of states
• Σ is finite input alphabet
• Γ is finite set of stack symbols
• δ : Q×Σe×Γe → 2Q×Γ* is transition function

– Note: Can limit stack push to Γe but it’s equivalent!!
• Z0∈ Γ is an optional initial symbol on stack
• F ⊆ Q is final set of states and can be omitted

for some notions of a PDA
4/17/17 COT 4210 © UCF 202

Notion of ID for PDA
• An instantaneous description for a PDA is

[q, w, γ] where
– q is current state
– w is remaining input
– γ is contents of stack (leftmost symbol is top)

• Single step derivation is defined by
– [q,ax,Zα] |— [p,x,βα] if δ(q,a,Z) contains (p,β)

• Multistep derivation (|—*) is reflexive transitive
closure of single step.

4/17/17 COT 4210 © UCF 203

Language Recognized by PDA
• Given A = (Q, Σ, Γ, δ, q0, Z0, F)

there are three senses of recognition
• By final state

L(A) = {w|[q0,w,Z0] |—* [f,λ,β]}, where f∈F
• By empty stack

N(A) = {w|[q0,w,Z0] |—* [q,λ,λ]}
• By empty stack and final state

E(A) = {w|[q0,w,Z0] |—* [f,λ,λ]}, where f∈F

4/17/17 COT 4210 © UCF 204

Top Down Parsing by PDA
• Given G = (V, Σ, R, S), define

A = ({q}, Σ, Σ∪V, δ, q, S, ϕ)
• δ(q,a,a) = {(q,λ)} for all a ∈ Σ
• δ(q,λ,A) = {(q,α) | A → α ∈ R (guess) }
• N(A) = L(G)

4/17/17 COT 4210 © UCF 205

Top Down Parsing by PDA
E à E + T | T
T à T * F | F
F à (E) | Int
•δ(q,+,+) = {(q,λ)}, δ(q,*,*) = {(q,λ)},
•δ(q,Int,Int) = {(q,λ)},
•δ(q,(,() = {(q,λ)}, δ(q,),)) = {(q,λ)}
•δ(q,λ,E) = {(q,E+T), (q,T)}
•δ(q,λ,T) = {(q,T*F), (q,F)}
•δ(q,λ,F) = {(q,(E)), (q,Int)}
4/17/17 COT 4210 © UCF 206

Bottom Up Parsing by PDA
• Given G = (V, Σ, R, S), define

A = ({q,f}, Σ, Σ∪V∪{$}, δ, q, $, {f})
• δ(q,a,λ) = {(q,a)} for all a ∈ Σ , SHIFT
• δ(q,λ,αR) ⊇ {(q,A)} if A → α ∈ R, REDUCE

Cheat: looking at more than top of stack
• δ(q,λ,S) ⊇ {(f,λ)}
• δ(f,λ,$) = {(f,λ)} , ACCEPT
• E(A) = L(G)

4/17/17 COT 4210 © UCF 207

Bottom Up Parsing by PDA
E à E + T | T
T à T * F | F
F à (E) | Int
•δ(q,+,λ)={(q,+)}, δ(q,*,λ)={(q,*)}, δ(q,Int,λ)={(q,Int)},
δ(q,(,λ)={(q,()}, δ(q,),λ)={(q,))}
•δ(q,λ,T+E) = {(q,E)}, δ(q,λ,T) ⊇ {(q,E)}
•δ(q,λ,F*T) ⊇ {(q,T)}, δ(q,λ,F) ⊇ {(q,T)}
•δ(q,λ,)E() ⊇ {(q,F)}, δ(q,λ,Int) ⊇ {(q,F)}
•δ(q,λ,E) ⊇ {(f,λ)}
•δ(f,λ,$) = {(f,λ)}
•E(A) = L(G)
4/17/17 COT 4210 © UCF 208

Challenge
• Use the two recognizers on some sets of

expressions like
– 5 + 7 * 2
– 5 * 7 + 2
– (5 + 7) * 2

4/17/17 COT 4210 © UCF 209

Converting a PDA to CFG
• Book has one approach; here is another
• Let A = (Q, S, G, d, q0, Z, F) accept L by empty stack and final state
• Define A’ = (QÈ{q0’,f}, S, GÈ{$}, d’, q0’, $, {f}) where

– d’(q0’, λ, $) = {(q0, PUSH(Z)) or in normal notation {(q0, Z$)}
– d’ does what d does but only uses PUSH and POP instructions, always reading top of stack

Note1: we need to consider using the $ for cases of the original machine looking at empty
stack, when using λ for stack check. This guarantees we have top of stack until very end.
Note2: If original adds stuff to stack, we do pop, followed by a bunch of pushes.

– We add (f, λ) = (f, POP) to d’(qf, λ, $) whenever qf is in F, so we jump to a fixed final state.

• Now, wlog, we can assume our PDA uses only POP and PUSH, has just
one final state and accepts by empty stack and final state. We will assume
the original machine is of this form and that its bottom of stack is $.

• Define G = (V, S, R, S) where
– V = {S} È { <q, X, p> | q,p Î Q, X Î G }
– R on next page

4/17/17 COT 4210 © UCF 210

Rules for PDA to CFG
• R contains rules as follows:

S ® <q0,$,f> where F = {f}
meaning: want to generate w whenever
[q0,w,$] |¾*[f,λ,λ]

• Remaining rules are:
<q,X,p> ® a<s,Y,t><t,X,p>
whenever d(q,a,X) ⊇ {(s,PUSH(Y))}
<q,X,p> ® a
whenever d(q,a,X) ⊇ {(p,POP)}

• Want <q,X,p>Þ*w when [q,w,X] |¾*[p,λ,λ]
4/17/17 COT 4210 © UCF 211

Greibach Normal Form
• Each rule of a GNF is constrained to be of form:

A → aa, A ∈ V, a ∈ Σ, a∈ V*
• If the language contains l then we allow

S → l
and constrain S to not be on right hand side of any rule

• The beauty of this form is that, in a bottom up parse,
every step consumes an input character and so parse is
linear (if we guess right)

• We will not show details of conversion but it is
dependent on starting in CNF and then removing left
recursion, both of which we have already shown

4/17/17 COT 4210 © UCF 212

Closure Properties

Context Free Languages

Intersection with Regular
• CFLs are closed under intersection with Regular sets

– To show this we use the equivalence of CFGs generative power with the
recognition power of PDAs.

– Let A0 = (Q0, S, G, d0, q0, $, F0) be an arbitrary PDA
– Let A1 = (Q1, S, d1, q1, F1) be an arbitrary DFA
– Define A2 = (Q0 ´ Q1, S, G, d2, <q0,q1> $, F0 ´ F1) where

• d2(<q,s>, a, X) ⊇ {(<q’,s’>, a)}, aÎSÈ{l}, XÎG iff
d0(q, a, X) ⊇ {(q’, a)} and
d1(s,a) = s’ (if a=l then s’ = s).

– Using the definition of derivations we see that
[<q0,q1>, w, $] |¾* [<t,s>, l, b] in A2 iff
[q0, w, $] |¾* [t, l, b] in A0 and
[q1, w] |¾* [s, l] in A1

But then wÎF(A2) iff tÎF0 and sÎF1 iff wÎF(A0) and wÎF(A1)

4/17/17 COT 4210 © UCF 214

Substitution
• CFLs are closed under CFL substitution

– Let G=(V,S,R,S) be a CFG.
– Let f be a substitution over S such that

• f(a) = La for a Î S
• Ga = (Va,Sa,Ra,Sa) is a CFG that produces La.
• No symbol appears in more than one of V or any Va

– Define Gf = (V ÈaÎSVa, ÈaÎSSa, R’ ÈaÎSRa, S)
• R’ = { A ® g(a) where A ® a is in R }
• g: (VÈS)* ® (V ÈaÎSSa)*
• g(l) = l; g(B) = B, B Î V; g(a) = Sa, a Î S
• g(aX) = g(a) g(X), |a| > 0, X Î VÈS

– Claim, f(L(G)) = L(Gf), and so CFLs closed under
substitution and homomorphism.

4/17/17 COT 4210 © UCF 215

More on Substitution
• Consider G’f. If we limit derivations to the rules R’ = { A ® g(a)

where A ® a is in R } and consider only sentential forms over the
ÈaÎSSa , then S Þ* Sa1 Sa2 … San in G’ iff S Þ* a1 a2 … an
iff a1 a2 … an Î L(G). But, then w Î L(G) iff f(w) Î L(Gf) and, thus,
f(L(G)) = L(Gf).

• Given that CFLs are closed under intersection, substitution,
homomorphism and intersection with regular sets, we can recast
previous proofs to show that CFLs are closed under
– Prefix, Suffix, Substring, Quotient with Regular Sets

• Later we will show that CFLs are not closed under Quotient with
CFLs.

4/17/17 COT 4210 © UCF 216

Context Sensitive

Context Sensitive Grammar
G = (V, S, R, S) is a PSG where
Each member of R is a rule whose right side is no shorter than its left
side.
The essential idea is that rules are length preserving, although we do
allow S ® λ so long as S never appears on the right hand side of any
rule.
A context sensitive grammar is denoted as a CSG and the language
generated is a Context Sensitive Language (CSL).
The recognizer for a CSL is a Linear Bounded Automaton (LBA), a form
of Turing Machine (soon to be discussed), but with the constraint that it
is limited to moving along a tape that contains just the input surrounded
by a start and end symbol.

4/17/17 COT 4210 © UCF 218

Phrase Structured Grammar
We previously defined PSGs. The language generated by a
PSG is a Phrase Structured Language (PSL) but is more
commonly called a recursively enumerable (re) language.
The reason for this will become evident a bit later in the
course.

The recognizer for a PSL (re language) is a Turing
Machine, a model of computation we will soon discuss.

4/17/17 COT 4210 © UCF 219

4/17/17

Assignment # 7
1. Write a CFG to show the language is a CFL or use the Pumping

Lemma for CFLs to prove that it is not for each of the following.
a) L = { xwwR | w,x∈{a,b}+ }
b) L = { an bsum(1..n) | n>0 }

2. Consider the context-free grammar G = ({ S } , { a , b } , R , S),
where R is:

S → S a S b S | S b S a S | λ
Provide the part of the proof that shows

L = { w | w has as many a’s as b’s } ⊆ L (G)
You will need to provide an inductive proof

Due: 3/9 (Thursday), 10:30AM (use Webcourses to turn in)

COT 4210 © UCF 220220COT 4210 © UCF

CSG Example#1
L = { anbncn | n.0 }
G = ({A,B,C}, {a,b,c}, R, A) where R is
A → aBbc | abc
B → aBbC | abC
Note: A ⇒ aBbc⇒n an+1(bC)n bc // n>0
Cb → bC // Shuttle C over to a c
Cc → cc // Change C to a c
Note: an+1(bC)n bc⇒* an+1bn+1cn+1

Thus, A ⇒* anbncn , n>0

4/17/17 COT 4210 © UCF 221

CSG Example#2
L = { ww | w ∈{0,1}+ }
G = ({S,A,X,Z,<0>,<1>}, {0,1}, R, S) where R is
S → 00 | 11 | 0A<0> | aA<1> | 1A<1>
A → 0AZ | 1AX | 0Z | 1X
Z0 → 0Z Z1 → 1Z // Shuttle Z (for owe zero)
X0 → 0X X1 → 1X // Shuttle X (for owe one)
Z<0> → 0<0> Z<1> → 1<0> // New 0 must be on rhs of old 0/1’s
X<0> → 0<1> X<1> → 1<1> // New 1 must be on rhs of old 0/1’s
<0> → 0 // Guess we are done
<1> → 1 // Guess we are done

4/17/17 COT 4210 © UCF 222

Midterm#2 Topics
• Context free grammars

– Writing grammars for specific languages
– Leftmost and rightmost derivations, Parse trees, Ambiguity
– Closure (union, concatenation, reversal, substitution, homomorphism)
– Pumping Lemma for CFLs
– Chomsky Normal Form

• Remove lambda rules
• Remove chain rules
• Remove non-generating (unproductive) non-terminals (and rules)
• Remove unreachable non-terminals (and rules)
• Make rhs match CNF constraints

– CKY algorithm

4/17/17 COT 4210 © UCF 223

Midterm#2 Topics
• Push-down automata

– Various notions of acceptance and their equivalence
– Deterministic vs non-deterministic
– Equivalence to CFLs
– Top-down vs bottom up parsing

• Closure
– Intersection with regular
– Quotient with regular, Prefix, Suffix, Substring

• Non-Closure
– Intersection, complement, min, max

4/17/17 COT 4210 © UCF 224

Midterm#2 Topics
• Context sensitive grammars and LBAs

– Rules for CSG
– Ability to shuttle symbols to preset places
– Just basic definition of LBA

• Other
– Guarantee closure based on substitution and intersection with Regular

sets in Exam#1

4/17/17 COT 4210 © UCF 225

Computability
The study of what can/cannot be

done via purely mechanical
means

Basic Definitions
The Preliminaries

4/17/17 COT 4210 © UCF 228

Goals of Computability
• Provide precise characterizations (computational

models) of the class of effective procedures / algorithms.
• Study the boundaries between complete and incomplete

models of computation.
• Study the properties of classes of solvable and

unsolvable problems.
• Solve or prove unsolvable open problems.
• Determine reducibility and equivalence relations among

unsolvable problems.
• Our added goal is to apply these techniques and results

across multiple areas of Computer Science.

228

4/17/17 COT 4210 © UCF 229

Effective Procedure
• A process whose execution is clearly specified to the

smallest detail
• Such procedures have, among other properties, the

following:
– Processes must be finitely describable and the language used to

describe them must be over a finite alphabet.
– The current state of the machine model must be finitely

presentable.
– Given the current state, the choice of actions (steps) to move to

the next state must be easily determinable from the procedure’s
description.

– Each action (step) of the process must be capable of being
carried out in a finite amount of time.

– The semantics associated with each step must be clear and
unambiguous.

229

4/17/17 COT 4210 © UCF 230

Algorithm
• An effective procedure that halts on all

input
• The key term here is “halts on all input”
• By contrast, an effective procedure may

halt on all, none or some of its input.
• The domain of an algorithm is its entire

domain of possible inputs.

230

4/17/17 COT 4210 © UCF 231

Sets and Decision Problems
• Set -- A collection of atoms from some

universe U. Ø denotes the empty set.
• (Decision) Problem -- A set of questions,

each of which has answer “yes” or “no”.

231

4/17/17 COT 4210 © UCF 232

Categorizing Problems (Sets)
• Solvable or Decidable -- A problem P is said to

be solvable (decidable) if there exists an
algorithm F which, when applied to a question q
in P, produces the correct answer (“yes” or
“no”).

• Solved -- A problem P is said to solved if P is
solvable and we have produced its solution.

• Unsolved, Unsolvable (Undecidable) --
Complements of above

232

4/17/17 COT 4210 © UCF 233

Categorizing Problems (Sets) # 2
• Recursively enumerable -- A set S is recursively

enumerable (re) if S is empty (S = Ø) or there exists an
algorithm F, over the natural numbers N, whose range is
exactly S. A problem is said to be re if the set
associated with it is re.

• Semi-Decidable -- A problem is said to be semi-
decidable if there is an effective procedure F which,
when applied to a question q in P, produces the answer
“yes” if and only if q has answer “yes”. F need not halt
if q has answer “no”.

• Semi-decidable is the same as the notion of
recognizable used in the text.

233

4/17/17 COT 4210 © UCF 234

Immediate Implications
• P solved implies P solvable implies P

semi-decidable (re, recognizable).
• P non-re implies P unsolvable implies P

unsolved.
• P finite implies P solvable.

234

Slightly Harder Implications
• P enumerable iff P semi-decidable.
• P solvable iff both SP and (U — SP) are re

(semi-decidable).

• We will prove these later.

4/17/17 COT 4210 © UCF 235

4/17/17 COT 4210 © UCF 236

Existence of Undecidables
• A counting argument

– The number of mappings from N to N is at least as
great as the number of subsets of N. But the number
of subsets of N is uncountably infinite (À1). However,
the number of programs in any model of computation
is countably infinite (À0). This latter statement is a
consequence of the fact that the descriptions must be
finite and they must be written in a language with a
finite alphabet. In fact, not only is the number of
programs countable, it is also effectively enumerable;
moreover, its membership is decidable.

• A diagonalization argument
– Will be shown later in class

236

Hilbert’s Tenth

Diophantine Equations are
Unsolvable

One Variable Diophantine
Equations are Solvable

4/17/17 COT 4210 © UCF 238

Hilbert’s 10th

• In 1900 declared there were 23 really important
problems in mathematics.

• Belief was that the solutions to these would help
address math’s complexity.

• Hilbert’s Tenth asks for an algorithm to find the
integral roots of polynomials with integral
coefficients. For example
6x3yz2 + 3xy2 – x3 – 10 = 0 has roots
x = 5; y = 3; z = 0

• This is now known to be impossible (In 1970,
Matiyacevič showed this undecidable).

238

4/17/17 COT 4210 © UCF 239

Hilbert’s 10th is Semi-Decidable

• Consider over one variable: P(x) = 0
• Can semi-decide by plugging in

0, 1, -1, 2, -2, 3, -3, …
• This terminates and says “yes” if P(x)

evaluates to 0, eventually. Unfortunately, it
never terminates if there is no x such that
P(x) =0.

• Can easily extend to P(x1,x2,..,xk) = 0.

239

4/17/17 COT 4210 © UCF 240

P(x) = 0 is Decidable

• cn xn + cn-1 xn-1 +… + c1 x + c0 = 0
• xn = -(cn-1 xn-1 + … + c1 x + c0)/cn

• |xn| £ cmax(|xn-1| + … + |x| + 1|)/|cn|
• |xn| £ cmax(n |xn-1|)/|cn|, since |x|³1
• |x| £ n´cmax/|cn|

240

4/17/17 COT 4210 © UCF 241

P(x) = 0 is Decidable
• Can bound the search to values of x in range [±

n * (cmax / cn)], where
n = highest order exponent in polynomial
cmax = largest absolute value coefficient
cn = coefficient of highest order term

• Once we have a search bound and we are
dealing with a countable set, we have an
algorithm to decide if there is an x.

• Cannot find bound when more than one
variable, so cannot extend to P(x1,x2,..,xk) = 0.

