- 1. Write a Context Free Grammar for the language $L = \{ a^k b^m c^n | k = n + m, or m = k + n, or n = k + m, k > 0, m > 0, n > 0 \}.$
 - $S \rightarrow aAc \mid aA'bbC'c$ $A \rightarrow aAc \mid aA'b \mid bC'c$ $A' \rightarrow aA'b \mid \lambda$ $C' \rightarrow bC'c \mid \lambda$
- 2. Consider the language

 $L = \{ a^n b^{n!} | n > 0 \}.$

Use the Pumping Lemma for Context-Free Languages to show that L is not context-free.

PL: Provides N>0 We: Choose $a^N b^{N!} \in L$ PL: Splits $a^N b^{N!}$ into uvwxy, $|vwx| \leq N$, |vx| > 0, such that $\forall i \geq 0 uv^i wx^i y \in L$ We: Choose i=2Case 1: vwx contains only b's, then we are increasing the number of b's while leaving the number of a's unchanged. In this case $uv^2 wx^2 y$ is of form $a^N b^{N!+c}$, c>0 and this is not in L. Case 2: vwx contains some a's and maybe some b's. Under this circumstances $uv^2 wx^2 y$ has at least N+1 a's and at most N!+N-1 b's. But $(N+1)! = N!(N+1) = N!*N+N \geq N! + N > N!+N-1$ and so is not in L. Cases 1 and 2 cover all possible situations, so L is not a CFL.

- Cuses 1 unu 2 cover un possible situations, so L is not a CFL.
- 3. Present the CKY recognition matrix for the string **bbabb** assuming the Chomsky Normal Form grammar, G = ({S,A,B,C,D}, {a,b}, R, S), specified by the rules R:

 - $\begin{array}{ccc} A \rightarrow & CS \mid CD \mid \\ B \rightarrow & DS \mid b \end{array}$
 - $B \rightarrow D$ $C \rightarrow a$
 - $\begin{array}{ccc} C \rightarrow & a \\ D \rightarrow & b \end{array}$

	b	b	a	b	b
1	BD	BD	AC	BD	BD
2	S	S	SA	S	
3	В	SB	SA		1
4	SB	SB		1	
5	SB		1		

4. Choosing from among (Y) yes, (N) No, categorize each of the following closure properties. No proofs are required.

Problem / Language Class (C)	Regular	Context Free
Closed under union with Context Free languages?	Ν	Y
Closed under quotient with languages of its own class (C), i.e., L1/L2	Y	Ν
Closed under difference with languages of its own class (C), i.e., (difference (L1, L2) = L1 – L2)?	Y	Ν
Closed under intersection with Context Free languages?	Y	Ν

5. Prove that any class of languages, C, closed under union, concatenation, intersection with regular languages, homomorphism and substitution (e.g., the Context-Free Languages) is closed under Erase Middle with Regular Sets (em), where L ∈ C, R is Regular, L and R are over the alphabet Σ, and L em R = { xz | x,z ∈ Σ⁺ and ∃y ∈ R, such that xyz ∈ L }. You may assume substitution f(a) = {a, a'}, and homomorphisms g(a) = a' and h(a) = a, h(a') = λ. Here a∈Σ and a' is a distinct new character associated with each a∈Σ.

You must be very explicit, describing what is produced by each transformation you apply.

 $L em R = h(f(L) \cap \Sigma^+ g(R) \Sigma^+)$

 $f(L) = \{ \underline{w} \mid w \in L \}$ where \underline{w} has some (or none) of its letters primed. f(L) is a CFL since CFLs are closed under substitution.

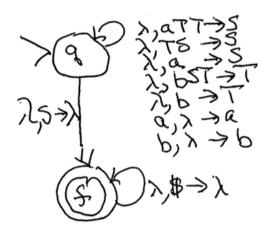
 $g(R) = \{ y' | y \in R \}$ where y' has all of its letter primed. g(R) is Regular since Regular languages are closed under homomorphism.

 $\Sigma^+ g(R) \Sigma^+ = \{xy'z \mid x, z \in \Sigma^+ and y \in R, This is a Regular language since Regular languages are closed under concatenation.$

 $f(L) \cap \Sigma^+ g(R) \Sigma^+ = \{xy'z \mid xyz \in L \text{ and } y \in R\}$. This is a CFL since CFLs are closed under intersection with Regular.

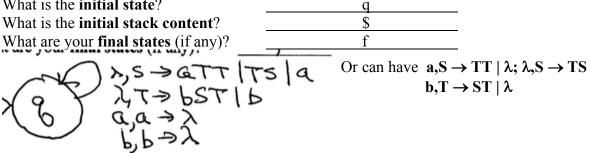
L em $R = h(f(L) \cap \Sigma^+ g(R) \Sigma^+ = \{xz \mid \exists y \in R \text{ where } xyz \in L\}$ is a CFL since CFLs are closed under homomorphism.

- 6. Consider the CFG G = ({ S, T }, { a, b }, R, S) where R is: $S \rightarrow a T T | T S | a$ $T \rightarrow b S T | b$
- **a.)** Present a pushdown automaton that accepts the language generated by this grammar. You may (and are encouraged) to use a transition diagram where transitions have arcs with labels of form $\mathbf{a}, \alpha \rightarrow \beta$ where $\mathbf{a} \in \Sigma \cup \{\lambda\}, \alpha, \beta \in \Gamma^*$. Note: I am encouraging you to use extended stack operations.



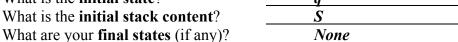
What parsing technique are you using? (Circle one) top-down or bottom-up

How does your PDA accept? (Circle one) **final state** or **empty stack** or **final state and empty stack** What is the **initial state**?



What parsing technique are you using? (Circle one) top-down or bottom-up

How does your PDA accept? (Circle one) final state or <u>empty stack</u> or final state and empty stack What is the initial state? q



b.) Now, using the notation of **ID**s (Instantaneous Descriptions, **[q, x, z]**), describe how your PDA accepts strings generated by **G**.

 $[q, w, \$] \Rightarrow^* [f, \lambda, \lambda]$ if by final state and empty stack (my solution on (a) Bottom-Up)

 $[q, w, S] \Rightarrow^* [q, \lambda, \lambda]$ if by empty stack (my solution on (a) Top-Down)

- 7. Consider the context-free grammar $G = (\{ S, A, B \}, \{ a, b \}, R, S)$, where R is:
 - $S \rightarrow SAB \mid BA$ $A \rightarrow AB \mid a$ $B \rightarrow bS \mid b \mid \lambda$
- a.) Remove all λ-rules from G, creating an equivalent grammar G'. Show all rules.
 Nullable = {B}
 G':

 $S \rightarrow SAB \mid SA \mid BA \mid A$ $A \rightarrow AB \mid a$ $B \rightarrow bS \mid b$

b.) Remove all unit rules from G', creating an equivalent grammar G''. Show all rules. Unit(S)=Chain(S)={S,A}; Unit(A)={A}; Unit(B)={B}

G'': $S \rightarrow SAB \mid SA \mid BA \mid AB \mid a$ $A \rightarrow AB \mid a$ $B \rightarrow bS \mid b$

c.) Convert grammar G" to its Chomsky Normal Form equivalent, G". Show all rules.G".

 $S \rightarrow S < AB > | SA | BA | AB | a$ $A \rightarrow AB | a$ $B \rightarrow S | b$ $<AB > \rightarrow AB$ $ \rightarrow b$

In exam I may have some Unproductive non-terminals and some Unreachable ones.