241

Turing Machines

1st Model
A Linear Memory Machine

Textbook Description
• A Turing machine is a 7-tuple

(Q, Σ, Γ, δ, q0, qaccept, qreject)
• Q is finite set of states
• Σ, is a finite input alphabet not containing the

blank symbol ⊔
• Γ is finite set of tape symbols that includes Σ and
⊔ commonly Γ = Σ∪ {⊔}

• δ: Q×Γ➝ Q×Γ×{R,L}
• q0 starts, qaccept accepts, qreject rejects

4/17/17 COT 4210 © UCF 243

Turing versus Post
• The Turing description just given requires you to write a new symbol

and move off the current tape square
• Post had a variant where

δ: Q×Γ➝ Q×(Γ∪{R,L})
• Here, you either write or move, not both
• Also, Post did not have an accept or reject state – acceptance is

giving an answer of 1; rejection is 0; this treats decision procedures
as predicates (functions that map input into {0,1})

• The way we stop our machines from running is to omit actions for
some discriminants making the transition function partial

• I tend to use Post’s notation and to create macros so machines are
easy to create

• I am not a fan of having you build Turing tables

4/17/17 COT 4210 © UCF 244

Basic Description
• We will use a simplified form that is a variant of Post’s models.
• Here, each machine is represented by a finite set of states Q,

the simple alphabet {0,1}, where 0 is the blank symbol, and
each state transition is defined by a 4-tuple of form

q a X s
where q a is the discriminant based on current state q,
scanned symbol a; X can be one of {R, L, 0, 1}, signifying
move right, move left, print 0, or 1; and s is the new state.

• Limiting the alphabet to {0,1} is not really a limitation. We can
represent a k-letter alphabet by encoding the j-th letter via j
1’s in succession. A 0 ends each letter, and two 0’s ends a
word.

• We rarely write quads. Rather, we typically will build
machines from simple forms.

4/17/17 COT 4210 © UCF 245

Base Machines
• R -- move right over any scanned symbol
• L -- move left over any scanned symbol
• 0 -- write a 0 in current scanned square
• 1 -- write a 1 in current scanned square
• We can then string these machines together with

optionally labeled arc.
• A labeled arc signifies a transition from one part of the

composite machine to another, if the scanned square’s
content matches the label. Unlabeled arcs are
unconditional. We will put machines together without
arcs, when the arcs are unlabeled.

4/17/17 COT 4210 © UCF 246

Useful Composite Machines

R 1

4/17/17 COT 4210 © UCF 247

R -- move right to next 0 (not including current square)
…?11…10… Þ …?11…10…

L -- move left to next 0 (not including current square)
…011…1?… Þ …011…1?…

L 1

Commentary on Machines
• These machines can be used to move

over encodings of letters or encodings of
unary based natural numbers.

• In fact, any effective computation can
easily be viewed as being over natural
numbers. We can get the negative
integers by pairing two natural numbers.
The first is the sign (0 for +, 1 for -). The
second is the magnitude.

4/17/17 COT 4210 © UCF 248

Computing with TMs
A reasonably standard definition of a Turing
computation of some n-ary function F is to
assume that the machine starts with a tape
containing the n inputs, x1, … , xn in the form

…01x101x20…01xn0…
and ends with

…01x101x20…01xn01y0…
where y = F(x1, … , xn).

4/17/17 COT 4210 © UCF 249

Addition by TM
Need the copy family of useful
submachines, where Ck copies k-th
preceding value.

The add machine is then
C2 C2 L 1 R L 0

4/17/17 COT 4210 © UCF 250

1

0

R L
k R

0 R

k k+1 1 L
k+1

1

Turing Machine Variations
• Two tracks
• N tracks
• Non-deterministic *********
• Two-dimensional
• K dimensional
• Two stack machines
• Two counter machines

4/17/17 COT 4210 © UCF 251

Register Machines

2nd Model
Feels Like Assembly Language

Register Machine Concepts
• A register machine consists of a finite length program,

each of whose instructions is chosen from a small
repertoire of simple commands.

• The instructions are labeled from 1 to m, where there are
m instructions. Termination occurs as a result of an
attempt to execute the m+1-st instruction.

• The storage medium of a register machine is a finite set
of registers, each capable of storing an arbitrary natural
number.

• Any given register machine has a finite, predetermined
number of registers, independent of its input.

4/17/17 COT 4210 © UCF 253

COT 4210 © UCF 254

Computing by Register Machines
• A register machine partially computing some n-

ary function F typically starts with its argument
values in the first n registers and ends with the
result in the n+1-st register.

• We extend this slightly to allow the computation
to start with values in its k+1-st through k+n-th
register, with the result appearing in the k+n+1-
th register, for any k, such that there are at least
k+n+1 registers.

• Sometimes, we use the notation of finishing with
the results in the first register, and the
arguments appearing in 2 to n+1.

4/17/17

COT 4210 © UCF 255

Register Instructions
• Each instruction of a register machine is of

one of two forms:
INCr[i] –

increment r and jump to i.
DECr[p, z] –

if register r > 0, decrement r and jump to p
else jump to z

• Note, we do not use subscripts if obvious.

4/17/17

COT 4210 © UCF 256

Addition by RM
Addition (r3 ¬ r1 + r2)
1. DEC3[1,2] : Zero result (r3) and work (r4) registers
2. DEC4[2,3]
3. DEC1[4,6] : Add r1 to r3, saving original r1 in r4
4. INC3[5]
5. INC4[3]
6. DEC4[7,8] : Restore r1
7. INC1[6]
8. DEC2[9,11] : Add r2 to r3, saving original r2 in r4
9. INC3[10]
10. INC4[8]
11.DEC4[12,13] : Restore r2
12. INC2[11]
13. : Halt by branching here

4/17/17

COT 4210 © UCF 257

Limited Subtraction by RM
Subtraction (r3 ¬ r1 - r2, if r1≥r2; 0, otherwise)
1. DEC3[1,2] : Zero result (r3) and work (r4) registers
2. DEC4[2,3]
3. DEC1[4,6] : Add r1 to r3, saving original r1 in r4
4. INC3[5]
5. INC4[3]
6. DEC4[7,8] : Restore r1
7. INC1[6]
8. DEC2[9,11] : Subtract r2 from r3, saving original r2 in r4
9. DEC3[10,10] : Note that decrementing 0 does nothing
10. INC4[8]
11.DEC4[12,13] : Restore r2
12. INC2[11]
13. : Halt by branching here

4/17/17

Factor Replacement
Systems

3rd Model
Deceptively Simple

COT 4210 © UCF 259

Factor Replacement Concepts
• A factor replacement system (FRS) consists of a finite

(ordered) sequence of fractions, and some starting
natural number x.

• A fraction a/b is applicable to some natural number x,
just in case x is divisible by b. We always chose the first
applicable fraction (a/b), multiplying it times x to produce
a new natural number x*a/b. The process is then
applied to this new number.

• Termination occurs when no fraction is applicable.
• A factor replacement system partially computing n-ary

function F typically starts with its argument encoded as
powers of the first n odd primes. Thus, arguments
x1,x2,…,xn are encoded as 3x15x2…pn

xn. The result
then appears as the power of the prime 2.

4/17/17

COT 4210 © UCF 260

Addition by FRS
Addition is 3x15x2 becomes 2x1+x2

or, in more details, 203x15x2 becomes 2x1+x2 3050

2 / 3
2 / 5

Note that these systems are sometimes presented as
rewriting rules of the form

bx ® ax
meaning that a number that has can be factored as bx
can have the factor b replaced by an a.
The previous rules would then be written

3x ® 2x
5x ® 2x

4/17/17

COT 4210 © UCF 261

Limited Subtraction by FRS
Subtraction is 3x15x2 becomes 2max(0,x1-x2)

3×5x ® x
3x ® 2x
5x ® x

4/17/17

COT 4210 © UCF 262

Ordering of Rules
• The ordering of rules are immaterial for the

addition example, but are critical to the workings
of limited subtraction.

• In fact, if we ignore the order and just allow any
applicable rule to be used we get a form of non-
determinism that makes these systems
equivalent to Petri nets.

• The ordered kind are deterministic and are
equivalent to a Petri net in which the transitions
are prioritized.

4/17/17

COT 4210 © UCF 263

Why Deterministic?
To see why determinism makes a difference, consider

3×5x ® x
3x ® 2x
5x ® x

Starting with 135 = 3351, deterministically we get
135 Þ 9 Þ 6 Þ 4 = 22

Non-deterministically we get a larger, less selective set.
135 Þ 9 Þ 6 Þ 4 = 22

135 Þ 90 Þ 60 Þ 40 Þ 8 = 23

135 Þ 45 Þ 3 Þ 2 = 21

135 Þ 45 Þ 15 Þ 1 = 20

135 Þ 45 Þ 15 Þ 5 Þ 1 = 20

135 Þ 45 Þ 15 Þ 3 Þ 2 = 21

135 Þ 45 Þ 9 Þ 6 Þ 4 = 22

135 Þ 90 Þ 60 Þ 40 Þ 8 = 23

…
This computes 2z where 0 ≤ z≤x1. Think about it.
4/17/17

COT 4210 © UCF 264

More on Determinism
In general, we might get an infinite set
using non-determinism, whereas
determinism might produce a finite set. To
see this consider a system

2x ® x
2x ® 4x

starting with the number 2.

4/17/17

Sample RM and FRS
Present a Register Machine that computes IsOdd. Assume R2=x;
at termination, set R2=1 if x is odd; 0 otherwise.
1. DEC2[2, 4]
2. DEC2[1, 3]
3. INC1[4]
4.
Present a Factor Replacement System that computes IsOdd.
Assume starting number is 3^x; at termination, result is 2=2^1 if x
is odd; 1= 2^0 otherwise.
3*3 x ® x
3 x ® 2 x

4/17/17 COT 4210 © UCF 265

Sample FRS
Present a Factor Replacement System that computes IsPowerOf2.
Assume starting number is 3x 5; at termination, result is 2=21 if x is
a power of 2; 1= 20 otherwise
32*5 x ® 5*7 x
3*5*7 x ® x
3*5 x ® 2 x
5*7 x ® 7*11 x
7*11 x ® 3*11 x
11 x ® 5 x
5 x ® x
7 x ® x

4/17/17 COT 4210 © UCF 266

Primitive Recursive

An Incomplete Model

COT 4210 © UCF 268

Basis of PRFs
• The primitive recursive functions are defined by

starting with some base set of functions and
then expanding this set via rules that create new
primitive recursive functions from old ones.

• The base functions are:
Ca(x1,…,xn) = a : constant functions

(x1,…,xn) = xi : identity functions
: aka projection

S(x) = x+1 : an increment function
 i

nI

4/17/17

COT 4210 © UCF 269

Building New Functions
• Composition:

If G, H1, … , Hk are already known to be primitive
recursive, then so is F, where

F(x1,…,xn) = G(H1(x1,…,xn), … , Hk(x1,…,xn))
• Iteration (aka primitive recursion):

If G, H are already known to be primitive recursive, then
so is F, where

F(0, x1,…,xn) = G(x1,…,xn)
F(y+1, x1,…,xn) = H(y, x1,…,xn, F(y, x1,…,xn))

We also allow definitions like the above, except iterating
on y as the last, rather than first argument.

4/17/17

COT 4210 © UCF 270

Addition & Multiplication
Example: Addition

+(0,y) = (y)
+(x+1,y) = H(x,y,+(x,y))

where H(a,b,c) = S((a,b,c))
Example: Multiplication

*(0,y) = C0(y)
(x+1,y) = H(x,y,(x,y))

where H(a,b,c) = +((a,b,c), (a,b,c))
= b+c = y + *(x,y) = (x+1)*y

 2
3I

 1
1I

 3
3I

 3
3I

4/17/17

COT 4210 © UCF 271

Intuitive Composition
• Any time you have already shown some functions to be

primitive recursive, you can show others are by building
them up through composition

• Exaple#1: If g and h are primitive recursive functions
(prf) then so is f(x) = g(h(x)). As an explicit example
Add2(x) = S(S(x)) = x+2 is a prf

• Example#2: This can also involve multiple functions and
multiple arguments like, if g, h and j are prf’s then so is
f(x,y) = g(h(x), j(y))
The problem with giving an explicit example here is that
interesting compositions tend to also involve induction.

4/17/17

COT 4210 © UCF 272

Intuitive Inductions
• A function F can be defined inductively using existing

prf’s. Typically, we have one used for the basis and
another for building inductively.

• Example#1: We can build addition from successor (S)
x+0 = x (formally +(x,0) = I(x))
x+y+1 = S(x+y) (formally +(x,y+1) = S(+(x,y))

• Example#2: We can build multiplication from addition
x*0 = 0 (formally *(x,0) = C0)
x*(y+1) = +(x,x*y)) (formally *(x,y+1) = +(x,*(x,y)))

4/17/17

COT 4210 © UCF 273

Basic Arithmetic
x + 1:

x + 1 = S(x)
x – 1:

0 - 1 = 0
(x+1) - 1 = x

x + y:
x + 0 = x
x+ (y+1) = (x+y) + 1

x – y: // limited subtraction
x – 0 = x
x – (y+1) = (x–y) – 1

4/17/17

COT 4210 © UCF 274

2nd Grade Arithmetic
x * y:

x * 0 = 0
x * (y+1) = x*y + x

x!:
0! = 1
(x+1)! = (x+1) * x!

4/17/17

COT 4210 © UCF 275

Basic Relations
x == 0:

0 == 0 = 1
(y+1) == 0 = 0

x == y:
x==y = ((x – y) + (y – x)) == 0

x ≤ y :
x≤y = (x – y) == 0

x ≥ y:
x≥y = y≤x

x > y :
x>y = ~(x≤y) /* See ~ on next page */

x < y :
x<y = ~(x≥y)

4/17/17

COT 4210 © UCF 276

Basic Boolean Operations
~x:

~x = x==0

signum(x): 1 if x>0; 0 if x==0
~(x==0)

x && y:
x&&y = signum(x*y)

x || y:
x||y = ~((x==0) && (y==0))

4/17/17

COT 4210 © UCF 277

Definition by Cases
One case

g(x) if P(x)
f(x) =

h(x) otherwise
f(x) = P(x) * g(x) + (1-P(x)) * h(x)

Can use induction to prove this is true for all k>0, where
g1(x) if P1(x)
g2(x) if P2(x) && ~P1(x)

f(x) = …
gk(x) if Pk(x) && ~(P1(x) || … || ~Pk-1(x))
h(x) otherwise

4/17/17

COT 4210 © UCF 278

Bounded Minimization 1
f(x) = µ z (z ≤ x) [P(z)] if $ such a z,

= x+1, otherwise
where P(z) is primitive recursive.

Can show f is primitive recursive by
f(0) = 1-P(0)
f(x+1) = f(x) if f(x) ≤ x

= x+2-P(x+1) otherwise

4/17/17

COT 4210 © UCF 279

Bounded Minimization 2
f(x) = µ z (z < x) [P(z)] if $ such a z,

= x, otherwise
where P(z) is primitive recursive.

Can show f is primitive recursive by
f(0) = 0
f(x+1) = µ z (z ≤ x) [P(z)]

4/17/17

COT 4210 © UCF 280

Intermediate Arithmetic
x // y:

x//0 = 0 : silly, but want a value
x//(y+1) = µ z (z<x) [(z+1)*(y+1) > x]

x | y: x is a divisor of y
x|y = ((y//x) * x) == y

4/17/17

COT 4210 © UCF 281

Primality
firstFactor(x): first non-zero, non-one factor of x.

firstfactor(x) = µ z (2 ≤ z ≤ x) [z|x] ,
0 if none

isPrime(x):
isPrime(x) = firstFactor(x) == x && (x>1)

prime(i) = i-th prime:
prime(0) = 2
prime(x+1) = µ z(prime(x)< z ≤prime(x)!+1)[isPrime(z)]

We will abbreviate this as pi for prime(i)

4/17/17

COT 4210 © UCF 282

Exponents
x^y:

x^0 = 1
x^(y+1) = x * x^y

exp(x,i): the exponent of pi in number x.
exp(x,i) = µ z (z<x) [~(pi^(z+1) | x)]

4/17/17

COT 4210 © UCF 283

Pairing Functions
• pair(x,y) = <x,y> = 2x (2y + 1) – 1

• with inverses
<z>1 = exp(z+1,0)

<z>2 = (((z + 1) // 2 <z>1) – 1) // 2
• These are very useful and can be extended to

encode n-tuples
<x,y,z> = <x, <y,z> > (note: stack analogy)

4/17/17

Pairing Function is 1-1 Onto
Prove that the pairing function <x,y> = 2^x (2y + 1) - 1
is 1-1 onto the natural numbers.
Approach 1:
We will look at two cases, where we use the following
modification of the pairing function, <x,y>+1, which implies
the problem of mapping the pairing function to Z+.

4/17/17 © UCF EECS 284

Case 1 (x=0)
Case 1:
For x = 0, <0,y>+1 = 20(2y+1) = 2y+1. But every odd
number is by definition one of the form 2y+1, where y≥0;
moreover, a particular value of y is uniquely associated
with each such odd number and no odd number is
produced when x=0. Thus, <0,y>+1 is 1-1 onto the odd
natural numbers.

4/17/17 © UCF EECS 285

Case 2 (x > 0)
Case 2:
For x > 0, <x,y>+1 = 2x(2y+1), where 2y+1 ranges over all odd number
and is uniquely associated with one based on the value of y (we saw
that in case 1). 2x must be even, since it has a factor of 2 and hence
2x(2y+1) is also even. Moreover, from elementary number theory, we
know that every even number except zero is of the form 2xz, where
x>0, z is an odd number and this pair x,y is unique. Thus, <x,y>+1 is 1-
1 onto the even natural numbers, when x>0.

The above shows that <x,y>+1 is 1-1 onto Z+, but then <x,y> is 1-1 onto
À, as was desired.

4/17/17 © UCF EECS 286

µ Recursive

4th Model
A Simple Extension to Primitive

Recursive

COT 4210 © UCF 288

µ Recursive Concepts
• All primitive recursive functions are algorithms

since the only iterator is bounded. That’s a clear
limitation.

• There are algorithms like Ackerman’s function
that cannot be represented by the class of
primitive recursive functions.

• The class of recursive functions adds one more
iterator, the minimization operator (µ), read “the
least value such that.”

4/17/17

COT 4210 © UCF 289

Ackermann’s Function
• A(1, j)=2j for j ≥ 1
• A(i, 1)=A(i-1, 2) for i ≥ 2
• A(i, j)=A(i-1, A(i, j-1)) for i, j ≥ 2
• Wilhelm Ackermann observed in 1928 that this is not a

primitive recursive function.
• Ackermann’s function grows too fast to have a for-loop

implementation.
• The inverse of Ackermann’s function is important to analyze

Union/Find algorithm. Note: A(4,4) is
a super exponential number involving six levels of
exponentiation. a(n) = A-1(n, n) grows so slowly that it is less
than 5 for any value of n that can be written using the number
of atoms in our universe.

4/17/17

COT 4210 © UCF 290

Union/Find
• Start with a collection S of unrelated elements –

singleton equivalence classes
• Union(x,y), x and y are in S, merges the class

containing x ([x]) with that containing y ([y])
• Find(x) returns the canonical element of [x]
• Can see if xºy, by seeing if Find(x)==Find(y)
• How do we represent the classes?
• You should have learned that in CS2

4/17/17

COT 4210 © UCF 291

The µ Operator
• Minimization:

If G is already known to be recursive, then
so is F, where

F(x1,…,xn) = µy (G(y,x1,…,xn) == 1)
• We also allow other predicates besides

testing for one. In fact any predicate that
is recursive can be used as the stopping
condition.

4/17/17

© UCF EECS 292

Universal Machine
• In the process of doing this reduction, we

will build a Universal Machine.
• This is a single recursive function with two

arguments. The first specifies the factor
system (encoded) and the second the
argument to this factor system.

• The Universal Machine will then simulate
the given machine on the selected input.

4/17/17

© UCF EECS 293

Encoding FRS
• Let (n, ((a1,b1), (a2,b2), … ,(an,bn)) be

some factor replacement system, where
(ai,bi) means that the i-th rule is

aix ® bix
• Encode this machine by the number F,

pppp nnnn

n bababa nn

2212212117532 2211

++-
!

4/17/17

© UCF EECS 294

Simulation by Recursive # 1
• We can determine the rule of F that applies to x by

RULE(F, x) = µ z (1 ≤ z ≤ exp(F, 0)+1) [exp(F, 2*z-1) | x]
• Note: if x is divisible by ai, and i is the least integer for which this is true, then exp(F,2*i-1)

= ai where ai is the number of prime factors of F involving p2i-1. Thus, RULE(F,x) = i.

If x is not divisible by any ai, 1≤i≤n, then x is divisible by 1, and RULE(F,x) returns n+1.
That’s why we added p2n+1 p2n+2.

• Given the function RULE(F,x), we can determine NEXT(F,x), the number that follows x,
when using F, by

NEXT(F, x) = (x // exp(F, 2*RULE(F, x)-1)) * exp(F, 2*RULE(F, x))

4/17/17

© UCF EECS 295

Simulation by Recursive # 2
• The configurations listed by F, when

started on x, are
CONFIG(F, x, 0) = x
CONFIG(F, x, y+1) = NEXT(F, CONFIG(F, x, y))

• The number of the configuration on which
F halts is

HALT(F, x) = µ y [CONFIG(F, x, y) == CONFIG(F, x, y+1)]
This assumes we converge to a fixed point only if we stop

4/17/17

© UCF EECS 296

Simulation by Recursive # 3
• A Universal Machine that simulates an

arbitrary Factor System, Turing Machine,
Register Machine, Recursive Function can
then be defined by
Univ(F, x) = exp (CONFIG (F, x, HALT (F, x)), 0)

• This assumes that the answer will be
returned as the exponent of the only even
prime, 2. We can fix F for any given
Factor System that we wish to simulate.

4/17/17

Undecidability

We Can’t Do It All

Cantor and Infinities
The previous “brash” statement (page 24) suggests there are at least

two infinite cardinals, |N	| and |R	|. Furthermore, |N	| is a countable
cardinal and |R	| is an uncountable cardinal. In fact there are
infinitely many distinct cardinal numbers representing infinite sets!

In addition to these facts, Cantor proved that there is a smallest infinite
cardinal number. He designated this smallest infinite cardinal
number, À0 , named “aleph-null”; aleph is a symbol in the Hebrew
alphabet. He further showed that given any cardinal number, Àk ,
there is a next smallest cardinal number, Àk+1.

Cantor was able to prove that | N		| = À0, and although many
mathematicians believe that À1 = |R	|, this has never been proven
from the axioms of mathematical set theory.

4/17/17 COT 4210 © UCF 298

How Many Infinities?
• The theorem stated and proven next is due to Cantor

and gives us a mechanism for defining two sets of
distinctly different cardinality (one being strictly larger
than the other). By inductively applying Cantor’s
theorem it follows that there are infinitely many cardinal
numbers denoting the sizes of infinite sets. Cantor’s
theorem uses the power set of a given set.

4/17/17 COT 4210 © UCF 299

Cantor’s Theorem

4/17/17 COT 4210 © UCF 300

Theorem (Cantor). Let S be any set. Then |S| < |P(S)|.
Proof.
Case1: Suppose S = Ø. Then P(S) = {Ø}. Since |S| = 0 and |P(S)| = 1, the result holds.
Case2: Assume S ¹ Ø.
(a) First we show that |S| £ |P(S)|.
To show this we must find an injection, f, from S to P(S).
Consider f(x) = {x}. Clearly, f(x) Î P(S) for all x ÎS.
Furthermore, if x ¹ y, then f(x) = {x} ¹ {y} = f(y).
Thus f is the desired function and we may conclude that |S| £ |P(S)|.
(b) Next we wish to show |S| ¹|P(S)|. We do this by contradiction.
Assume |S| = |P(S)|, then by definition of equality of cardinal numbers, there is a
function, f, that is 1-1 and onto from S to P(S).
Define Z = { x Î S | x Ï f(x) }. Clearly, Z is a subset (possibly empty) of S.
Therefore there is a y Î S such that f(y) = Z. This follows from our assumption that f
is onto P(S). Then either y Î Z or y Ï Z.
(b.1) Suppose y Î Z , then by definition of Z, y Ï f(y) = Z; a contradiction.
(b.2) Suppose y Ï Z, then by definition of Z, y Î f(y) = Z; a contradiction.
Since the existence of f led to this logical absurdity, we must conclude that f cannot
exist and thus |S| = |P(S)| is false. This establishes (b).

(a) and (b) together imply |S| < |P(S)|.

Corollaries
• If |S| = | N		|, then |P(S)| > | N		| = À0 .

• There are sets whose cardinalities are greater than
À0. These sets are uncountably infinite, whereas
those that correspond to N are countably infinite.

• Note that a set can be countable and yet there is no
effective way to describe its correspondence with N	.
Look back and you will see that the definition just
says that an injective function exists, not that this
function is actually computable.

4/17/17 COT 4210 © UCF 301

Cardinalities of Z and Q	
1. We show that | N	 | = | Z |.

| N	 | £ | Z |: Define g: N® Z as follows: g(i) = i
| Z | £ | N	 |: Define f: Z® N as follows:

2. To show | N	 | = | Q | we develop the proof in two steps:
(a) Lemma – prove that |A| £ |S| for every subset A of S.

Note: This is what we did for | N	 | £ | Z |
(b) Prove that | N ´ N	 | = | N		|.

4/17/17 COT 4210 © UCF 302

x= 0 1 -1 2 -2
f(x)= 0 1 2 3 4ï

î

ï
í

ì

<
>
=

=
0 x if ,2x -
0 x if 1,-2x
0 x if , 0

)(xf

|Subset| £ |Parent Set|
Lemma A. |A| £ |S|, for every subset A of S.

Proof. Let A be a subset of S. To establish that |A| £ |S|
we need to find a 1-1 function from A into S. The identity
function, f(x) = x, is the desired function; clearly, if x ¹ y,
then f(x) = x ¹ y = f(y). Since, f(x) Î S, for every x in A,
the lemma is proved.

4/17/17 COT 4210 © UCF 303

| N ´ N | = | N |
Lemma B. | N ´ N | = | N |.
Proof. Let S = N ´ N = {(k,j) | k,j Î N	}. Define the function, f((k,j)) = ((k+j)(k+j+1))/2 + j.

Clearly f is a function, since the defining expression is single-valued.
Furthermore, " k,j Î N	, f((k,j)) ³ 0. We have to show that f is 1-1 and onto N.
To show f is 1-1, let (k, j) and (k', j') be two distinct elements of S.
There are two cases to consider. (a) k+j = k'+j', or (b) k+j < k'+j' (or k'+j' < k+j).
Assume (a). Then f((k,j)) – f((k',j')) = j – j' (we can assume without loss of generality
that j-j' ³ 0). If j-j' = 0, then j = j'. Thus k+j = k'+j' implies k = k', but this contradicts our
assumption that (k,j) and (k',j') are distinct elements of S. Thus we must assume that
j-j' > 0. It follows immediately that f((k,j)) ¹ f((k',j').
Assume (b). Then we can assume k+j < k'+j' = k+j+a, for some a > 0. Now suppose
f(k',j')) = f((k,j)). Substituting k+j+a for k'+j' in the formula for f((k',j')) and equating to
f((k,j)), and doing the algebra we arrive at j = aj + y, where y is some positive number.
Clearly this relation cannot hold for any non-negative j and a > 0. We must conclude
that f((k,j)) ¹ f((k',j'). Thus f is 1-1.
To show that f is onto N, we need to show that given any m ³ 0, there is a (k,j) such
that f((k,j)) = m. Let x be the largest non-negative integer such that x(x+1)/2 £ m. It
follows that (x+1)(x+2)/2 > m. Now choose j = m - x(x+1)/2 and k = x-j. It follows that
f((k,j)) = m.

4/17/17 COT 4210 © UCF 304

Proof That | N | = | Q |
By definition, Q = { (a,b) | a Î Z and b Î Z+ }

| Q | £ | N |.
Q Í Z ´ N. Thus | Q | £ | Z ´ N | by Lemma A.
But | Z ´ N | = | N ´ N | using an argument similar to that
showing | Z | = | N |. (Define g by g(a,b) = (f(a),b)) where f
is the function used to map Z to N.)
By Lemma B it follows that | Q | £ | N |.

| N | £ | Q |.
Define f(a) = (a,1). This is a 1-1 mapping from N into Q,
showing | Q | £ | N |.

Thus, | N | = | Q |.

4/17/17 COT 4210 © UCF 305

Computable Languages 1
Let’s go over some important facts to this point:
1. S* denotes the set of all strings over some finite alphabet S
2. | S* | = |N|, where N is the set of natural numbers = the smallest

infinite cardinal (the countable infinity)
3. A language L over S is a subset of S*; that is, L Î P(S*) = 2S*

Here P denotes the power set constructor
4. | L | is countable because L Í S* (that is, | L | ≤ | S* | = |N|)
5. | S* | < | P(S*) | (uncountable infinity) implies there are an

uncountable number of languages over a given alphabet, S.
6. A program, P, in some programming language L, can be

represented as a string over a finite alphabet, SP that obeys the
rules of constructing programs defined by L. As P Î SP*, there are
at most a countably infinite number of programs that can be formed
in the language L.

4/17/17 COT 4210 © UCF 306

Computable Languages 2
7. Each program, P, in a programming language L, defines a function, FP:

SI* ® SO* where SI is the input alphabet and SO is the output alphabet.
8. FP defines an input language PI for which FP is defined (halts and

produces an output). This is referred to as its domain in our terminology
(SI is its universe of discourse). The range of FP, PO, is the set of outputs.
That is, PO = { y | ∃x in PI and y = FP (x) }

9. Since there are a countable number of programs, P, there can be at most
a countable number of functions FP and consequently, only a countable
number of distinct input languages and output languages associated with
programs in LP. Thus, there are only a countable number of languages
(input or output) that can be defined by any program, P.

10. But, there are an uncountable number of possible languages over any
given alphabet – see 3 and 5.

11. Thus there must be languages over a given alphabet that have no
descriptions – in terms of a program – or in terms of an algorithm. Thus,
there are only a countably infinite number of languages that are
computable among the uncountable number of possible languages.

4/17/17 COT 4210 © UCF 307

Programming Languages
1. Programming languages that we use as software developers are in a sense

“complete.” By complete we mean that they can be used to implement all
procedures that we think are computable (definable by a computational
model that we can “agree” covers all procedural activities).

2. Challenge: Why did I say “agree” rather than “prove”?
3. We mostly like programs that halt on all input (we call these algorithms), but

we know it’s always possible to do otherwise in every programming
language we think is complete (C, C++, C#, Java, Python, et al.)

4. We can, of course, define programming languages that define only
algorithms.

5. Unfortunately, we cannot define a programming language that produces all
and only algorithms (all and just programs that always halt).

6. The above (#5) is one of the main results shown in this course
7. However, before focusing on #5 we should recall that finite state, push

down and linear bounded automata are computational models that produce
only algorithms (when we monitor the latter two for loops) – it’s just that
these get us a subset of algorithms.

4/17/17 COT 4210 © UCF 308

Classic Unsolvable Problem
Given an arbitrary program P, in some language L, and
an input x to P, will P eventually stop when run with input
x?
The above problem is called the “Halting Problem.”
Book denotes the Halting Problem as ATM.
It is clearly an important and practical one – wouldn't it
be nice to not be embarrassed by having your program
run “forever” when you try to do a demo for the boss or
professor? Unfortunately, there’s a fly in the ointment as
one can prove that no algorithm can be written in L that
solves the halting problem for L.

4/17/17 309COT 4210 © UCF

Some terminology
We will say that a procedure, f, converges on input x if it eventually
halts when it receives x as input. We denote this as f(x)¯.

We will say that a procedure, f, diverges on input x if it never halts
when it receives x as input. We denote this as f(x).

Of course, if f(x)¯ then f defines a value for x. In fact we also say
that f(x) is defined if f(x)¯ and undefined if f(x).

Finally, we define the domain of f as {x | f(x)¯}.
The range of f is {y | there exists an x, f(x)¯ and f(x) = y }.

4/17/17 310COT 4210 © UCF

Numbering Procedures

Any programming language needs to have an
associated grammar that can be used to generate all
legitimate programs.

By ordering the rules of the grammar in a way that
generates programs in some lexical or syntactic order,
we have a means to recursively enumerate the set of all
programs. Thus, the set of procedures (programs) is re.

Using this fact, we will employ the notation that jx is the
x-th procedure and jx(y) is the x-th procedure with input
y. We also refer to x as the procedure’s index.

4/17/17 311COT 4210 © UCF

The universal machine
First, we can all agree that any complete model of
computation must be able to simulate programs in its
own language. We refer to such a simulator (interpreter)
as the Universal machine, denote Univ. This program
gets two inputs. The first is a description of the program
to be simulated and the second of the input to that
program. Since the set of programs in a model is re, we
will assume both arguments are natural numbers; the
first being the index of the program. Thus,

Univ(x,y) = jx(y)

4/17/17 312COT 4210 © UCF

4/17/17 COT 4210 © UCF 313

Halting Problem (ATM)
Assume we can decide the halting problem. Then there exists some total
function Halt such that

1 if jx(y) is defined
Halt(x,y) =

0 if jx(y) is not defined

Now we can view Halt as a mapping from N into N by treating its input as a
single number representing the pairing of two numbers via the one-one onto
function pair discussed earlier.

pair(x,y) = <x,y> = 2x (2y + 1) – 1

with inverses
<z>1 = exp(z+1,1)

<z>2 = (((z + 1) // 2 <z>1) – 1) // 2

4/17/17 COT 4210 © UCF 314

The Contradiction
Now if Halt exist, then so does Disagree, where

0 if Halt(x,x) = 0, i.e, if jx(x) is not defined
Disagree(x) =

µy (y == y+1) if Halt(x,x) = 1, i.e, if jx(x) is defined

Since Disagree is a program from N into N , Disagree can be
reasoned about by Halt. Let d be such that Disagree = [d], then
Disagree(d) is defined Û Halt(d,d) = 0

Û jd(d) is undefined
Û Disagree(d) is undefined
But this means that Disagree contradicts its own existence. Since
every step we took was constructive, except for the original
assumption, we must presume that the original assumption was in
error. Thus, the Halting Problem (ATM) is not solvable.

Halting (ATM) is recognizable
While the Halting Problem is not solvable, it is re, recognizable or
semi-decidable.
To see this, consider the following semi-decision procedure. Let P
be an arbitrary procedure and let x be an arbitrary natural number.
Run the procedure P on input x until it stops. If it stops, say “yes.” If
P does not stop, we will provide no answer. This semi-decides the
Halting Problem. Here is a procedural description.

Semi_Decide_Halting() {
Read P, x;
P(x);
Print “yes”;

}

4/17/17 315COT 4210 © UCF

COT 4210 © UCF 316

Enumeration Theorem
• Define

Wn = { x Î N | j(n,x)¯ }
• Theorem: A set B is re iff there exists an n

such that B = Wn.
Proof: Follows from definition of j(n,x).

• This gives us a way to enumerate the
recursively enumerable (semi-decidable)
sets.

4/17/17

4/17/17 COT 4210 © UCF 317

Non-re Problems
• There are even “practical” problems that are worse than

unsolvable -- they’re not even semi-decidable.
• The classic non-re problem is the Uniform Halting

Problem, that is, the problem to decide of an arbitrary
effective procedure P, whether or not P is an algorithm.

• Assume that the set of algorithms (TOTAL) can be
enumerated, and that F accomplishes this. Then

F(x) = Fx

where F0, F1, F2, … is a list of indexes of all and only the
algorithms

4/17/17 COT 4210 © UCF 318

The Contradiction
• Define G(x) = Univ (F(x) , x) + 1 = jF(x)(x) = Fx(x) + 1

• But then G is itself an algorithm. Assume it is the g-th one

F(g) = Fg = G

Then, G(g) = Fg(g) + 1 = G(g) + 1

• But then G contradicts its own existence since G would need to be
an algorithm.

• This cannot be used to show that the effective procedures are non-
enumerable, since the above is not a contradiction when G(g) is
undefined. In fact, we already have shown how to enumerate the
(partial) recursive functions.

4/17/17 COT 4210 © UCF 319

The Set TOTAL
• The listing of all algorithms can be viewed

as
TOTAL = { f Î N | "x jf (x)¯ }

• We can also note that
TOTAL = { f Î N | Wf = N }, where Wf is the
domain of jf

• Theorem: TOTAL is not re.
Proof: Shown earlier.

Consequences
• To capture all the algorithms, any model of computation

must include some procedures that are not algorithms.

• Since the potential for non-termination is required, every
complete model must have some for form of iteration
that is potentially unbounded.

• This means that simple, well-behaved for-loops (the kind
where you can predict the number of iterations on entry
to the loop) are not sufficient. While type loops are
needed, even if implicit rather than explicit.

4/17/17 320COT 4210 © UCF

Insights

Non-re nature of algorithms
• No generative system (e.g., grammar) can produce

descriptions of all and only algorithms
• No parsing system (even one that rejects by

divergence) can accept all and only algorithms

• Of course, if you buy Church’s Theorem, the set of all
procedures can be generated. In fact, we can build an
algorithmic acceptor of such programs.

4/17/17 322COT 4210 © UCF

Many unbounded ways
• How do you achieve divergence, i.e., what are the

various means of unbounded computation in each of
our models?

• GOTO: Turing Machines and Register Machines
• Minimization: Recursive Functions

– Why not primitive recursion/iteration?
• Fixed Point: (Ordered) Factor Replacement Systems

4/17/17 323COT 4210 © UCF

Non-determinism
• It sometimes doesn’t matter

– Turing Machines, Finite State Automata,
Linear Bounded Automata

• It sometimes helps
– Push Down Automata

• It sometimes hinders
– Factor Replacement Systems, Petri Nets

4/17/17 324COT 4210 © UCF

Reducibility

4/17/17 COT 4210 © UCF 326

Reduction Concepts
• Proofs by contradiction are tedious after you’ve

seen a few. We really would like proofs that
build on known unsolvable problems to show
other, open problems are unsolvable. The
technique commonly used is called reduction. It
starts with some known unsolvable problem and
then shows that this problem is no harder than
some open problem in which we are interested.

4/17/17 COT 4210 © UCF 327

Reduction Example#1
• We can show that the Halting Problem is no harder than the Uniform

Halting Problem. Since we already know that the Halting Problem is
unsolvable, we would now know that the Uniform Halting Problem is
also unsolvable. We cannot reduce in the other direction since the
Uniform Halting Problem is in fact harder.

• Let F be some arbitrary effective procedure and let x be some
arbitrary natural number.

• Define Fx(y) = F(x), for all y Î N

• Then Fx is an algorithm if and only if F halts on x.

• Thus a solution to the Uniform Halting Problem (TOTAL) would
provide a solution to the Halting Problem (HALT).

4/17/17 COT 4210 © UCF 328

Reduction Examples #2 & #3
In all cases below we are assuming our variables are over À.

HALT = { <f,x> | jf (x)¯ } is unsolvable (undecidable, non-recursive)
TOTAL = { f | "x jf (x)¯ } = { f | Wf =N } is not even recursively
enumerable (re, semidecidable)

• Show ZERO = { f | "x jf (x) = 0 } is unsolvable.
<f,x> Î HALT iff g(y) = jf (x) - jf (x) is zero for all y.
Thus, <f,x> Î HALT iff g Î ZERO (really the index of g).
A solution to ZERO implies one for HALT, so ZERO is unsolvable.

• Show ZERO = { f | "x jf (x) = 0 } is non-re.
<f> Î TOTAL iff h(x) = jf (x) - jf (x) is zero for all x.
Thus, f Î TOTAL iff h Î ZERO (really the index of h).
A semi-decision procedure for ZERO implies one for TOTAL, so
ZERO is non-re.

Reduction and Equivalence

m-1, 1-1, Turing Degrees

4/17/17 COT 4210 © UCF 330

Many-One Reduction
• Let A and B be two sets.
• We say A many-one reduces to B,

A £m B, if there exists an algorithm f such that
x Î A Û f(x) Î B

• We say that A is many-one equivalent to B,
A ºm B, if A £m B and B £m A

• Sets that are many-one equivalent are in some
sense equally hard or easy.

4/17/17 COT 4210 © UCF 331

Many-One Degrees
• The relationship A ºm B is an equivalence

relationship (why?)
• If A ºm B, we say A and B are of the same many-

one degree (of unsolvability).
• Decidable problems occupy three m-1 degrees:
Æ, N, all others.

• The hierarchy of undecidable m-1 degrees is an
infinite lattice (I’ll discuss in class)

4/17/17 COT 4210 © UCF 332

One-One Reduction
• Let A and B be two sets.
• We say A one-one reduces to B, A £1 B,

if there exists a 1-1 algorithm f such that
x Î A Û f(x) Î B

• We say that A is one-one equivalent to B,
A º1 B, if A £1 B and B £1 A

• Sets that are one-one equivalent are in a strong
sense equally hard or easy.

4/17/17 COT 4210 © UCF 333

One-One Degrees
• The relationship A º1 B is an equivalence

relationship (why?)
• If A º1 B, we say A and B are of the same one-

one degree (of unsolvability).
• Decidable problems occupy infinitely many 1-1

degrees: each cardinality defines another 1-1
degree (think about it).

• The hierarchy of undecidable 1-1 degrees is an
infinite lattice.

4/17/17 COT 4210 © UCF 334

Turing (Oracle) Reduction
• Let A and B be two sets.
• We say A Turing reduces to B, A £t B, if the

existence of an oracle for B would provide us
with a decision procedure for A.

• We say that A is Turing equivalent to B,
A ºt B, if A £t B and B £t A

• Sets that are Turing equivalent are in a very
loose sense equally hard or easy.

4/17/17 COT 4210 © UCF 335

Turing Degrees
• The relationship A ºt B is an equivalence

relationship (why?)
• If A ºt B, we say A and B are of the same Turing

degree (of unsolvability).
• Decidable problems occupy one Turing degree.

We really don’t even need the oracle.
• The hierarchy of undecidable Turing degrees is

an infinite lattice.

4/17/17 COT 4210 © UCF 336

Complete re Sets
• A set C is re 1-1 (m-1, Turing) complete if, for

any re set A, A £1 (£m , £t) C.
• The set HALT is an re complete set (in regard to

1-1, m-1 and Turing reducibility).
• The re complete degree (in each sense of

degree) sits at the top of the lattice of re
degrees.

4/17/17 COT 4210 © UCF 337

The Set Halt = K0

• Halt = K0 = { <f, x> | jf (x) is defined }
• Let A be an arbitrary re set. By definition, there exists an

effective procedure ja, such that dom(ja) = A. Put
equivalently, there exists an index, a, such that A = Wa.

• x Î A iff x Î dom(ja) iff ja(x)¯ iff <a,x> Î K0
• The above provides a 1-1 function that reduces A to K0

(A £1 K0)
• Thus the universal set, Halt = K0, is an re

(1-1, m-1, Turing) complete set.

4/17/17 COT 4210 © UCF 338

The Set K
• K = { f | jf(f) is defined }
• Define fx(y) = jf(x). That is, "y fx(y) = jf(x). Let the index

of fx be fx. (Yeah, that’s overloading.)

• <f,x> Î K0 iff x Î dom(jf) iff "y[jfx(y)¯] implies fx Î K.
• <f,x> Ï K0 iff x Ï dom(jf) iff "y[jfx(y)] implies fx Ï K.

• The above provides a 1-1 function that reduces K0 to K.
• Since K0 is an re (1-1, m-1, Turing) complete set and K is

re, then K is also re (1-1, m-1, Turing) complete.

Reduction and Rice’s

4/17/17 COT 4210 © UCF 340

Either Trivial or Undecidable
• Let P be some set of re languages, e.g. P = { L | L is infinite re }.

• We call P a property of re languages since it divides the class of all
re languages into two subsets, those having property P and those
not having property P.

• P is said to be trivial if it is empty (this is not the same as saying P
contains the empty set) or contains all re languages.

• Trivial properties are not very discriminating in the way they divide
up the re languages (all or nothing).

4/17/17 COT 4210 © UCF 341

Rice’s Theorem
Rice’s Theorem: Let P be some non-trivial
property of the re languages. Then

LP = { x | dom [x] is in P (has property P) }
is undecidable.

Note that membership in LP is based purely on
the domain of a function, not on any aspect of its
implementation.

4/17/17 COT 4210 © UCF 342

Rice’s Proof-1
Proof: We will assume, wlog, that P does not
contain Ø. If it does we switch our attention to
the complement of P. Now, since P is non-
trivial, there exists some language L with
property P. Let [r] be a recursive function
whose domain is L (r is the index of a semi-
decision procedure for L). Suppose P were
decidable. We will use this decision procedure
and the existence of r to decide K0.

4/17/17 COT 4210 © UCF 343

Rice’s Proof-2
First we define a function Fr,x,y for r and each
function jx and input y as follows.

Fr,x,y(z) = j(x , y) + j(r , z)
The domain of this function is L if jx (y)
converges, otherwise it’s Ø. Now if we can
determine membership in LP , we can use this
algorithm to decide K0 merely by applying it to
Fr,x,y. An answer as to whether or not Fr,x,y has
property P is also the correct answer as to
whether or not jx (y) converges.

4/17/17 COT 4210 © UCF 344

Rice’s Proof-3
Thus, there can be no decision procedure for P.
And consequently, there can be no decision
procedure for any non-trivial property of re
languages.

Note: This does not apply if P is trivial, nor does
it apply if P can differentiate indices that
converge for precisely the same values.

4/17/17 COT 4210 © UCF 345

I/O Properties
• An I/O property, P, of indices of recursive function is one

that cannot differentiate indices of functions that produce
precisely the same value for each input.

• This means that if two indices, f and g, are such that jf
and jg converge on the same inputs and, when they
converge, produce precisely the same result, then both f
and g must have property P, or neither one has this
property.

• Note that any I/O property of recursive function indices
also defines a property of re languages, since the
domains of functions with the same I/O behavior are
equal. However, not all properties of re languages are
I/O properties.

4/17/17 COT 4210 © UCF 346

Strong Rice’s Theorem
Rice’s Theorem: Let P be some non-trivial I/O
property of the indices of recursive functions.
Then

SP = { x | jx has property P) }
is undecidable.

Note that membership in SP is based purely on
the input/output behavior of a function, not on
any aspect of its implementation.

4/17/17 COT 4210 © UCF 347

Strong Rice’s Proof
• Given x, y, r, where r is in the set

SP.= {f | jf has property P},
define the function
fx,y,r(z) = jx(y) - jx(y) + jr(z).

• fx,y,r(z) = jr(z) if jx(y)¯ ; = f if jx(y) .
Thus, jx(y)¯ iff fx,y,r has property P, and so
K0 £ SP.

Rice’s Picture Proof

4/17/17 © UCF EECS 348

x

y

j
x
(y)

j
r
(z)

z

dom(f
x,y,r

)=f If j
x
(y)

rng(f
x,y,r

)=f If j
x
(y)

$z f
x,y,r

(z)≠j
r
(z) If j

x
(y)

"z f
x,y,r

(z)=j
r
(z) If j

x
(y)¯

rng(f
x,y,r

)=rng(j
r
) If j

x
(y)¯

dom(f
x,y,r

)=dom(j
r
) If j

x
(y)¯

Black is for standard Rice’s Theorem;
Black and Red are needed for Strong Version
Blue is just another version based on range

4/17/17 COT 4210 © UCF 349

Corollaries to Rice’s
Corollary: The following properties of re
sets are undecidable

a) L = Ø
b) L is finite
c) L is a regular set
d) L is a context-free set

4/17/17 COT 4210 © UCF 350

Assignment # 8

Known Results:
HALT = { <f,x> | f(x)¯ } is re (semi-decidable) but undecidable
TOTAL = { f | "x f(x)¯ } is non-re (not even semi-decidable)
1. Use reduction from HALT to show that one cannot decide STUTTER, where

STUTTER = { f | for some x, f(x+1) = f(x) }
2. Show that STUTTER reduces to HALT. (1 plus 2 show they are equally hard)
3. Use Reduction from TOTAL to show that ID is not even re, where

ID = { f | ∀x f(x) = x}
4. Show ID reduces to TOTAL. (3 plus 4 show they are equally hard)
5. Use Rice’s Theorem to show that STUTTER is undecidable
6. Use Rice’s Theorem to show that ID is undecidable

Due: 4/13, 10:30AM (use Webcourses to turn in)

Recursively Enumerable

Properties of re Sets

COT 4210 © UCF 352

Definition of re
• Some texts define re in the same way as I have defined

semi-decidable.
S Í N is semi-decidable iff there exists a partially
computable function g where

S = { x Î N | g(x)¯ }
• I prefer the definition of re that says

S Í N is re iff S = Æ or there exists an algorithm f where
S = { y | $x f(x) == y }

• We will prove these equivalent. Actually, f can be a
primitive recursive function. (described briefly in class)

4/17/17

COT 4210 © UCF 353

STP Predicate
• STP(f, x1,…,xn, t) is a predicate defined

to be true iff jf(x1,…,xn) converges in at
most t steps.

• STP can be shown to be a simple
algorithm. Consider, for instance, a
universal machine (interpreter) that is told
the maximum number of step to simulate.

4/17/17

COT 4210 © UCF 354

Semi-Decidable Implies re
Theorem: Let S be semi-decided by GS. Assume

GS is the gS function in our enumeration of
effective procedures. If S = Ø then S is re by
definition, so we will assume wlog that there is
some a Î S. Define the enumerating algorithm
FS by
FS(<x,t>) = x * STP(gs, x, t)

+ a * (1-STP(gs, x, t))
Note: FS is primitive recursive and it enumerates
every value in S infinitely often.

4/17/17

COT 4210 © UCF 355

re Implies Semi-Decidable
Theorem: By definition, S is re iff S == Ø or there

exists an algorithm FS, over the natural numbers
À, whose range is exactly S. Define

$y [y == y+1], if S == Ø
yS(x) =

$y [FS(y)==x], otherwise
This achieves our result as the domain of yS is
the range of FS, or empty if S == Ø.

4/17/17

COT 4210 © UCF 356

Domain of a Procedure
Corollary: S is re/semi-decidable iff S is the

domain / range of a partial recursive predicate
FS.

Proof: The predicate yS we defined earlier to semi-
decide S, given its enumerating function, can be
easily adapted to have this property.

$y [y == y+1], if S == Ø
yS(x) =

x*($y [FS(y)==x]), otherwise

4/17/17

COT 4210 © UCF 357

Recursive Implies re
Theorem: Recursive implies re.
Proof: S is recursive implies there is an algorithm

fS such that
S = { x Î N | fs(x) == 1 }

Define gs(x) = $y (fs(x) == 1)
Clearly
dom(gs) = {x Î N | gs(x)¯}

= { x Î N | fs(x) == 1 }
= S

4/17/17

COT 4210 © UCF 358

Related Results
Theorem: S is re iff S is semi-decidable.
Proof: That’s what we proved.
Theorem: S and ~S are both re (semi-decidable)

iff S (equivalently ~S) is recursive (decidable).
Proof: Let fS semi-decide S and fS’ semi-decide ~S. We

can decide S by gS
gS(x) = STP(fS, x, µt (STP(fS, x, t) || STP(fS’ ,x, t)))

~S is decided by gS’(x) = ~gS(x) = 1- gS(x).
The other direction is immediate since, if S is decidable
then ~S is decidable (just complement gS) and hence
they are both re (semi-decidable).

4/17/17

COT 4210 © UCF 359

re Characterizations
Theorem: Suppose S ¹Æ then the following are

equivalent:
1. S is re
2. S is the range of a primitive rec. function
3. S is the range of a recursive function
4. S is the range of a partial rec. function
5. S is the domain of a partial rec. function

4/17/17

COT 4210 © UCF 360

Quantification#1
• S is decidable iff there exists an algorithm cS (called S’s

characteristic function) such that
x Î S Û cS(x)
This is just the definition of decidable.

• S is re iff there exists an algorithm AS where
x Î S Û $t AS(x,t)
This is clear since, if gS is the index of a procedure yS
that semi-decides S, then
x Î S Û $t STP(gS, x, t)
So, AS(x,t) = STPgS(x, t), where STPgS is the STP
function with its first argument fixed.

4/17/17

COT 4210 © UCF 361

Quantification#2
• S is re iff there exists an algorithm AS such that

x Ï S Û "t AS(x,t)
This is clear since, if gS is the index of the procedure yS that
semi-decides S, then
x Ï S Û ~$t STP(gS, x, t) Û "t ~STP(gS, x, t)

So, AS(x,t) = ~STPgS(x, t), where STPgS is the STP function
with its first argument fixed.

• Note that this works even if S is recursive (decidable). The
important thing there is that if S is recursive then it may be
viewed in two normal forms, one with existential quantification
and the other with universal quantification.

• The complement of an re set is co-re. A set is recursive
(decidable) iff it is both re and co-re.

4/17/17

COT 4210 © UCF 362

Quantification#3
• The Uniform Halting Problem was already

shown to be non-re. It turns out its complement
is also not re. In fact, we can (but won’t) show
that TOTAL requires an alternation of
quantifiers. Specifically,

f Î TOTAL Û "x$t (STP(f, x, t))
and this is the minimum quantification we can
use, given that the quantified predicate is
recursive.

4/17/17

RE Co-RE
R
E
C

UNIVERSE OF SETS

NRNC
NR = (NRNC ∪ Co-RE) - REC

RE-
Complete

364

Sample Question#1
1. Given that the predicate STP and the

function VALUE are algorithms, show
that we can semi-decide

HZ = { f | jf evaluates to 0 for some input}

Note: STP(f, x, s) is true iff jf(x)
converges in s or fewer steps and, if so,
VALUE(f, x, s) = jf(x).

4/17/17 COT 4210 © UCF

365

Sample Questions#2,3
2. Use Rice’s Theorem to show that HZ is

undecidable, where HZ is

HZ = { f | jf evaluates to 0 for some input}

3. Redo using Reduction from HALT.

4/17/17 COT 4210 © UCF

366

Sample Question#4
4. Let P = { f | $ x [STP(f, x, x)] }. Why

does Rice’s theorem not tell us anything
about the undecidability of P?

4/17/17 COT 4210 © UCF

367

Sample Question#5
5. Let S be an re (recursively enumerable), non-

recursive set, and T be an re, possibly
recursive set. Let
E = { z | z = x + y, where x Î S and y Î T }.
Answer with proofs, algorithms or
counterexamples, as appropriate, each of the
following questions:
(a) Can E be non re?
(b) Can E be re non-recursive?
(c) Can E be recursive?

4/17/17 COT 4210 © UCF

4/17/17 COT 4210 © UCF 368

Assignment # 9
a) Use quantification of an algorithmic predicate to estimate the complexity

(decidable, re, co-re, non-re) of each of the following, (a)-(d):
a) ID = { f | ∀x f(x) = x}
b) STUTTER = { f | for some x, f(x+1) = f(x) }
c) FIB1 = { f | for some x>1 f(x+2) = f(x+1) + f(x) }
d) FIB2 = { f | there is some x≥0, such that all y≥x [f(y+2) = f(y+1) + f(y)] }

b) Let sets A be recursive (decidable) and B be re non-recursive (undecidable).
Consider C = { z | z = max(x,y), x∈A, y∈B }. For (a)-(c), either show sets A
and B with the specified property or demonstrate that this property cannot
hold.
a) Can C be recursive?
b) Can C be re non-recursive (undecidable)?
c) Can C be non-re?

Due: 4/20, 10:30AM (use Webcourses to turn in)

Rewriting Systems

370

Semi-Thue Systems
• Devised by Emil Post based on earlier

work by Axel Thue
• S = (S, R), where S is a finite alphabet and

R is a finite set of rules of form
ai ® bi , ai, biÎS*

• We define Þ* as the reflexive, transitive
closure of Þ, where w Þ x iff w=yaz and
x=ybz, where a ® b

4/17/17 COT 4210 © UCF

371

Simulating Turing Machines
• Basically, we need at least one rule for each 4-

tuple in the Turing machine’s description.
• The rules lead from one instantaneous

description to another.
• The Turing ID aqab is represented by the string

haqabh, a being the scanned symbol.
• The tuple q a b s leads to

qa ® sb
• Moving right and left can be harder due to

blanks.

4/17/17 COT 4210 © UCF

372

Details of Halt(TM) £ Word(ST)
• Let M = (Q, {0,1}, T), T is Turing table.
• If qabs Î T, add rule qa ® sb
• If qaRs Î T, add rules

– q1b ® 1sb a=1, "bÎ{0,1}
– q1h ® 1s0h a=1
– cq0b ® c0sb a=0, "b,cÎ{0,1}
– hq0b ® hsb a=0, "bÎ{0,1}
– cq0h ® c0s0h a=0, "cÎ{0,1}
– hq0h ® hs0h a=0

• If qaLs Î T, add rules
– bqac ® sbac "a,b,cÎ{0,1}
– hqac ® hs0ac "a,cÎ{0,1}
– bq1h ® sb1h a=1, "bÎ{0,1}
– hq1h ® hs01h a=1
– bq0h ® sbh a=0, "bÎ{0,1}
– hq0h ® hs0h a=0

4/17/17 COT 4210 © UCF

373

Clean-Up
• Assume q1 is start state and only one accepting state exists q0
• We will start in h1xq10h, seeking to accept x (enter q0) or

reject (run forever).
• Add rules

– q0a ® q0 "aÎ{0,1}
– bq0 ® q0 "bÎ{0,1}

• The added rule allows us to “erase” the tape if we accept x.
• This means that acceptance can be changed to generating

hq0h.

• The next slide shows the consequences.

4/17/17 COT 4210 © UCF

374

Semi-Thue Word Problem
• Construction from TM, M, gets:
• h1xq10h Þå(M)* hq0h iff xÎL(M).
• hq0h ÞÕ(M)* h1xq10h iff xÎL(M).
• hq0h Ûå (M)* h1xq10h iff xÎL(M).

– This is called a Thue system where rules can be
applied in either direction (a « b)

• Can recast both Semi-Thue and Thue Systems
to ones over alphabet {a,b} or {0,1}. That is, a
binary alphabet is sufficient for undecidability.

4/17/17 COT 4210 © UCF

More on Grammars

4/17/17 COT 4210 © UCF 376

Grammars and re Sets
• Every grammar lists an re set.
• Some grammars (regular, CFL and CSG)

produce recursive sets.
• Type 0 grammars are as powerful at

generating (producing) re sets as Turing
machines are at enumerating them
(Proof later).

4/17/17 COT 4210 © UCF 377

Post Correspondence Problem
• Many problems related to grammars can be shown to be

no more complex than the Post Correspondence
Problem (PCP).

• Each instance of PCP is denoted: Given n>0, S a finite
alphabet, and two n-tuples of words
(x1, … , xn), (y1, … , yn) over S,
does there exist a sequence i1, … , ik , k>0, 1 ≤ ij ≤ n,
such that
xi1 … xik = yi1 … yik ?

• Example of PCP:
n = 3, S = { a , b }, (a b a , b b , a), (b a b , b , b a a).
Solution 2 , 3, 1 , 2
b b a a b a b b = b b a a b a b b

• In general, PCP is undecidable (no proof will be given)

378

ST(Word) ≤ PCP
• Start with Semi-Thue System

– aba ® ab; a ® aa; b ® a
– Instance of word problem: bbbb Þ*? aa

• Convert to PCP
– [bbbb* ab ab aa aa a a]

[aba aba a a b b *aa]
– And * * a a b b

* * a a b b

4/17/17 COT 4210 © UCF

379

How PCP Construction Works?

• Using underscored letters avoids solutions
that don’t relate to word problem instance.
E.g.,

aba a
ab aa

• Top row insures start with [W0*
• Bottom row insures end with *Wf]
• Bottom row matches Wi, while top

matches Wi+1 (one is underscored)
4/17/17 COT 4210 © UCF

PCP is undecidable
• The essential ideas is that we can embed

computational traces in instances of PCP, such
that a solution exists if and only if the
computation terminates.

• Such a construction shows that the Halting
Problem is reducible to PCP and so PCP must
also be undecidable.

• As we will see PCP can often be reduced to
problems about grammars, showing those
problems to also be undecidable.

4/17/17 380COT 4210 © UCF

4/17/17 COT 4210 © UCF 381

Ambiguity of CFG
• Problem to determine if an arbitrary CFG

is ambiguous
S® A | B
A® xi A [i] | xi [i] 1 ≤ i ≤ n
B® yi B [i] | yi [i] 1 ≤ i ≤ n
A Þ* xi1 … xik [ik] … [i1] k > 0
B Þ* yi1 … yik [ik] … [i1] k > 0

• Ambiguous if and only if there is a solution
to this PCP instance.

4/17/17 COT 4210 © UCF 382

Intersection of CFLs
• Problem to determine if arbitrary CFG’s

define overlapping languages
• Just take the grammar consisting of all the

A-rules from previous, and a second
grammar consisting of all the B-rules. Call
the languages generated by these
grammars, LA and LB.
LA Ç LB ≠ Ø, if and only there is a solution
to this PCP instance.

4/17/17 COT 4210 © UCF 383

Non-emptiness of CSL
S ® xi S yi

R | xi T yi
R 1 ≤ i ≤ n

a T a ® * T *
* a ® a *
a * ® * a
T ® *

• Our only terminal is *. We get strings of
form *2j+1, for some j’s if and only if there
is a solution to this PCP instance.

384

CSG Produces Something
S ® xi S yi

R | xi T yi
R 1 ≤ i ≤ n

a T a ® * T *
* a ® a *
a * ® * a
T ® *

• Our only terminal is *. We get strings of
form *2j+1, for some j’s if and only if there is
a solution to this PCP instance. Get Ø
otherwise

4/17/17 COT 4210 © UCF

Traces and Grammars

386

Traces (Valid Computations)
• A trace of a machine M, is a word of the form

X0 # X1 # X2 # X3 # … # Xk-1 # Xk

where Xi Þ Xi+1 0 ≤ i < k, X0 is a starting configuration and Xk is a
terminating configuration.

• We allow some laxness, where the configurations might be encoded
in a convenient manner. Many texts show that a context free
grammar can be devised which approximates traces by either
getting the even-odd pairs right, or the odd-even pairs right. The
goal is then to intersect the two languages, so the result is a trace.
This then allows us to create CFLs L1 and L2, where L1 Ç L2 ≠ Ø ,
just in case the machine has an element in its domain. Since this is
undecidable, the non-emptiness of the intersection problem is also
undecidable. This is an alternate proof to one we already showed
based on PCP.

4/17/17 COT 4210 © UCF

Quotients of CFLs (concept)
Let L1 = L(G1) = { $ # Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }
where Y2i Þ Y2i+1 , 0 ≤ i ≤ j.
This checks the even/odd steps of an even length computation.
Now, let L2 = L(G2) = {X0 $ # X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 #}
where X2i-1 Þ X2i , 1 ≤ i ≤ k and Z is a unique halting configuration.
This checks the odd/steps of an even length computation, and includes an
extra copy of the starting number prior to its $.
Now, consider the quotient of L2 / L1 . The only ways a member of L1 can
match a final substring in L2 is to line up the $ signs. But then they serve to
check out the validity and termination of the computation. Moreover, the
quotient leaves only the starting point (the one on which the machine halts.)
Thus,
L2 / L1 = { X0 | the system halts}.
Since deciding the members of an re set is in general undecidable, we have
shown that membership in the quotient of two CFLs is also undecidable.

4/17/17 387COT 4210 © UCF

388

Finish Quotient
Now, consider the quotient of L2 / L1 . The only
ways a member of L1 can match a final
substring in L2 is to line up the $ signs. But then
they serve to check out the validity and
termination of the computation. Moreover, the
quotient leaves only the starting number (the
one on which the machine halts.) Thus,
L2 / L1 = { X | the system F halts on zero }.
Since deciding the members of an re set is in
general undecidable, we have shown that
membership in the quotient of two CFLs is also
undecidable.

4/17/17 COT 4210 © UCF

389

Traces and Type 0 (PSG)
• Here, it is actually easier to show a simulation of a Turing machine than of a Factor

System.
• Assume we are given some machine M, with Turing table T (using Post notation). We

assume a tape alphabet of S that includes a blank symbol B.
• Consider a starting configuration C0. Our rules will be

S ® # C0 # where C0 = Yq0aX is initial ID
q a ® s b if q a b s Î T
b q a x ® b a s x if q a R s Î T, a,b,x Î S
b q a # ® b a s B # if q a R s Î T, a,b Î S
q a x ® # a s x if q a R s Î T, a,x Î S, a≠B
q a # ® # a s B # if q a R s Î T, a Î S, a≠B
q a x ® # s x # if q a R s Î T, x Î S, a=B
q a # ® # s B # if q a R s Î T, a=B
b q a x ® s b a x if q a L s Î T, a,b,x Î S
q a x ® # s B a x if q a L s Î T, a,x Î S
b q a # ® s b a # if q a L s Î T, a,b Î S, a≠B
q a # ® # s B a # if q a L s Î T, a Î S, a≠B
b q a # ® s b # if q a L s Î T, b Î S, a=B
q a # ® # s B # if q a L s Î T, a=B
f ® l if f is a final state
® l just cleaning up the dirty linen

4/17/17 COT 4210 © UCF

390

CSG and Undecidability
• We can almost do anything with a CSG that can be done with a Type 0

grammar. The only thing lacking is the ability to reduce lengths, but we can
throw in a character that we think of as meaning “deleted”. Let’s use the
letter d as a deleted character, and use the letter e to mark both ends of a
word.

• Let G = (V, T, P , S) be an arbitrary Type 0 grammar.
• Define the CSG G’ = (V È {S’, D}, T È {d, e}, S’, P’), where P’ is

S’ ® e S e
D x ® x D when x Î V È T
D e ® e d push the delete characters to far right
a ® b where a ® b Î P and |a| ≤ |b|
a ® bDk where a ® b Î P and |a| - |b| = k > 0

• Clearly, L(G’) = { e w e dm | w Î L(G) and m≥0 is some integer }
• For each w Î L(G), we cannot, in general, determine for which values of m,

e w e dm Î L(G’). We would need to ask a potentially infinite number of
questions of the form
“does e w e dm Î L(G’)” to determine if w Î L(G). That’s a semi-decision
procedure.

4/17/17 COT 4210 © UCF

391

Some Consequences
• CSGs are not closed under Init, Final, Mid, quotient with

regular sets and homomorphism (okay for l-free
homomorphism)

• We also have that the emptiness problem is undecidable
from this result. That gives us two proofs of this one
result.

• For Type 0, emptiness and even the membership
problems are undecidable.

4/17/17 COT 4210 © UCF

392

Undecidability
• Is L =Æ, for CSL, L?
• Is L=S*, for CFL (CSL), L?
• Is L1=L2 for CFLs (CSLs), L1, L2?
• Is L1ÍL2 for CFLs (CSLs), L1, L2?
• Is L1ÇL2=Æ for CFLs (CSLs), L1, L2?
• Is L regular, for CFL (CSL), L?
• Is L1ÇL2 a CFL for CFLs, L1, L2?
• Is ~L CFL, for CFL, L?

4/17/17 COT 4210 © UCF

393

More Undecidability
• Is CFL, L, ambiguous?
• Is L=L2, L a CFL?
• Is L1/L2 finite, L1 and L2 CFLs?
• Membership in L1/L2, L1 and L2 CFLs?

4/17/17 COT 4210 © UCF

394

ST(Word) ≤ PSL(Membership)
• Recast semi-Thue system making all

symbols non-terminal, adding S and T to
non-terminals and terminal set S={a}
G: S ® h1xq10h

hq0h ® T
T ® aT
T ® l

• xÎL(M) iff L(G) ≠ Ø iff L(G) infinite
iff l Î L(G) iff a Î L(G) iff L(G) = S*

4/17/17 COT 4210 © UCF

395

Consequences for PSG
• Unsolvables

– L(G) = Ø
– L(G) = S*
– L(G) infinite
– w Î L(G), for arbitrary w
– L(G) Ê L(G2)
– L(G) = L(G2)

• Latter two results follow when have
– G2: S ® aS | l aÎS

4/17/17 COT 4210 © UCF

4/17/17 COT 4210 © UCF 396

L = S*?
• If L is regular, then L = S*? is decidable

– Easy – Reduce to minimal deterministic FSA, AL
accepting L. L = S* iff AL is a one-state machine,
whose only state is accepting

• If L is context free, then L = S*? is undecidable
– The key here is that the complement of a Turing

Machine’s valid terminating traces is a CFL –
requires just one error which is context free; requiring
all pairs to be correct is a CSL

L(G) = L(G)2?

• The problem to determine if L = S* is Turing
reducible to the problem to decide if
L • L Í L, so long as L is selected from a
class of languages C over the alphabet S for
which we can decide if S È {l} Í L.

• Corollary 1:
The problem “is L • L = L, for L context free
or context sensitive?” is undecidable

4/17/17 COT 4210 © UCF 397

L(G) = L(G)2? is undecidable

• Question: Does L • L get us anything new?
– i.e., Is L • L = L?

• Membership in a CSL is decidable.
• Claim is that L = S* iff

(1) S È {l} Í L ; and
(2) L • L = L

• Clearly, if L = S* then (1) and (2) trivially hold.
• Conversely, we have S* Í L*= È n³0 Ln Í L

– first inclusion follows from (1); second
from (2)

4/17/17 COT 4210 © UCF 398

Computational Complexity

Limited to Concepts of P and NP
COT6410 covers much more

Research Territory
Decidable – vs – Undecidable

(area of Computability Theory)

Exponential – vs – polynomial
(area of Computational Complexity)

Algorithms for any of these
(area of Algorithm Design/Analysis)

4/17/17 COT 4210 © UCF 400

Decision vs Optimization
Two types of problems are of particular interest:

Decision Problems ("Yes/No" answers)

Optimization problems ("best" answers)

(there are other types)

4/17/17 COT 4210 © UCF 401

Natural Pairs of Problems
Interestingly, these usually come in pairs

a decision problem, and

an optimization problem.

Equally easy, or equally difficult, to solve.

Both can be solved in polynomial time, or both require
exponential time.

4/17/17 COT 4210 © UCF 402

Very Hard Problems
Some problems have no algorithm (e. g., Halting
Problem.)

No mechanical/logical procedure will ever solve all
instances of any such problem!!

Some problems have only exponential algorithms
(provably so – they must take at least order 2n steps) So
far, only a few have been proven, but there may be
many. We suspect so.

4/17/17 COT 4210 © UCF 403

Easy Problems
Many problems have polynomial algorithms
(Fortunately).

Why fortunately? Because, most exponential
algorithms are essentially useless for problem
instances with n much larger than 50 or 60.
We have algorithms for them, but the best of
these will take 100's of years to run, even on
much faster computers than we now envision.

4/17/17 COT 4210 © UCF 404

Three Classes of Problems
Problems proven to be in these three groups
(classes) are, respectively,

Undecidable, Exponential, and Polynomial.

Theoretically, all problems belong to exactly
one of these three classes.

4/17/17 COT 4210 © UCF 405

Unknown Complexity
Practically, there are a lot of problems (maybe, most)
that have not been proven to be in any of the classes
(Yet, maybe never will be).

Most currently "lie between" polynomial and
exponential – we know of exponential algorithms,
but have been unable to prove that exponential
algorithms are necessary.

Some may have polynomial algorithms, but we have
not yet been clever enough to discover them.

4/17/17 COT 4210 © UCF 406

Why do we Care?
If an algorithm is O(nk), increasing the size of an
instance by one gives a running time that is O((n+1)k)

That’s really not much more.

With an increase of one in an exponential algorithm,
O(2n) changes to O(2n+1) = O(2*2n) = 2*O(2n) – that is, it
takes about twice as long.

4/17/17 COT 4210 © UCF 407

A Word about “Size”
Technically, the size of an instance is the minimum number of bits
(information) needed to represent the instance – its "length."

This comes from early Formal Language researchers who were
analyzing the time needed to 'recognize' a string of characters as
a function of its length (number of characters).

When dealing with more general problems there is usually a
parameter (number of vertices, processors, variables, etc.) that
is polynomially related to the length of the instance. Then, we
are justified in using the parameter as a measure of the length
(size), since anything polynomially related to one will be
polynomially related to the other.

4/17/17 COT 4210 © UCF 408

The Subtlety of “Size”
But, be careful.

For instance, if the "value" (magnitude) of n is both the
input and the parameter, the 'length' of the input (number
of bits) is log2(n). So, an algorithm that takes n time is
running in n = 2log2(n) time, which is exponential in terms
of the length, log2(n), but linear (hence, polynomial) in
terms of the "value," or magnitude, of n.

It's a subtle, and usually unimportant difference, but it
can bite you.

4/17/17 COT 4210 © UCF 409

P = Polynomial Time
• P is the class of decision problems containing all

those that can be solved by a deterministic
Turing machine using polynomial time in the size
of each instance of the problem.

• P contain linear programming over real
numbers, but not when the solution is
constrained to integers.

• P even contains the problem of determining if a
number is prime.

4/17/17 COT 4210 © UCF 410

Some Problems in P
• Given G = (V,E) and two vertices u,v∈V,

is there a path from u to v?
Just use depth first search starting at u to determine all vertices
reachable from u and see if v is one of them. Can do with undirected
or directed graphs. O(|V|+|E|)

• Given two positive integers, n,m,
are n and m relatively prime?
Just run Euclidean algorithm to see if GCD(n,m) = 1.
O(min(log2(n),log2(m)) which is order of the problem representation.

• Given a CFG, G = (V,S,S,R) and a word w∈S*,
is w in L(G)?
Convert G to CNF and run CKY algorithm, O(|w|3) or if you are really
an algorithm junkie, O(|w|2.3728639)

4/17/17 COT 4210 © UCF 411

4/17/17 COT 4210 © UCF 412

NP = Non-Det. Poly Time
• NP is the class of decision problems solvable in

polynomial time on a non-deterministic Turing machine.
• Clearly P Í NP. Whether or not this is proper inclusion is

the well-known challenge P = NP?
• NP can also be described as the class of decision

problems that can be verified in polynomial time. This is
the most useful version of a definition of NP.

• NP can even be described as the class of decision
problems that can be solved in polynomial time when no
a priori bound is placed on the number of processors
that can be used in the algorithm.

• An example is the problem to determine if a boolean
expression is satisfiable (more about this later)

Co-NP
• A problem is in co-NP if its complement is in NP

– this is like co-RE, wrt RE problems.
• An example is the problem to determine if a

boolean expression is a tautology.
– You can check an instance to see if it does not satisfy

in polynomial time.
– However, just because one satisfies is not enough to

show all do. Counterexamples are easy; proofs seem
to be hard.

• The complement of satisfiability is to determine if
an expression is self contradictory.

4/17/17 COT 4210 © UCF 413

NP-Hard
• A is NP-Hard if all NP problems polynomial

reduce to A.
• If A is NP-Hard and in NP, then A is NP-

Complete.
• QSAT (Quantified SAT) is the problem to

determine if an arbitrary fully quantified Boolean
expression is true.
Note: SAT only uses existential.

• QSAT is NP-Hard, but may not be in NP.
• QSAT can be solved in polynomial space

(PSPACE).
4/17/17 COT 4210 © UCF 414

4/17/17 COT 4210 © UCF 415

NP-Complete; NP-Hard
• A decision problem, C, is NP-complete if:

– C is in NP and
– C is NP-hard. That is, every problem in NP is polynomially

reducible to C.
• D polynomially reduces to C means that there is a deterministic

polynomial-time many-one algorithm, f, that transforms each
instance x of D into an instance f(x) of C, such that the answer to f(x)
is YES if and only if the answer to x is YES.

• To prove that an NP problem A is NP-complete, it is sufficient to
show that an already known NP-complete problem polynomially
reduces to A. By transitivity, this shows that A is NP-hard.

• A consequence of this definition is that if we had a polynomial time
algorithm for any NP-complete problem C, we could solve all
problems in NP in polynomial time. That is, P = NP.

• Note that NP-hard does not necessarily mean NP-complete, as a
given NP-hard problem could be outside NP.

P = NP?
If P = NP then all problems in NP are polynomial
problems.

If P ≠ NP then all NP–C problems are exponential.

4/17/17 COT 4210 © UCF 416

Why should P = NP?
Why should P equal NP?

– There seems to be a huge "gap" between the known
problems in P and Exponential. That is, almost all
known polynomial problems are no worse than n3 or
n4.

– Where are the O(n50) problems?? O(n100)? Maybe
they are the ones in NP–Complete?

– It's awfully hard to envision a problem that would
require n100, but surely they exist?

– Some of the problems in NP–C just look like we
should be able to find a polynomial solution (looks
can be deceiving, though).

4/17/17 COT 4210 © UCF 417

Why Might P ≠ NP?
Why should P not equal NP?

– P = NP would mean, for any problem in NP, that it is
just as easy to solve an instance form "scratch," as it
is to verify the answer if someone gives it to you. That
seems a bit hard to believe.

– There simply are a lot of awfully hard looking
problems in NP–Complete (and Co–NP-Complete)
and some just don't seem to be solvable in polynomial
time.

– Many very smart people have tried for a long time to
find polynomial algorithms for some of the problems
in NP-Complete - with no luck.

4/17/17 COT 4210 © UCF 418

Satisfiability
U = {u1, u2,…, un}, Boolean variables.

(CNF – Conjunctive Normal Form)
C = {c1, c2,…, cm},

conjunction (and-ing) of "OR clauses”
Example clause:

ci = (u4 Ú u35 Ú ~u18 Ú u3… Ú ~u6)

4/17/17 COT 4210 © UCF 419

4/17/17 COT 4210 © UCF 420

SAT
• SAT is the problem to decide of an arbitrary

Boolean formula (wff in the propositional
calculus) whether or not this formula is
satisfiable (has a set of variable assignments
that evaluate the expression to true).

• SAT clearly can be solved in time k2n, where k is
the length of the formula and n is the number of
variables in the formula.

• What we can show is that SAT is NP-complete,
providing us our first concrete example of an
NP-complete decision problem.

The Proof Idea
• An NDTM M accepts w if and only if, run on w, one of its nondeterministic

branches becomes an accepting computation history.
• An accepting computation history is a sequence of configurations

where:
– The first configuration is the initial configuration of M on w.
– Every subsequent configuration is yielded by the previous configuration – that is,

it’s a legal move for M.
– The final configuration is an accepting configuration - that is, its state is qACCEPT.

• We can use Boolean logical formulas easily to require the first and
last of a configuration history, and the middle one with a bit of
thought. However, first we need to represent the configuration
history in the first place.

4/17/17 COT 4210 © UCF 421

4/17/17 COT 4210 © UCF 422

Simulating NDTM
• Given a NDTM, M, and an input w, we need to create a

formula, jM,w, containing a polynomial number of terms
that is satisfiable just in case M accepts w in polynomial
time.

• The formula must encode within its terms a trace of
configurations that includes
– A term for the starting configuration of the TM
– Terms for all accepting configurations of the TM
– Terms that ensure the consistency of each configuration
– Terms that ensure that each configuration after the first follows

from the prior configuration by a single move

Tableaus
A tableau is an array of tape alphabet
symbols.

It represents a configuration history of one
branch of our NDTM’s nondeterminism.
If the NDTM runs in nk time, the tableau is an
(nk ´ nk) tableau.

It’s big enough downward because, well, the
TM runs in nk.
…and rightward because the TM can only
count to nk.

We assume that every configuration starts and
ends with a # symbol.
We think of our tableau as looking like this in
the “beginning”: the starting configuration
across the top, and the other configurations
blank.

(We quote “beginning” because SAT isn’t really
a stateful algorithm, but just go with it for now.)

But we’ve assumed that we can “represent”
alphabet symbols. How do we do that, in
SAT?

q0 w1 w2 … wn □ … □

↑n
k↓

#
#
#
#
#
#
#
#
#

← nk →

4/17/17 COT 4210 © UCF 423

Tableaus
Number the rows and columns of the
tableau, then think of a SAT-style
variable in SAT corresponding to an
individual cell:

xi,j
So far, so good.

We can pretty easily think of that as
encoding the binary value of a cell in
our tableau.
But we need to go a little farther than
that.

1 2 3 4 5 6 7 8 9 10
1 # q0 w1 w2 … wn □ … □ #
2 # #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

4/17/17 COT 4210 © UCF 424

Encoding the Tableau: Basics
Consider a cell and corresponding
variable:

xi,j
We need to encode more than binary into
this. Consider a set comprised of:

The tape alphabet
The state set
The separator character

C = G È Q È { # }
Now rethink our cell variable:

xi,j,c
And now, turning this variable on
corresponds to setting cell (i, j) = c, for
some c Î C.

1 2 3 4 5 6 7 8 9 10
1 # q0 w1 w2 … wn □ … □ #
2 # #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

4/17/17 COT 4210 © UCF 425

Encoding the Tableau: Cells

Consider our tableau alphabet:
C = G È Q È { # }

Consider a cell and corresponding
variable:

xi,j,c
Now we need to make sure the tableau is
consistently encoded.

Create a clause for each cell (i, j).

The left demands xi,j,c be true for some c.
The right demands xi,j,c be true for only
one c.

1 2 3 4 5 6 7 8 9 10
1 # q0 w1 w2 … wn □ … □ #
2 # #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

𝜙()*+,(𝑖, 𝑗 = 1𝑥3,4,5

�

5∈8

∧ : 𝑥3,4,5	⋁	𝑥3,4,<

�

5,<∈8
5=<

4/17/17 COT 4210 © UCF 426

Encoding the Tableau: The
Tableau

Tableau alphabet: C = G È Q È { # }
Cell variable: xi,j,c

Create an encoding clause for each cell (i, j).

Now repeat the clause across the tableau.

This is our cell formula. It ensures that each
cell in the tableau is assigned a single
symbol.

1 2 3 4 5 6 7 8 9 10
1 # q0 w1 w2 … wn □ … □ #
2 # #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

𝜙()*+,(𝑖, 𝑗 = 1𝑥3,4,5

�

5∈8

∧ : 𝑥3,4,5	⋁	𝑥3,4,<

�

5,<∈8
5=<

𝜙*(>>? = : 𝜙()*+,(𝑖, 𝑗
�

@A3,4ABC

4/17/17 COT 4210 © UCF 427

Encoding the Tableau:
Complexity

We can create the single-cell
encoding formula in polynomial time
with a |C|2 iteration.

We can create the entire cell formula
in polynomial time with an n2k

iteration around that.
So we can say that fcells is satisfied
by, and only by, a properly
encoded tableau, and is created in
polynomial time.

1 2 3 4 5 6 7 8 9 10
1 # q0 w1 w2 … wn □ … □ #
2 # #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

𝜙()*+,(𝑖, 𝑗 = 1𝑥3,4,5

�

5∈8

∧ : 𝑥3,4,5	⋁	𝑥3,4,<

�

5,<∈8
5=<

𝜙*(>>? = : 𝜙()*+,(𝑖, 𝑗
�

@A3,4ABC

4/17/17 COT 4210 © UCF 428

Starting and Accepting
Starting and accepting are (comparatively) easy.
To start, take the start configuration padded to nk

length with blanks…
S = #q0w1w2…wn□…□# so that |S| = nk

…and require the first row be equal to the start
configuration:

Then to accept, just require an accept state
somewhere in the tableau.

1 2 3 4 5 6 7 8 9 10
1 # q0 w1 w2 … wn □ … □ #
2 # #
3 # #
4 # #
5 # w1 w2 … qA … □ … □ #
6 # #
7 # #
8 # #
9 # #
10 # #

𝜙?DEFD = : 𝑥@,4,GH

�

@A4ABC

𝜙E**(ID = 1 𝑥3,4,JK

�

@A3,4ABC

4/17/17 COT 4210 © UCF 429

Starting and Accepting

We can generate the start and accept
formulas in nk and (nk)2 time, both
polynomial.
So now we can say that:
fstart is satisfied by, and only by, a
tableau with the starting configuration
of M on w encoded as its first row,
and is created in polynomial time.

…and…
faccept is satisfied by, and only by, a
tableau encoding an accepting
configuration as one of its rows, and
is created in polynomial time.

1 2 3 4 5 6 7 8 9 10
1 # q0 w1 w2 … wn □ … □ #
2 # #
3 # #
4 # #
5 # z1 z2 … qA … □ … □ #
6 # #
7 # #
8 # #
9 # #
10 # #

𝜙?DEFD = : 𝑥@,4,GH

�

@A4ABC

𝜙E**(ID = 1 𝑥3,4,JK

�

@A3,4ABC

4/17/17 COT 4210 © UCF 430

Transitions

Now, for transitions. Recall the discussions
we had about ID changes being limited to
three characters or six, when looking at
transitions..

A given 2x3 window is legal if it does not
violate our machine’s transition function.
Given the linear sets of states and tape
symbols, and the finite size of 2x3 windows,
we can make a polynomial-sized set of all
legal windows.

Let a sequence A = (a1, …, a6) be a 2x3
window, with a1 the top left cell, a2 the top
middle, etc.

We say that A is legal if it represents a legal
window.

1 2 3 4 5 6 7 8 9 10
1 # q0 a b c a □ □ □ #
2 # b q1 b c a □ □ □ #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

4/17/17 COT 4210 © UCF 431

Transitions
A given 2x3 window is legal if it does not
violate our machine’s transition function. We
have a polynomial-sized set of all legal
windows.
Let a sequence A = (a1, …, a6) be a 2x3
window. A is legal if it represents a legal
window.
Now we can come up with a formula to say that
the window top-centered at cell (i, j) is legal.

Don’t be intimidated by this formula!
It’s just counting off the six cells of the
window and demanding that each be equal to
the corresponding cell in some legal window.

1 2 3 4 5 6 7 8 9 10
1 # q0 a b c a □ □ □ #
2 # b q1 b c a □ □ □ #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

𝜙>(LE>(𝑖, 𝑗) = 1
𝑥3,4O@,PQ ∧ 𝑥3,4,PR ∧ 𝑥3,4S@,PT ∧

𝑥3S@,4O@,PU ∧ 𝑥3S@,4,PV ∧ 𝑥3S@,4S@,PW

�

XY PQ,…,PW
[?	>(LE>

4/17/17 COT 4210 © UCF 432

Transitions
A given 2x3 window is legal if it does
not violate our machine’s transition
function.
We have a polynomial-sized set of all
legal windows.
Let a sequence A = (a1, …, a6) be a
2x3 window. A is legal if it represents
a legal window.

Since we have a polynomial number of
legal windows, this formula is also
polynomial. So we can say:
flegal (i, j) is satisfied by, and only by, a
tableau whose window top-centered at
(i, j) is legal; and is created in
polynomial time.

1 2 3 4 5 6 7 8 9 10
1 # q0 a b c a □ □ □ #
2 # b q1 b c a □ □ □ #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

𝜙>(LE>(𝑖, 𝑗) = 1
𝑥3,4O@,PQ ∧ 𝑥3,4,PR ∧ 𝑥3,4S@,PT ∧

𝑥3S@,4O@,PU ∧ 𝑥3S@,4,PV ∧ 𝑥3S@,4S@,PW

�

XY PQ,…,PW
[?	>(LE>

4/17/17 COT 4210 © UCF 433

Windows and Configurations

Consider any upper and lower configuration in the
tableau, so that the lower configuration is the one
immediately below – that is, following – the upper.
If all the windows top-centered on cells in the upper
configuration are legal, then:

The legality of the windows that don’t involve the state
symbol easily ensures the legality of the configuration
below them.
The window top-centered on the state symbol in the
upper configuration is sufficient to ensure that the state
symbol in the lower configuration makes a legal move.

The upper configuration yields the lower one if
and only if all the windows top-centered on cells
in the upper configuration are legal – and that
holds all the way down the tableau.

1 2 3 4 5 6 7 8 9 10
1 # q0 a b c a □ □ □ #
2 # b q1 b c a □ □ □ #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

4/17/17 COT 4210 © UCF 434

Windows and Configurations

flegal (i, j) is satisfied by, and only by, a tableau
whose window top-centered at (i, j) is legal; and
is created in polynomial time.
An upper configuration yields a lower one iff all
the windows top-centered within the upper are
legal.

This holds all the way down the tableau.
Then we have:

And can say fmove is satisfied by, and only by,
a tableau that does not violate the machine’s
transition function; and is created in
polynomial time.

1 2 3 4 5 6 7 8 9 10
1 # q0 a b c a □ □ □ #
2 # b q1 b c a □ □ □ #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

𝜙>(LE>(𝑖, 𝑗) = 1
𝑥3,4O@,PQ ∧ 𝑥3,4,PR ∧ 𝑥3,4S@,PT ∧

𝑥3S@,4O@,PU ∧ 𝑥3S@,4,PV ∧ 𝑥3S@,4S@,PW

�

XY PQ,…,PW
[?	>(LE>

𝜙\+](= : 𝜙>(LE>(𝑖, 𝑗)
�

@A3^BC,
@^4^BC

4/17/17 COT 4210 © UCF 435

Pulling It Together
We have:
fcells is satisfied by, and only by, a properly
encoded tableau.
fstart is satisfied by, and only by, a tableau
with the starting configuration of M on w
encoded as its first row.
faccept is satisfied by, and only by, a tableau
encoding an accepting configuration as one
of its rows.
fmove is satisfied by, and only by, a tableau
that does not violate the machine’s
transition function.
All are created in polynomial time.

Then fNDTM is satisfied by, and only by, a
tableau encoding an accepting
computation history of M on w, and is
created in polynomial time.

𝜙*(>>? = : 𝜙()*+,(𝑖, 𝑗
�

@A3,4ABC

𝜙?DEFD = : 𝑥@,4,GH

�

@A4ABC

𝜙E**(ID = 1 𝑥3,4,JK

�

@A3,4ABC

𝜙\+](= : 𝜙>(LE>(𝑖, 𝑗)
�

@A3^BC,
@^4^BC

𝜙_`ab = 𝜙*(>>? ∧ 𝜙?DEFD ∧ 𝜙E**(ID ∧ 𝜙\+](

4/17/17 COT 4210 © UCF 436

SAT is NP-Complete

fNDTM created from NDTM M and
input w is satisfied by, and only by,
a tableau encoding an accepting
computation history of M on w,
and is created in polynomial time.
This means that:

SAT accepts fNDTM if and only if
such a tableau exists…
…if and only if the NDTM we are
encoding into fNDTM accepts w.

We’ve just polynomially reduced
every possible NP language to
SAT.

Let’s convince ourselves of that a bit
more.

By definition, any NP language has an
NDTM M that decides it in polynomial
time.

We can decide any NP language
with a result from SAT using the
following algorithm:
On input <M, w>:

Create fNDTM from M and w.
Run the decider for SAT on fNDTM.
Accept if SAT accepts, reject if it
rejects.

SAT is NP-complete.

𝜙_`ab = 𝜙*(>>? ∧ 𝜙?DEFD ∧ 𝜙E**(ID ∧ 𝜙\+](

4/17/17 COT 4210 © UCF 437

NP–Complete
Within a year, Richard Karp added 22 problems to this
special class.

We will focus on:
3-SAT
SubsetSum
Partition
Integer Linear Programming
Vertex Cover
Independent Set
K-Color
Multiprocessor Scheduling

4/17/17 COT 4210 © UCF 438

SAT to 3SAT
• 3-SAT means that each clause has exactly three

terms
• If one term, e.g., (p), extend to (pÚpÚp)
• If two terms, e.g., (pÚq), extend to (pÚqÚp)
• Any clause with three terms is fine
• If n > three terms, can reduce to two clauses, one

with three terms and one with n-1 terms, e.g.,
(p1Úp2Ú…Úpn) to
(p1Úp2Úz) & (p3Ú…ÚpnÚ~z), where z is a new
variable. If n=4, we are done, else apply this
approach again with the clause having n-1 terms

4/17/17 COT 4210 © UCF 439

SubsetSum
S = {s1, s2, …, sn}

set of positive integers
and an integer B.

Question: Does S have a subset whose
values sum to B?

No one knows of a polynomial algorithm.

{No one has proven there isn’t one, either!!}

4/17/17 COT 4210 © UCF 440

SubsetSum and Partition

Theorem. SAT ≤P 3SAT

Theorem. 3SAT ≤P SubsetSum

Theorem. SubsetSum≤P Partition

Theorem. Partition≤P SubsetSum

Therefore, not only is Satisfiability in NP–Complete, but so is
3SAT, Partition, and SubsetSum.

4/17/17 COT 4210 © UCF 441

Example SubsetSum

4/17/17 COT 4210 © UCF 442

Assuming a 3SAT expression (a + ~b + c) (~a + b + ~c), the following
shows the reduction from 3SAT to Subset-Sum.

a b c a + ~b + c ~a + b + ~c
a 1 1
~a 1 1
b 1 1
~b 1 1
c 1 1
~c 1 1
C1 1
C1’ 1
C2 1
C2’ 1

1 1 1 3 3

Partition
• Partition is polynomial equivalent to SubsetSum

– Let i1, i2, .., in , G be an instance of SubsetSum. This
instance has answer “yes” iff
i1, i2, .., in , 2*Sum(i1, i2, .., in) – G,Sum(i1, i2, .., in) + G
has answer “yes” in Partition. Here we assume that
G ≤ Sum(i1, i2, .., in), for, if not, the answer is “no.”

– Let i1, i2, .., in be an instance of Partition. This instance
has answer “yes” iff
i1, i2, .., in , Sum(i1, i2, .., in)/2
has answer “yes” in SubsetSum

4/17/17 COT 4210 © UCF 443

Integer Linear Programming
• Show for 0-1 integer linear programming by constraining

solution space. Start with an instance of SAT (or 3SAT),
assuming variables v1,…, vn and clauses c1,…, cm

• For each variable vi, have constraint that 0 ≤ vi ≤ 1
• For each clause we provide a constraint that it must be

satisfied (evaluate to at least 1). For example, if clause cj
is v2 ∨ ~v3 ∨ v5 ∨ v6 then add the constraint
v2 + (1-v3) + v5 + v6 ≥ 1

• A solution to this set of integer linear constraints implies
a solution to the instance of SAT and vice versa

4/17/17 COT 4210 © UCF 444

4/17/17 COT 4210 © UCF 445

Assignment # 10 (Optional)
1. Recast the decision problem for the Boolean expression

(a + b + ~c)(~a + b + b)(a + ~b + c) as a SubsetSum problem using the
construction discussed in class. Indicate what rows would need to be
chosen for a solution.

2. Recast the SubsetSum problem {15, 7, 12, 4, 11, 6, 4, 12, 3, 2}, G=39 as a
Partition Problem using the construction discussed in class. Indicate
what values would need to be chosen to equal 39. Indicate the
partitions that evenly divide the Partition Problem you posed.

3. Recast the decision problem for the Boolean expression
(a + b + ~c + d)(~a + b + ~d)(a + ~b + c) as a 0,1-Integer Linear
Programming problem using the construction discussed in class.
Indicate what binary (0,1) values of a, b, c and d gives rise to a solution
to the Integer Linear Programming problem you posed.

Due: 4/27, 10:30AM (use Webcourses to turn in)

VERTEX COVERING (VC)
DECISION PROBLEM IS NP-HARD

4/17/17 COT 4210 © UCF 446

3SAT to Vertex Cover
• Vertex cover seeks a set of vertices that cover every edge in some

graph
• Let I3-SAT be an arbitrary instance of 3-SAT. For integers n and m,

U = {u1, u2, …, un} and Ci = {zi1, zi2, zi3} for 1 ≤ i ≤ m,
where each zij is either a uk or uk' for some k.

• Construct an instance of VC as follows.
• For each i, 1 ≤ i ≤ n, construct two vertices, ui and ui' with an edge

between them.
• For each clause Ci = {zi1, zi2, zi3}, 1 ≤ i ≤ m, construct three vertices zi1,

zi2, and zi3 and form a "triangle on them. Each zij is one of the Boolean
variables uk or its complement uk'. Draw an edge between zij and the
Boolean variable (whichever it is). Each zij has degree 3. Finally, set k
= n+2m.

• Theorem. The given instance of 3-SAT is satisfiable if and only if the
constructed instance of VC has a vertex cover with at most k vertices.

4/17/17 COT 4210 © UCF 447

VC Variable Gadget

4/17/17 COT 4210 © UCF 448

X ~X

VC Clause Gadget

4/17/17 COT 4210 © UCF 449

a ~c

b

a + b + ~c

VC Gadgets Combined

4/17/17 COT 4210 © UCF 450

Independent Set
• Independent Set

– Given Graph G = (V, E), a subset S of the vertices is
independent if there are no edges between vertices in
S

– The k-IS problem is to determine for a k>0 and a
graph G, whether or not G has an independent set of
k nodes

• Note there is a related NP-Hard optimization
problem to find a Maximum Independent Set. It
is even hard to approximate a solution to the
Maximum Independent Set Problem.

4/17/17 COT 4210 © UCF 451

IS (VC) Clause Gadget

4/17/17 COT 4210 © UCF 452

a ~c

b

a + b + ~c

3SAT to IS
(a + ~b + c) (~a + b + ~c)(a + b + c), k=3
(k=number of clauses, not variables)

4/17/17 COT 4210 © UCF 453

a c

~b
~a ~c

b

a c

b

K-COLOR (KC) DECISION
PROBLEM IS NP-HARD

4/17/17 COT 4210 © UCF 454

K-Coloring
Given:
A graph G = (V, E) and an integer k.
Question:
Can the vertices of G be assigned colors
from a palette of size k, so that adjacent
vertices have different colors and use at
most k colors?

3Coloring (3C) uses k=3
4/17/17 COT 4210 © UCF 455

3C Super Gadget

4/17/17 COT 4210 © UCF 456

T F

B

KC Super + Variables Gadget

4/17/17 COT 4210 © UCF 457

KC Clause Gadget

4/17/17 COT 4210 © UCF 458

Consider ~a, ~b, ~c

4/17/17 COT 4210 © UCF 459

F
T

B

F

T / B
B / T

F but not legal

Consider a || b, ~c

4/17/17 COT 4210 © UCF 460

F
T

B

F

T
B/F

F/B

Consider ~a, ~b, c

4/17/17 COT 4210 © UCF 461

T
T

F

B

F
B

T

Consider one of a || b, c

4/17/17 COT 4210 © UCF 462

T
T

F

B

T
B/F

F/B

Consider a, b, c

4/17/17 COT 4210 © UCF 463

T
T

F

B

T
B/F

F/B

KC Gadgets Combined

4/17/17 COT 4210 © UCF 464

B

K = 3

(u + ~v + w) (v + x + ~y)

Register Allocation
• Liveness: A variable is live if its current assignment may be used at

some future point in a program’s flow
• Optimizers often try to keep live variables in registers
• If two variables are simultaneously live, they need to be kept in

separate registers
• Consider the K-coloring problem (can the nodes of a graph be colored

with at most K colors under the constraint that adjacent nodes must
have different colors?)

• Register Allocation reduces to K-coloring by mapping each variable to
a node and inserting an edge between variables that are
simultaneously live

• K-coloring reduces to Register Allocation by interpreting nodes as
variables and edges as indicating concurrent liveness

• This is a simple mapping because it’s an isomorphism

4/17/17 COT 4210 © UCF 465

PROCESSOR SCHEDULING
IS NP-HARD

4/17/17 COT 4210 © UCF 466

Processor Scheduling
• A Process Scheduling Problem can be described by
– m processors P1, P2, …, Pm,
– processor timing functions S1, S2, …, Sm, each describing how the

corresponding processor responds to an execution profile,
– additional resources R1, R2, …, Rk, e.g., memory
– transmission cost matrix Cij (1 £ i , j £ m), based on proc. data sharing,
– tasks to be executed T1, T2, …, Tn,
– task execution profiles A1, A2, …, An,
– a partial order defined on the tasks such that Ti < Tj means that Ti must

complete before Tj can start execution,
– communication matrix Dij (1 £ i , j £ n); Dij can be non-zero only if Ti <

Tj,
– weights W1, W2, …, Wn -- cost of deferring execution of task.

4/17/17 COT 4210 © UCF 467

Complexity Overview
• The intent of a scheduling algorithm is to minimize the sum of

the weighted completion times of all tasks, while obeying the
constraints of the task system. Weights can be made large to
impose deadlines.

• The general scheduling problem is quite complex, but even
simpler instances, where the processors are uniform, there are
no additional resources, there is no data transmission, the
execution profile is just processor time and the weights are
uniform, are very hard.

• In fact, if we just specify the time to complete each task and we
have no partial ordering, then finding an optimal schedule on
two processors is an NP-complete problem. It is essentially the
subset-sum problem.

4/17/17 COT 4210 © UCF 468

2 Processor Scheduling
The problem of optimally scheduling n tasks T1, T2, …, Tn onto 2
processors with an empty partial order < is the same as that of
dividing a set of positive whole numbers into two subsets, such that
the numbers are as close to evenly divided. So, for example, given the
numbers
3, 2, 4, 1
we could try a “greedy” approach as follows:
put 3 in set 1
put 2 in set 2
put 4 in set 2 (total is now 6)
put 1 in set 1 (total is now 4)
This is not the best solution. A better option is to put 3 and 2 in one
set and 4 and 1 in the other. Such a solution would have been attained
if we did a greedy solution on a sorted version of the original
numbers. In general, however, sorting doesn’t work.

4/17/17 COT 4210 © UCF 469

2 Processor Nastiness
Try the unsorted list
7, 7, 6, 6, 5, 4, 4, 5, 4
Greedy (Always in one that is least used)
7, 6, 5, 5 = 23
7, 6, 4, 4, 4 = 25
Optimal
7, 6, 6, 5 = 24
7, 4, 4, 4, 5 = 24
Sort it
7, 7, 6, 6, 5, 5, 4, 4, 4
7, 6, 5, 4, 4 = 26
7, 6, 5, 4 = 22
Even worse than greedy unsorted !!

4/17/17 COT 4210 © UCF 470

Heuristics
While it is not known whether or not P = NP?, it
is clear that we need to “solve” problems that
are NP-complete since many practical
scheduling and networking problems are in
this class. For this reason we often choose to
find good “heuristics” which are fast and
provide acceptable, though not perfect,
answers. The First Fit and Best Fit algorithms
we previously discussed are examples of such
acceptable, imperfect solutions.
4/17/17 COT 4210 © UCF 471

Challenge Problem
Consider the simple scheduling problem where we have a set of independent tasks
running on a fixed number of processors, and we wish to minimize finishing time.
How would a list (first fit, no preemption) strategy schedule tasks with the following IDs
and execution times onto four processors? Answer using Gantt chart.
(T1,4) (T2,1) (T3,3) (T4,6) (T5,2) (T6,1) (T7,4) (T8,5) (T9,7) (T10,3) (T11,4) (2-1/m)

Now show what would happen if the times were sorted non-decreasing. (2-1/m)

Now show what would happen if the times were sorted non-increasing. (4/3-1/3m)

4/17/17 COT 4210 © UCF 472

NP Co-NP

UNIVERSE OF SETS

PNP-
Complete

Final Exam Topics 1
• Regular languages

– Decision Problems
• Membership
• Emptiness
• Finiteness
• Σ*
• Equality
• Containment

– Closure
• Union/Concatenation/Star
• Complement
• Substitution/Quotient, Prefix, Infix, Suffix
• Max/Min

4/17/17 COT 4210 © UCF 474

Final Exam Topics 2
• Context free languages

– Writing a simple CFG
– Decision Problems

• Membership
• Emptiness
• Finiteness
• Σ* (undecidable)
• Equality (undecidable)
• Containment (undecidable)

– Closure
• Union/Concatenation/Star
• Intersection with Regular
• Substitution/Quotient with Regular, Prefix, Infix, Suffix

– Non-closure
• intersection, complement, quotient, Max/Min

– Pumping Lemma for CFLs

4/17/17 COT 4210 © UCF 475

Final Exam Topics 3
• Chomsky Hierarchy

(Red involve no constructive questions)
– Regular, CFG, CSG, PSG (type 3 to type 0)
– FSAs, PDAs, LBAs, Turing machines
– Length preservation or increase makes membership

in associated languages decidable for all but PSGs
– CFLs can be inherently ambiguous but that does not

mean a language that has an ambiguous grammar is
automatically inherently ambiguous

4/17/17 COT 4210 © UCF 476

Final Exam Topics 4
• Computability Theory

– Decision problems: solvable (decidable, recursive), semi-decidable
(recognizable, recursively enumerable/re, generable), non-re

– A set is re iff it is semi-decidable
– If set is re and complement is also re, set is recursive (decidable)
– Halting problem (K0): diagonalization proof of undecidability

• Set K0 is re but complement is not
– Set K = { f | f(f) converges }
– Algorithms (Total): diagonalization proof of non-re
– Reducibility to show certain problems are not decidable or even non-re
– K and K0 are re-complete – reducibility to show these results
– Rice’s Theorem: All non-trivial I/O properties of functions are

undecidable (weak and strong versions)
– Use of quantification to discover upper bound on complexity

4/17/17 COT 4210 © UCF 477

Final Exam Topics 5
• Computability Applied to Formal Grammars

(Red only results not constructions that lead to these)
– Post Correspondence problem (PCP)

• Definition
• Undecidability (proof was only sketched and is not part of this course)
• Application to ambiguity and non-emptiness of intersections of CFLs and to non-

emptiness of CSLs
– Traces of Turing computations

• Not CFLs
• Single steps are CFLs (use reversal of second configuration)
• Intersections of pairwise correct traces are traces
• Complement of traces (including terminating traces) are CFL
• Use to show cannot decide if CFL, L, is S*
• L= S* and L = L2 are undecidable for CFLs

– PSG can mimic TM, so generate any re language; thus, membership in PSL is
undecidable, as is emptiness of PSL.

– All re sets are homomorphic images of CSLs (erase fill character)
4/17/17 COT 4210 © UCF 478

Final Exam Topics 6
• Complexity Theory

– Verifiers versus solvers: P versus NP
– Definitions of NP: verify in deterministic poly time vs solve in

non-deterministic polynomial time
– Co-P and co-NP; NP-Hard versus NP-Complete
– Basic idea behind SAT as NP-Complete
– Reduction of SAT to 3-SAT to Subset-Sum
– Equivalence of Subset-Sum to Partition
– Relation of Subset-Sum and Partition to multiprocessor

scheduling
– Vertex cover, 3-coloring, register allocation, Independent set
– Gadgets for above

4/17/17 COT 4210 © UCF , 479

Supplemental Material

Equivalence of Models

Equivalency of computation by
Turing machines,
register machines,

factor replacement systems,
recursive functions

© UCF EECS 482

Proving Equivalence
• Constructions do not, by themselves,

prove equivalence.
• To do so, we need to develop a notion of

an “instantaneous description” (id) of each
model of computation (well, almost as
recursive functions are a bit different).

• We then show a mapping of id’s between
the models.

4/17/17

© UCF EECS 483

Instantaneous Descriptions
• An instantaneous description (id) is a finite description of

a state achievable by a computational machine, M.
• Each machine starts in some initial id, id0.
• The semantics of the instructions of M define a relation
ÞM such that, idi ÞM idi+1, i³0, if the execution of a
single instruction of M would alter M’s state from idi to
idi+1 or if M halts in state idi and idi+1=idi.

• Þ+
M is the transitive closure of ÞM

• Þ*M is the reflexive transitive closure of ÞM

4/17/17

© UCF EECS 484

id Definitions
• For a register machine, M, an id is an s+1 tuple of the form

(i, r1,…,rs)M specifying the number of the next instruction to be
executed and the values of all registers prior to its execution.

• For a factor replacement system, an id is just a natural number.
• For a Turing machine, M, an id is some finite representation of the

tape, the position of the read/write head and the current state. This
is usually represented as a string aqxb, where a (b) is the shortest
string representing all non-blank squares to the left (right) of the
scanned square, x is the symbol at the scanned square and q is the
current state.

• Recursive functions do not have id’s, so we will handle their
simulation by an inductive argument, using the primitive functions
are the basis and composition, induction and minimization in the
inductive step.

4/17/17

© UCF EECS 485

Equivalence Steps
• Assume we have a machine M in one model of computation and a

mapping of M into a machine M’ in a second model.
• Assume the initial configuration of M is id0 and that of M’ is id’0
• Define a mapping, h, from id’s of M into those of M’, such that,

RM = { h(d) | d is an instance of an id of M }, and
– id’0Þ*M’ h(id0), and h(id0) is the only member of RM in the

configurations encountered in this derivation.
– h(idi)Þ+

M’ h(idi+1), i³0, and h(idi+1) is the only member of RM in
this derivation.

• The above, in effect, provides an inductive proof that
– id0Þ*M id implies id’0Þ*M’ h(id), and
– If id’0Þ*M’ id’ then either id0Þ*M id, where id’ = h(id), or

id’ Ï RM

4/17/17

All Models are Equivalent

Equivalency of computation by
Turing machines, register machines,

factor replacement systems,
recursive functions

© UCF EECS 487

Our Plan of Attack

• We will now show
TURING ≤ REGISTER ≤ FACTOR ≤

RECURSIVE ≤ TURING
where by A ≤ B, we mean that every
instance of A can be replaced by an
equivalent instance of B.

• The transitive closure will then get us the
desired result.

4/17/17

TURING ≤ REGISTER

© UCF EECS 489

Encoding a TM’s State
• Assume that we have an n state Turing machine. Let

the states be numbered 0,…, n-1.
• Assume our machine is in state 7, with its tape

containing
… 0 0 1 0 1 0 0 1 1 q7 0 0 0 …

• The underscore indicates the square being read. We
denote this by the finite id
1 0 1 0 0 1 1 q7 0

• In this notation, we always write down the scanned
square, even if it and all symbols to its right are blank.

4/17/17

© UCF EECS 490

More on Encoding of TM
• An id can be represented by a triple of natural numbers,

(R,L,i), where R is the number denoted by the reversal
of the binary sequence to the right of the qi, L is the
number denoted by the binary sequence to the left, and i
is the state index.

• So,
… 0 0 1 0 1 0 0 1 1 q7 0 0 0 …
is just (0, 83, 7).
… 0 0 1 0 q5 1 0 1 1 0 0 …
is represented as (13, 2, 5).

• We can store the R part in register 1, the L part in
register 2, and the state index in register 3.

4/17/17

© UCF EECS 491

Simulation by RM
1. DEC3[2,q0] : Go to simulate actions in state 0
2. DEC3[3,q1] : Go to simulate actions in state 1
…
n. DEC3[ERR,qn-1] : Go to simulate actions in state n-1
…
qj. IF_r1_ODD[qj+2] : Jump if scanning a 1
qj+1. JUMP[set_k] : If (qj 0 0 qk) is rule in TM
qj+1. INC1[set_k] : If (qj 0 1 qk) is rule in TM
qj+1. DIV_r1_BY_2 : If (qj 0 R qk) is rule in TM

MUL_r2__BY_2
JUMP[set_k]

qj+1. MUL_r1_BY_2 : If (qj 0 L qk) is rule in TM
IF_r2_ODD then INC1
DIV_r2__BY_2[set_k]

…
set_n-1. INC3[set_n-2] : Set r3 to index n-1 for simulating state n-1
set_n-2. INC3[set_n-3] : Set r3 to index n-2 for simulating state n-2
…
set_0. JUMP[1] : Set r3 to index 0 for simulating state 0

4/17/17

© UCF EECS 492

Fixups
• Need epilog so action for missing quad

(halting) jumps beyond end of simulation
to clean things up, placing result in r1.

• Can also have a prolog that starts with
arguments in first n registers and stores
values in r1, r2 and r3 to represent Turing
machines starting configuration.

4/17/17

© UCF EECS 493

Prolog
Example assuming n arguments (fix as needed)
1. MUL_rn+1_BY_2[2] : Set rn+1 = 11…102, where, #1's = r1
2. DEC1[3,4] : r1 will be set to 0
3. INCn+1[1] :
4. MUL_rn+1_BY_2[5] : Set rn+1 = 11…1011…102, where, #1's = r1, then r2
5. DEC2[6,7] : r2 will be set to 0
6. INCn+1[4] :
…
3n-2. DECn[3n-1,3n+1] : Set rn+1 = 11…1011…1011…12, where, #1's = r1, r2,…
3n-1. MUL_rn+1_BY_2[3n] : rn will be set to 0
3n. INCn+1[3n-2] :
3n+1 DECn+1[3n+2,3n+3] : Copy rn+1 to r1, rn+1 is set to 0
3n+2. INC2[3n+1] :
3n+3. : r2 = left tape, r1 = 0 (right), r3 = 0 (initial state)

4/17/17

© UCF EECS 494

Epilog
1. DEC3[1,2] : Set r3 to 0 (just cleaning up)
2. IF_r1_ODD[3,5] : Are we done with answer?
3. INC2[4] : putting answer in r2
4. DIV_r1_BY_2[2] : strip a 1 from r1
5. DEC1[5,6] : Set r1 to 0 (prepare for answer)
6. DEC2[6,7] : Copy r2 to r1
7. INC1[6] :
8. : Answer is now in r1

4/17/17

REGISTER £ FACTOR

© UCF EECS 496

Encoding a RM’s State
• This is a really easy one based on the fact that every member of Z+

(the positive integers) has a unique prime factorization. Thus all
such numbers can be uniquely written in the form

where the pi's are distinct primes and the ki's are non-zero values,
except that the number 1 would be represented by 20.

• Let R be an arbitrary n-register machine, having m instructions.

Encode the contents of registers r1,…,rn by the powers of p1,…pn .

Encode rule number's 1,…,m by primes pn+1 ,…, pn+m

Use pn+m+1 as prime factor that indicates simulation is done.
• This is in essence the Gödel number of the RM’s state.

1i
1kp

2i
2kp …

ji
jkp

4/17/17

© UCF EECS 497

Simulation by FRS
• Now, the j-th instruction (1≤j≤m) of R has

associated factor replacement rules as follows:
j. INCr[i]

pn+jx ® pn+iprx
j. DECr[s, f]

pn+jprx ® pn+sx
pn+jx ® pn+fx

• We also add the halting rule associated with
m+1 of

pn+m+1x ® x

4/17/17

© UCF EECS 498

Importance of Order
• The relative order of the two rules to

simulate a DEC are critical.
• To test if register r has a zero in it, we, in

effect, make sure that we cannot execute
the rule that is enabled when the r-th
prime is a factor.

• If the rules were placed in the wrong order,
or if they weren't prioritized, we would be
non-deterministic.

4/17/17

© UCF EECS 499

Example of Order
Consider the simple machine to compute
r1:=r2 – r3 (limited)
1. DEC3[2,3]
2. DEC2[1,1]
3. DEC2[4,5]
4. INC1[3]
5.

4/17/17

© UCF EECS 500

Subtraction Encoding
Start with 3x5y7

7 • 5 x ® 11 x
7 x ® 13 x
11 • 3 x ® 7 x
11 x ® 7 x
13 • 3 x ® 17 x
13 x ® 19 x
17 x ® 13 • 2 x
19 x ® x

4/17/17

© UCF EECS 501

Analysis of Problem
• If we don't obey the ordering here, we could take

an input like 35527 and immediately apply the
second rule (the one that mimics a failed
decrement).

• We then have 355213, signifying that we will
mimic instruction number 3, never having
subtracted the 2 from 5.

• Now, we mimic copying r2 to r1 and get 255219 .
• We then remove the 19 and have the wrong

answer.

4/17/17

FACTOR £ RECURSIVE

© UCF EECS 503

Universal Machine
• In the process of doing this reduction, we will

build a Universal Machine.
• This is a single recursive function with two

arguments. The first specifies the factor system
(encoded) and the second the argument to this
factor system.

• The Universal Machine will then simulate the
given machine on the selected input.

4/17/17

© UCF EECS 504

Encoding FRS
• Let (n, ((a1,b1), (a2,b2), … ,(an,bn)) be

some factor replacement system, where
(ai,bi) means that the i-th rule is

aix ® bix
• Encode this machine by the number F,

pppp nnnn

n bababa nn

2212212117532 2211

++-
!

4/17/17

© UCF EECS 505

Simulation by Recursive # 1
• We can determine the rule of F that applies to x by

RULE(F, x) = µ z (1 ≤ z ≤ exp(F, 0)+1) [exp(F, 2*z-1) | x]
• Note: if x is divisible by ai, and i is the least integer for which this is

true, then exp(F,2*i-1) = ai where ai is the number of prime factors
of F involving p2i-1. Thus, RULE(F,x) = i.

If x is not divisible by any ai, 1≤i≤n, then x is divisible by 1, and
RULE(F,x) returns n+1. That’s why we added p2n+1 p2n+2.

• Given the function RULE(F,x), we can determine NEXT(F,x), the
number that follows x, when using F, by

NEXT(F, x) = (x // exp(F, 2*RULE(F, x)-1)) * exp(F, 2*RULE(F, x))

4/17/17

© UCF EECS 506

Simulation by Recursive # 2
• The configurations listed by F, when

started on x, are
CONFIG(F, x, 0) = x
CONFIG(F, x, y+1) = NEXT(F, CONFIG(F, x, y))

• The number of the configuration on which
F halts is

HALT(F, x) = µ y [CONFIG(F, x, y) == CONFIG(F, x, y+1)]
This assumes we converge to a fixed point only if we
stop

4/17/17

© UCF EECS 507

Simulation by Recursive # 3
• A Universal Machine that simulates an arbitrary

Factor System, Turing Machine, Register
Machine, Recursive Function can then be
defined by

Univ(F, x) = exp (CONFIG (F, x, HALT (F, x)), 0)

• This assumes that the answer will be returned
as the exponent of the only even prime, 2. We
can fix F for any given Factor System that we
wish to simulate.

4/17/17

© UCF EECS 508

FRS Subtraction
• 203a5b Þ 2a-b

3*5x ® x or 1/15
5x ® x or 1/5
3x ® 2x or 2/3

• Encode F = 23 315 51 75 111 133 172 191 231

• Consider a=4, b=2
• RULE(F, x) = µ z (1 ≤ z ≤ 4) [exp(F, 2*z-1) | x]

RULE (F,34 52) = 1, as 15 divides 34 52

• NEXT(F, x) = (x // exp(F, 2*RULE(F, x)-1)) * exp(F, 2*RULE(F, x))
NEXT(F,34 52) = (34 52 // 15 * 1) = 3351

NEXT(F,33 51) = (33 51 // 15 * 1) = 32

NEXT(F,32) = (32 // 3 * 2) = 2131

NEXT(F, 2131) = (2131 // 3 * 2) = 22

NEXT(F, 22) = (22 // 1 * 1) = 22

4/17/17

© UCF EECS 509

Rest of simulation
• CONFIG(F, x, 0) = x

CONFIG(F, x, y+1) = NEXT(F, CONFIG(F, x, y))
• CONFIG(F,34 52,0) = 34 52

CONFIG(F,34 52,1) = 3351

CONFIG(F,34 52,2) = 32

CONFIG(F,34 52,3) = 2131

CONFIG(F,34 52,4) = 22

CONFIG(F,34 52,5) = 22

• HALT(F, x)=µy[CONFIG(F,x,y)==CONFIG(F,x,y+1)] = 4
• Univ(F, x) = exp (CONFIG (F, x, HALT (F, x)), 0)

= exp(22,0) = 2

4/17/17

© UCF EECS 510

Simplicity of Universal
• A side result is that every computable

(recursive) function can be expressed in
the form

F(x) = G(µ y H(x, y))

where G and H are primitive recursive.

4/17/17

RECURSIVE £ TURING

© UCF EECS 512

Standard Turing Computation
• Our notion of standard Turing computability of

some n-ary function F assumes that the
machine starts with a tape containing the n
inputs, x1, … , xn in the form

…01x101x20…01xn0…

and ends with

…01x101x20…01xn01y0…

where y = F(x1, … , xn).

4/17/17

© UCF EECS 513

More Helpers
• To build our simulation we need to construct some useful

submachines, in addition to the R, L, R, L, and Ck machines already
defined.

• T -- translate moves a value left one tape square
…?01x0… Þ …?1x00…

• Shift -- shift a rightmost value left, destroying value to its left
…01x101x20… Þ …01x20…

• Rotk -- Rotate a k value sequence one slot to the left
…01x101x20…01xk0…

Þ …01x20…01xk01x10…

 R1 L0 R

R 1

L T

R

0
k L k

k+1 1 L k L 0 T k L k+1

L 1

T
L 0 T

0

4/17/17

© UCF EECS 514

Basic Functions
All Basis Recursive Functions are Turing
computable:

• Ca
n(x1,…,xn) = a

(R1)aR
• (x1,…,xn) = xi

Cn-i+1
• S(x) = x+1

C11R

 i
nI

4/17/17

© UCF EECS 515

Closure Under Composition
If G, H1, … , Hk are already known to be Turing computable, then so
is F, where

F(x1,…,xn) = G(H1(x1,…,xn), … , Hk(x1,…,xn))

To see this, we must first show that if E(x1,…,xn) is Turing
computable then so is

E<m>(x1,…,xn, y1,…,ym) = E(x1,…,xn)

This can be computed by the machine

Ln+m (Rotn+m)n Rn+m E Ln+m+1 (Rotn+m)m Rn+m+1

Can now define F by

H1 H2<1> H3<2> … Hk<k-1> G Shiftk

4/17/17

Closure Under Induction
To prove the that Turing Machines are closed under induction (primitive
recursion), we must simulate some arbitrary primitive recursive function
F(y,x1,x2, …, xn) on a Turing Machine, where
F(0, x1,x2, …, xn) = G(x1,x2, …, xn)
F(y+1, x1,x2, …, xn) = H(y, x1,x2, …, xn, F(y,x1,x2, …, xn))
Where, G and H are Standard Turing Computable. We define the
function F for the Turing Machine as follows:

Since our Turing Machine simulator can produce the same value for
any arbitrary PRF, F, we show that Turing Machines are closed under
induction (primitive recursion).

4/17/17 © UCF EECS 516

GLn+1 L
1

0

0Rn+2 H Shift Ln+2 1
Rn+2

© UCF EECS 517

Closure Under Minimization
If G is already known to be Turing
computable, then so is F, where

F(x1,…,xn) = µy (G(x1,…,xn, y) == 1)

This can be done by

R G L 1 0 L
0

1
4/17/17

© UCF EECS 518

Consequences of Equivalence

• Theorem: The computational power of
Recursive Functions, Turing Machines, Register
Machine, and Factor Replacement Systems are
all equivalent.

• Theorem: Every Recursive Function (Turing
Computable Function, etc.) can be performed
with just one unbounded type of iteration.

• Theorem: Universal machines can be
constructed for each of our formal models of
computation.

4/17/17

HAMILTONIAN CIRCUIT (HC)
DECISION PROBLEM IS NP-HARD

4/17/17 COT 4210 © UCF 519

HC Variable Gadget

4/17/17 COT 4210 © UCF 520

HC Gadgets Combined

4/17/17 COT 4210 © UCF 521

Hamiltonian Path
• Note we can split an arbitrary node, v, into

two (v’,v’’ – one, v’, has in-edges of v,
other, v’’, has out-edges. Path (not cycle)
must start at v’’ and end at v’ and goal is
still K.

4/17/17 COT 4210 © UCF 522

Travelling Salesman
• Start with HC = (V,E), K=|V|
• Set edges from HC instance to 1
• Add edges between pairs that lack such

edges and make those weights 2 (often
people make these K+1); this means that
the reverse of unidirectional links also get
weight 2

• Goal weight is K for cycle

4/17/17 COT 4210 © UCF 523

Tiling

Undecidable and NP-Complete
Variants

Basic Idea of Tiling

4/17/17 COT 4210 © UCF 525

A single tile has colors on all four sides.
Tiles are often called dominoes as
assembling them follows the rules of
placing dominoes. That is, the color
(or number) of a side must match that
of its adjacent tile, e.g., tile, t2, to right
of a tile, t1, must have same color on
Its left as is on the right side of t1.
This constraint applies to top and as
well as sides. Boundary tiles do not
have constraints on their sides that touch
the boundaries.

Instance of Tiling Problem
• A finite set of tile types (a type is determined by

the colors of its edges)
• Some 2d area (finite or infinite) on which the tiles

are to be laid out
• An optional starting set of tiles in fixed positions
• The goal of tiling the plane following the

adjacency constraints and whatever constraints
are indicated by the starting configuration.

4/17/17 COT 4210 © UCF 526

A Valid 3 by 3 Tiling of Tile
Types from Previous Slide

4/17/17 COT 4210 © UCF 527

Some Variations
• Infinite 2d plane (impossible in general)

– Our two tile types can easily tile the 2d plane
• Finite 2d plane (hard in general)

– Our two tile types can easily tile any finite 2d plane
– This is called the Bounded Tiling Problem.

• One dimensional space (hmm?)
• Infinite 3d space (not even semi-decidable in

general)

4/17/17 COT 4210 © UCF 528

Tiling the Plane
• We will start with a Post Machine, M = (Q, Σ, δ, q0), with tape

alphabet Σ = {B,1} where B is blank and δ maps pairs from Q×Σ to
Q×(Σ È {R,L}). M starts in state q0
– (Turing Machine with each action being L, R or Print)

• We will consider the case of M starting with a blank tape
• We will constrain our machine to never go to the left of its starting

position (semi unbounded tape)
• We will mimic the computation steps of M
• Termination occurs if in state q reading b and δ(q,b) is not defined
• We will use the fact that halting when starting at the left end of a

semi unbounded tape in its initial state with a blank tape is
undecidable

4/17/17 COT 4210 © UCF 529

The Tiling Decision Problem
• Given a finite set of tile types and a

starting tile in lower left corner of 2d plane,
can we tile all places in the plane?

• A place is defined by its coordinates (x,y),
x≥0, y≥0

• The fixed starting tile is at (0,0)

4/17/17 COT 4210 © UCF 530

Colors
• Given M, define our tile colors as
• {X, Y, *, B, 1, YB, Y1} È Q×{B,1} È

Q×{YB,Y1} È Q×{R,L}
• Simplest tile (represents Blank on X axis)

4/17/17 COT 4210 © UCF 531

B
BB

X

Tiles for Copying Tape Cell

4/17/17 COT 4210 © UCF 532

B
**

B

YB
*Y

YB

Copy cells not on
left boundary and
not scanned

1
**

1

Y1
*Y

Y1

Copy cells on
left boundary
but not scanned

Right Move δ(q,a) = (p,R)

4/17/17 COT 4210 © UCF 533

Ya
p,RY

q,Ya

a
p,R*

q,a

p,b
*p,R

b

where bÎΣ

Left Move δ(q,a) = (p,L)

4/17/17 COT 4210 © UCF 534

p,Yb
p,LY

Yb

p,b
p,L*

b

a
*p,L

q,a

where bÎΣ

Print δ(q,a) = (p,c)

4/17/17 COT 4210 © UCF 535

p,Yc
*Y

Yc

p,c
**

q,a

Corner Tile and Bottom Row

4/17/17 COT 4210 © UCF 536

q0,YB
BY

X

Zero-ed Row is forced to be

q0,YB
BY

X

B
BB

X

B
BB

X………...

First Action Print

4/17/17 COT 4210 © UCF 537

p,Ya
*Y

q0,YB

As we cannot move left of leftmost character first action is either right or print.
Assume for now that δ(q0,B) = (p,a)

q0,YB
BY

X

B
BB

X

B
BB

X………...

B
**

B

B
**

B………...

First Action Right Move

4/17/17 COT 4210 © UCF 538

YB
p,RY

q0,YB

As we cannot move left of leftmost character first action is either right or print.
Assume for now that δ(q0,B) = (p,R)

q0,YB
BY

X

B
BB

X

B
BB

X………...

p,B
*p,R

B

B
**

B………...

The Rest of the Story Part 1
• Inductively we can show that, if the i-th

row represents an infinite transcription of
the Turing configuration after step i then
the (i+1)-st represents such a transcription
after step i+1. Since we have shown the
base case, we have a successful
simulation.

4/17/17 COT 4210 © UCF 539

The Rest of the Story Part 2
• Consider the case where M eventually

halts when started on a blank tape in state
q0. In this case we will reach a point where
no actions fill the slots above the one
representing the current state. That means
that we cannot tile the plane.

• If M never halts, then we can tile the plane
(in the limit).

4/17/17 COT 4210 © UCF 540

The Rest of the Story Part 3
• The consequences of Parts 1 and 2 are

that Tiling the plane is as hard as the
complement of the Halting problem which
is co-RE Complete.

• This is not surprising as this problem
involves a universal quantification over all
coordinates (x,y) in the plane.

4/17/17 COT 4210 © UCF 541

Constraints on M
• The starting blank tape is not a real constraint as we can create M

so its first actions are to write arguments on its tape.
• The semi unbounded tape is not new. If you look back at Standard

Turing Computing (STC), we assumed there that we never moved
left of the blank preceding our first argument.

• If you prefer to consider all computation based on the STC model
then we add to M the simple prologue
(R1)x1R(R1)x2R…(R1)xkR so the actual computation starts with a
vector of x1 … xk on the tape and with the scanned square to the
blank to right of this vector. The rest of the tape is blank.

• Think about how, in the preceding pages, you could actually start
the tiling in this configuration.

4/17/17 COT 4210 © UCF 542

Bounded Tiling Problem #1
• Consider a slight change to our machine M. First, it is non-

deterministic, so our transition function maps to sets.
• Second, we add two auxiliary states

{qa, qr}, where qa is our only accept state and qr is our only
reject state.

• We make it so the reject state has no successor states, but
the accept state always transitions back to itself rewriting the
scanned square unchanged.

• We also assume our machine accepts or rejects in at most nk

steps, where n is the length of its starting input which is
written immediately to the right of the initial scanned square.

4/17/17 COT 4210 © UCF 543

Bounded Tiling Problem #2
• We limit our rows and column to be of size

nk+1. We change our initial condition of the tape
to start with the input to M. Thus, it looks like

• Note that there are nk – n of these blank representations
at the end. But we really only need the first.

4/17/17 COT 4210 © UCF 544

q0,YB
BY

X

x1

BB
X

B
BB

X…

xn

BB
X …

Bounded Tiling Problem #3
• The finitely bounded Tiling Problem we just described mimics the

operation of any given polynomially-bounded non-deterministic
Turing machine.

• This machine can tile the finite plane of size
(nk+1) * (nk+1) just in case the initial string is accepted in nk or fewer
steps on some path.

• If the string is not accepted then we will hit a reject state on all paths
and never complete tiling.

• This shows that the bounded tiling problem is NP-Hard
• Is it in NP? Yes. How? Well, we can be shown a tiling (posed

solution takes space polynomial in n) and check it for completeness
and consistency (this takes linear time in terms of proposed
solution). Thus, we can verify the solution in time polynomial in n.

4/17/17 COT 4210 © UCF 545

A Final Comment on Tiling
• If you look back at the unbounded version, you can see

that we could have simulated a non-deterministic Turing
machine there, but it would have had the problem that
the plane would be tiled if any of the non-deterministic
choices diverged and that is not what we desired.

• However, we need to use a non-deterministic machine
for the finite case as we made this so it tiled iff some
path led to acceptance. If all lead to rejection, we get
stalled out on all paths as the reject state can go
nowhere.

4/17/17 COT 4210 © UCF 546

Comments on Variations
• One dimensional space (think about it)

• Infinite 3d space (really impossible in general)
– This become a ∀∃ problem
– In fact, one can mimic acceptance on all inputs here,

meaning M is an algorithm iff we can tile the 3d space

4/17/17 COT 4210 © UCF 547

